
University of Verona

A.A 2018/2019

Laboratory of
Networked Embedded Systems

Lesson 4
Toolchain for Network Synthesis

Enrico Fraccaroli
Alan Michael Padovani

May 30, 2019

Contents

1 Requirements 3

2 Setup and first execution 4
2.1 Install Gurobi . 4
2.2 Activate Gurobi for Linux users 4
2.3 Activate Gurobi for Windows users 6

3 Introduction 7
3.1 Network Synthesis . 7
3.2 Communication Aware Specification 7

3.2.1 Tasks . 7
3.2.2 Data flows . 8
3.2.3 Nodes . 8
3.2.4 Abstract Channels . 9
3.2.5 Zones . 9
3.2.6 Contiguities . 10

4 Methodology 11
4.1 High-level description . 12
4.2 Synthesized network . 12

5 Mixed-integer linear programming 13
5.1 Example of MILP . 14
5.2 Variables . 14
5.3 Constraints . 14
5.4 Objectives . 16

6 Getting started 17
6.1 Run the network sythesizer . 17
6.2 Write a high-level description 18
6.3 Example . 18

1

7 Exercises 20
7.1 Exercise 1 . 20
7.2 Exercise 2 . 21
7.3 Exercise 3 . 22

2

Chapter 1

Requirements

In order to attend this lessons you will need:

• Python 3.6.6

• Gurobipy 8.1.0

In order to activate the gurobi license you have to connect your device with
the university network. If you are not inside the university you can still
activate it by connecting via vpn at the university nerwork using the Pulse
Software:
https://vpn.univr.it/it/i-nostri-servizi/,DanaInfo=www.univr.it,SSL,SSO=U+ssl-
vpn-accesso-remoto-sicuro.
Use the following to add the vpn connection in Pulse Software:
Nome: UniVR
URL Server: https://vpn.univr.it

3

Chapter 2

Setup and first execution

2.1 Install Gurobi
Now we will see the steps necessary to get a free version of Gurobi-Optimizer
and how to set up the experiments:

1. First, you have to register at:

• http://www.gurobi.com/registration/general-reg

• Select as Account Type: Academic.

• At the end of the registration process you will receive a mail.

2. Open the received mail:

• Inside the mail you will found a link which will allow you to set a
password for your Gurobi account.

3. Download gurobi-optimizer at:

• http://www.gurobi.com/downloads/gurobi-optimizer

• Select the platform that you are using.

2.2 Activate Gurobi for Linux users
1. Move the downloaded compressed file inside your home directory

2. Untar the compressed file (change X.X.X with the identifier of your
downloaded version).
tar xvzf gurobiX.X.X_linux64.tar.gz

4

3. Rename the uncompressed directory:
mv gurobiX.X.X ${HOME}/ Gurobi

4. Create a script:
gedit ${HOME}/set -gurobi -env.sh

5. Place the following commands inside the script:
export GUROBI_HOME="${HOME}/ Gurobi/linux64"
export PATH="${PATH}:${GUROBI_HOME }/bin"
export LD_LIBRARY_PATH="${LD_LIBRARY_PATH }:${GUROBI_HOME }/lib"
export GRB_LICENSE_FILE="${GUROBI_HOME }/ gurobi.lic"

6. Make the script executable:
chmod +x ${HOME}/set -gurobi -env.sh

7. Execute the script:
source ${HOME}/set -gurobi -env.sh

8. Get a free academic license at:
https :// user.gurobi.com/download/licenses/free -academic

9. Copy the command at the end of the of the page, the one which has
the following form:
grbgetkey xxxxxxxx -xxxx -xxxx -xxxx -xxxxxxxxxxxx

10. Execute the command inside your bash. (connection at the university
network is required)

11. When prompted set the destination folder to your GUROBI_HOME. So if
you’ve followed the instruction just type:
${HOME}/ Gurobi/linux64

