Wavelets and multiresolution representations Time meets frequency

Time-Frequency resolution

• Depends on the time-frequency spread of the wavelet atoms

Assuming that ψ is centred in t=0

Signal domain

$$\sigma_t^2 = \int_{-\infty}^{+\infty} t^2 |\psi(t)|^2 dt$$

$$\int_{-\infty}^{+\infty} (t - u)^2 |\psi_{u,s}(t)|^2 dt = s^2 \sigma_t^2$$

Fourier domain

$$\eta = \frac{1}{2\pi} \int_{0}^{+\infty} \omega |\hat{\psi}(\omega)| d\omega$$

$$\hat{\psi}_{u,s}(\omega) = \sqrt{s}\psi(s\omega)e^{-i\omega u} \rightarrow \text{center frequency } \eta/\text{s}$$

Energy spread around η /s

$$\frac{\sigma_{\omega}^{2}}{s^{2}} = \frac{1}{2\pi} \int_{0}^{+\infty} \left(\omega - \frac{\eta}{s} \right)^{2} \left| \hat{\psi}_{u,s}(\omega) \right|^{2} d\omega$$

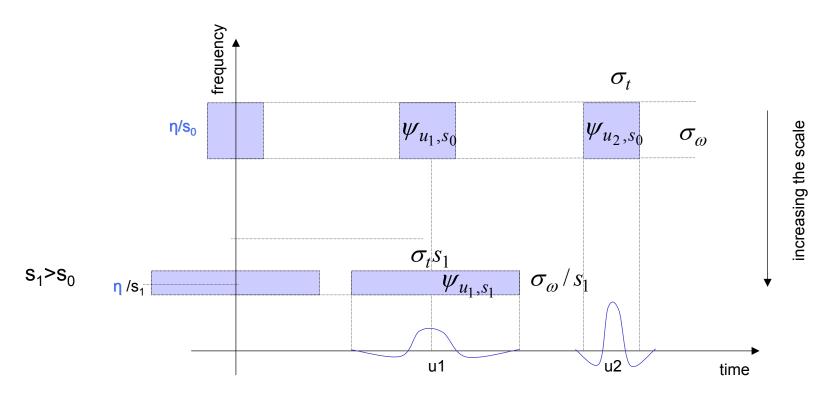
Time/frequency resolution

$$\sigma_{s,t}^{2} = s^{2}\sigma_{t}^{2}$$

$$\sigma_{s,\omega}^{2} = \frac{\sigma_{\omega}^{2}}{s^{2}}$$

- The energy spread of a wavelet time-frequency atom corresponds to an Heisemberg box centred at $(\mathbf{u}, \mathbf{n}/\mathbf{s})$ of size $\mathbf{s}\mathbf{\sigma}_t$ along the time and $\mathbf{\sigma}_\omega/\mathbf{s}$ along the frequency.
- The area of the rectangle remains equal to $\sigma_t \sigma_\omega$ at all scales, while the resolution in time and frequency depends on s.
- A wavelet defines a local time-frequency energy density $P_W f$ which measures the energy in the Heisemberg box of each wavelet centred at $(u, \eta/s)$. This energy density is called scalogram

Time/frequency localization



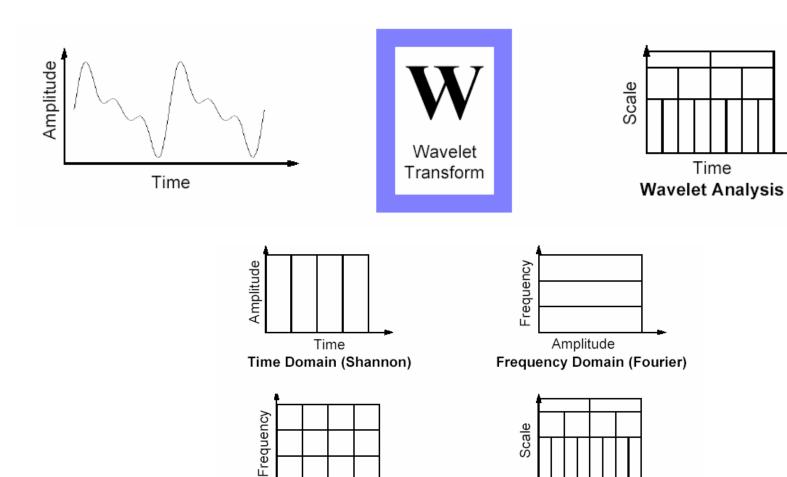
Increasing the scale (s gets larger) pushes the box towards low frequencies \rightarrow frequency resolution increases, spatial resolution decreases