12. Move inside GUROBI_HOME:
cd $GUROBI_HOME

13. Install Gurobi inside a directory of your own:
python setup.py install --prefix =~/ GurobiLib

5

14. Lets define a new environment variable which points to Gurobi library
(replace X.X with your version):
export GUROBI_LIB=${HOME}/ GurobiLib/lib/pythonX.X/site -packages/gurobipy

15. Let python know where the library is:
export PYTHONPATH=${PYTHONPATH }:${GUROBI_LIB}

16. You can place the previous two exports inside your set-gurobienv.sh
script.

2.3 Activate Gurobi for Windows users
1. After the installation of gurobi, obtain a free academic license at:

https :// user.gurobi.com/download/licenses/free -academic

2. Copy the grbgetkey command at the end of the page.

3. Open the command window and execute the previously copied com-
mand: (connection at the university network is required)
grbgetkey xxxxxxxx -xxxx -xxxx -xxxx -xxxxxxxxxxxx

4. Move to the path: (or where you have decided to install gurobi)
C:/ gurobi810/win64

5. Execute the command: (required python to be added to the path)
python setup.py install

6

Chapter 3

Introduction

3.1 Network Synthesis
Network synthesis is a design process which starts from a high-level specifi-
cation of a distributed embedded system and finds an actual description of
its communication infrastructure in terms of mapping of tasks onto network
nodes, their spatial displacement, the type of channels and protocols among
them, and the network topology.

3.2 Communication Aware Specification

3.2.1 Tasks

A task represents a basic functionality of the whole application; it takes some
data as input and provides some output. From the point of view of network
synthesis the focus is not on the description of the functionality itself and
its HW/SW implementation but rather on its computational and mobility
requirements.

A task t ∈ T is a triple t = [s,m, z] whose three attributes (i.e., compo-
nents) are as follows

s ∈ R≥ represents the task size, i.e., the overall resource require-
ments in order for task t to perform its activity;

m ∈ B specifies whether the task should be necessarily placed
on a mobile node;

z ∈ Z specifies to which zone the task belongs.

7

3.2.2 Data flows

A data-flow (DF) represents the communication between two tasks; output
from the source task is delivered as input to the destination task. Network
synthesis focuses only on the communication requirements which affect the
choice of channels and protocols between the nodes hosting the involved
tasks. A data-flow d = [ts, td, s, d, e] ∈ D is characterized by the attributes

ts, td ∈ T the source and destination tasks;

s ∈ R≥ represents the data-flow size (bit-rate);

d ∈ R≥ indicates the maximum accepted delay;

e ∈ R≥ specifies the maximum acceptable error rate.

3.2.3 Nodes

A node can be seen as a container of tasks. At the end of the synthesis flow,
nodes will become HW entities with CPUs and network interfaces and tasks
will be implemented either as HW components or as SW processes. From the
point of view of network synthesis, the focus is on the resources made avail-
able by the node to host a number of tasks. A node n = [s, k, e, te, ek,m] ∈ N
is a tuple whose attributes are as follows

s ∈ R≥ represents the node’s size, i.e., the available computa-
tional resources;

k ∈ R≥ denotes the node’s economic cost;

e ∈ R≥ is the energy consumption intrinsic to the node, without
considering the tasks contained in it and their contribu-
tion to the total consumption;

te ∈ R≥ determines the energy consumption of the tasks assigned
to the node over a TU (each task tmapped into the node
n consumes an amount of energy equal to t.s times n.te);

ek ∈ R≥ relates the consumed energy with a specific cost based
on the energy source (e.g. batteries, solar panels, energy
service company etc.);

m ∈ B identifies if the node is mobile or static.

8

3.2.4 Abstract Channels

An abstract channel (AC) can be seen as a container of data-flows. It is
an ideal connection between two or more nodes. An abstract channel ac =
[e, de, k, ek, w, pp, s, dl, er] ∈ A is a tuple characterized as follows

e ∈ R≥ is the intrinsic energy consumption of the channel;

de ∈ R≥ is the energy required to send a bit through the channel
over a TU (each data-flow d deployed inside the channel
c consumes an amount of energy equal to d.s times c.de);

k ∈ R≥ specifies its economic cost;

ek ∈ R≥ relates the consumed energy with a specific cost based
on the energy source;

w ∈ B tells whether the channel is wireless;

pp ∈ B specifies if the channel is point-to-point;

s ∈ R≥ the size (capacity) of the channel;

dl ∈ R≥ represents the maximum transmission delay of the
channel;

er ∈ R≥ specifies its maximum error rate.

A data-flow can be assigned to a static AC only when each task participating
to the data-flow is mapped into a static node. To make this constraint more
explicit, we say that a data-flow involves a node n whenever some but not
all of its tasks are mapped into n. We then require: a data-flow involving a
mobile node can not be assigned to a static AC. It is worth noting that the
abstract channel has the same three attributes of a data-flow, but the former
represents the communication resources provided by the channel while the
latter represents the communication requirements needed by the data-flow
and the involved tasks.

3.2.5 Zones

The physical devices represented by the nodes are ultimately deployed in 3D
space. Our model takes care of some abstract topological issues by parti-
tioning the space into a finite set of zones Z related by contiguities. Zones
and contiguities allow an environment-aware design of network topologies.

9

We start by describing zones since these are often determined and charac-
terized by an environmental attribute (e.g., a temperature value). A zone
z = [p] ∈ Z is a tuple characterized as follows

p = (x, y, z) ∈ R3
≥ denotes the zone position inside 3D space.

3.2.6 Contiguities

Contiguities describe the relation between zones. Two nodes placed in the
same zone are always able to communicate with the default quality of service
of the involved abstract channel. This quality however might drop because
of distance, interference, or obstacles, in case the nodes are deployed into
two different zone. A contiguity cnt = [z1, z2, ac, c, dc] ∈ C is a tuple whose
attributes are characterized as follows

z1, z2 ∈ Z are the source and destination zones;

ac ∈ A is the channel to which the contiguity applies;

c ∈ [0, 1] represents the environmental effects due to the border
between two zones (i.e., z1 and z2) on the quality com-
munications of a given channel (i.e., ac), by means of a
index of conductivity;

dc ∈ R≥ represents the cost required to deploy the given cable
channel between the given pair of zones. Thus, such
value is of interest only for non wireless channels.

Given two zones z1, z2 ∈ Z and a channel ac ∈ A, the hash function
cont(z1, z2, ac) allows to efficiently retrieve the corresponding contiguity. The
proposed entities can be put in relation by using graphs. Moreover, they can
be used by the designer to specify the application requirements which can be
expressed through formal relations between their attributes.

10

Chapter 4

Methodology

High-Level
Description MILP Synthesized

Network

• Catalogue of Nodes
and Abstract Channels.

• Association of tasks
to zones.

• Data-flows between
tasks.

• Zones contiguities.

• Python
• Gurobi Optimizer

• Deployed Nodes
and Abstract
Channels.

• Allocation of Tasks
onto Nodes.

• Allocation of Data-
Flows onto Abstract
Channels.

Figure 4.1: Network synthesis flow.

The methodology starts from a high-level description of the distributed
embedded system, which is implementation-independent. The final re-
sult is a synthesized network infrastructure which can be used for the
generation of both a simulation model and the actual deployment.

11

4.1 High-level description
The high level description comprises the catalogs and the input instance.
The catalogs contains:

• Node Catalog
Contains the possible types of nodes.

• Abstract Channel Catalog
Contains the possible types of channels.

An Input Instance which reports all the details concerning the problem.

• Set of Tasks inside Zones.

• Set of Data-Flows between Tasks.

• Set of Contiguities between Zones.

4.2 Synthesized network
A feasible solution to the problem consists of:

• How many nodes of each type should be placed in each zone.

• Which of the instantiated nodes will host the tasks.

• How many abstract channels of each type should be deployed.

• Which of the activated abstract channels will host the data-flows.

12

Chapter 5

Mixed-integer linear
programming

Integer Linear Program (ILP)

1. An optimization model is an Integer Linear Program.

2. If all of its variables are discrete, the model is a pure integer
linear program.

3. Otherwise, the mode is a mixed-integer linear program.

The problem which are most commonly solved are of the form:

• Objective
minimize

∑N
i=1 cixi where ci ∈ R(linear cost function)

• Constraints∑N
i=1 aixi ≤ bi (linear constraints)

xi ≥ 0 (bound constraints)
some or all xi must take integer values (integrality constraints).

13

5.1 Example of MILP
Read the text which follows and try to identify the variables needed to
model the problem and the constraints between them. Then write down,
using the founded variables, the objective function. Solve this problem on
a paper using a graphical method, then verify the answer by implementing
the MILP on Python using the given skeleton: MILP.py.
Problem:
A factory produces two types of chess boards. The smaller one needs four
hours of work at the lathe, the other one takes only two because is less
detailed.
The factory has only one worker, which works forty hours per week.
The smallest boards needs a kilogram of wood, the other one two. Wood
isn’t infinite, the factory can use only a total of twentyfour kilograms per
week.
The bigger boards gives an earning of 20$, the smaller 5$.
How much and of which types must the factory produce per week in order
to maximize the earning?
source: Alberto Bemporad, Modelli e metodi di ottimizzazione, Università di
Siena

5.2 Variables
Continuous Variables

• Nn,z How many nodes of type n are deployed inside zone z.
The upperbound on the number of active nodes is: Nn,z

• Cc How many channels of type c are activated.
The upperbound on the number of active channels is: Cc

Binary Variables Let us see some examples

5.3 Constraints
Let us see and example of constraint. The number of active nodes (Nn,z) is
equal to the sum of all the actually instantiated nodes (xn,z,p), expressed in

14

Variable Description
xn,z,p The p-th node of type n has been allocated in zone z.
yc,p The p-th channel of type c has been deployed.
wt,n,p Task t is placed inside the p-th node of type n.
hd,c,p Data-flow d is placed inside the p-th channel of type c.
ρt1,t2 Tasks t1 and t2 are mapped into different nodes.
γd,t If tasks d.st, d.dt, t are mapped into three different nodes.

constraint C.1.

Nn,z =
Nn,z∑
p=1

xn,z,p

∀n ∈ N , ∀z ∈ Z
(C.1)

Another example concerns the data-flows. Their placement depends on
whether the tasks which they connect reside in the different nodes or not.
The former case is formalized in Constraint C.2, where data-flows have tasks
which reside in different zones, thus their placement inside a channel is nec-
essary. In the formula that follows αc(d) gives for each dataflow d ∈ D the
set of channels c which can host the given dataflow.

αc(d)∑
c

Cc∑
p=1

hd,c,p = 1

∀d ∈ D, d.ts.z 6= d.td.z

(C.2)

On the latter case, where data-flow is not necessarily assigned to a channel,
its placement depends on variable ρ and ensure by Constraint C.3.

αc(d)∑
c

Cc∑
p=1

hd,c,p = ρd.ts,d.td

∀d ∈ D, d.ts.z = d.td.z

(C.3)

15

5.4 Objectives
Our goal is to minimize or maximize an objective function value.
For what concerns the network synthesis problem, one could choose to Min-
imize the Economic Cost of the synthesized network. Such objective can be
specified as follows:

min
[∑
n∈N

∑
z∈Z

∑
p∈Nn,z

(xn,z,p ∗ n.k) +
∑
c∈C

∑
p∈Cc

(yc,p ∗ c.k)
]

We’ve basically summed the costs of all the actually instantiated nodes to
the sum of all the actually instantiated channels.

16

Chapter 6

Getting started

6.1 Run the network sythesizer
1. First, download the source code for the today’s laboratory.

2. Move inside the directory which contains the source code:
cd source_code_lesson_4

3. To see the arguments of the synthesizer just type:
python Synthesizer.py

4. Execute the synthesizer on the first case study:
python Synthesizer.py case_study_1/input \
case_study_1/nodes \
case_study_1/channels \
1

17

6.2 Write a high-level description
A Test Case contains three files:

1. input

2. nodes

3. channels

Each input file underlies the following notation and rules:

• A row which starts with a ‘#’ or ‘;’ is a comment and therefore ignored.

• The attributes of an entity are separated by white spaces or tabulation

• In the input file each instance of type zone, contiguity, task, dataflow
must be inside its relative section started with <type> and ended with
</type> using the given order.

6.3 Example

Input Instance� �
Zones
Label | X | Y | Z
<ZONE >
1 0 0 0
2 1 0 0
3 0 1 2
</ZONE >
Contiguities --------------------------------------
Zone1 | Zone2 | Channel | Conductance | Deployment costs
<CONTIGUITY >
1 2 1 0.7 2
1 2 2 0.9 0
</CONTIGUITY >
Tasks ---
Label | Size | Zone | Mobile
<TASK >
Tsk1 3 1 0
Tsk2 7 2 1
</TASK >
Data -Flows --
Label | Source | Target | Band | Delay | Error
<DATAFLOW >
Df01 Tsk1 Tsk2 4 10 4
</DATAFLOW >� �

18

Channel Catalog� �
Label Id Cost Size Energy DFEn EnCost DL ER W PP
Bluetooth 1 9 24 1 1 0.75 10 11 1 1
Wi-Fi-AC 2 34 7000 3 2 1.10 8 7 1 0� �

Node Catalog� �
Label Id Cost Size Energy TEn EnCost Mobile
Arduino 1 5 32 5 1 0.5 0
Smartphone 2 22 64 8 2 0.92 1� �

19

Chapter 7

Exercises

7.1 Exercise 1

Model the scenario above using the presented formalism. Choose properly
the contiguities, nodes, channels.

Tasks
Identifier Size Mobile

T1 10 1
T2 25 1
T3 5 1

Data-Flows

Data-Flow Source Destination Bandwidth Max
Delay

Max
Error

Df1 T2 T1 7 5 15
Df2 T3 T2 25 15 3

20

7.2 Exercise 2

Model the scenario above using the presented formalism. Choose properly
the nodes and channels. Set the contiguities so that only wired channels
can be used between Z2 and Z4 as well as between Z4 and Z6.

Tasks
Identifier Size Mobile
T2, T4, T6 25 0
T1, T3, T5 5 1

Data-Flows
Data-Flow Bandwidth Max Delay Max Error
Df1, Df2 30 10 10

Df3, Df4, Df5 10 5 5

21

7.3 Exercise 3
Based on the economic cost objective function, try to write down an objec-
tive function which aims to minimize the energy consumption. Then insert
it in the Sinthesizer.py and sinthesize the previous exercises with this new
objective function. Compare the new resulting network with the previously
obtained.

22

That’s all folks

	Requirements
	Setup and first execution
	Install Gurobi
	Activate Gurobi for Linux users
	Activate Gurobi for Windows users

	Introduction
	Network Synthesis
	Communication Aware Specification
	Tasks
	Data flows
	Nodes
	Abstract Channels
	Zones
	Contiguities

	Methodology
	High-level description
	Synthesized network

	Mixed-integer linear programming
	Example of MILP
	Variables
	Constraints
	Objectives

	Getting started
	Run the network sythesizer
	Write a high-level description
	Example

	Exercises
	Exercise 1
	Exercise 2
	Exercise 3