Time spread is proportional to scale Frequency spread is proportional to 1/scale

Wavelet domain

Time

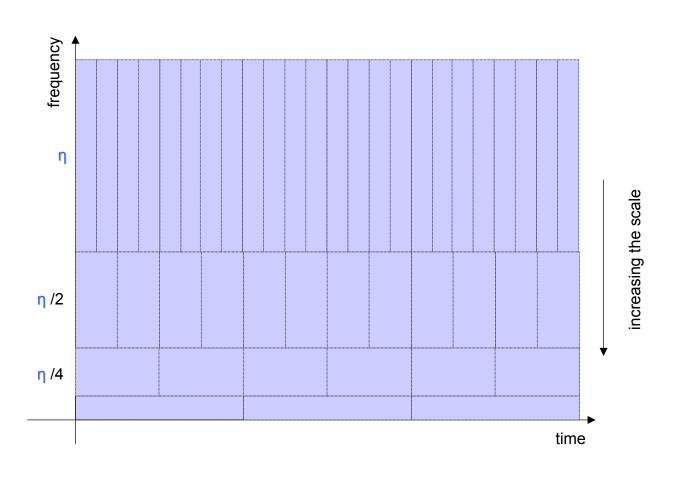
Wavelet Analysis



Time

STFT (Gabor)

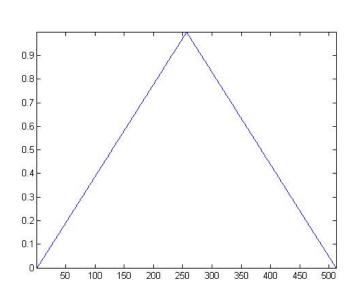
Dyadic Wavelets

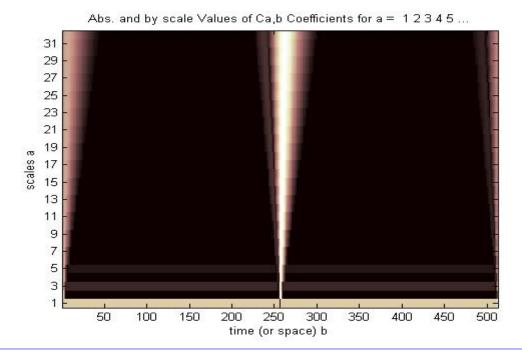


Scalogram

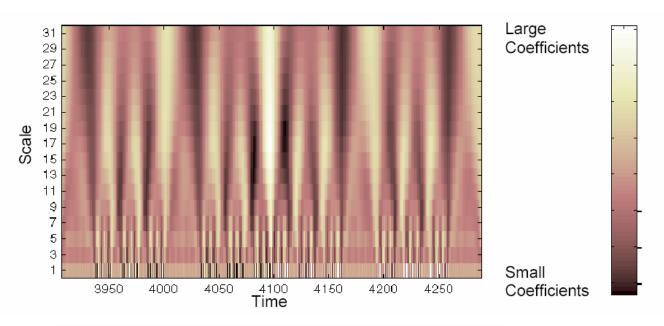
- The scalogram represents the local time/frequency energy density
 - Energy density in the Heisenberg box of each wavelet $\psi_{u,s}$

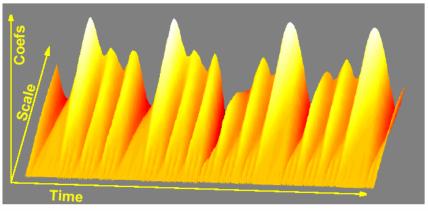
$$P_{W}f(u,\xi) = \left| Wf\left(u,\frac{\eta}{\xi}\right) \right|^{2}$$



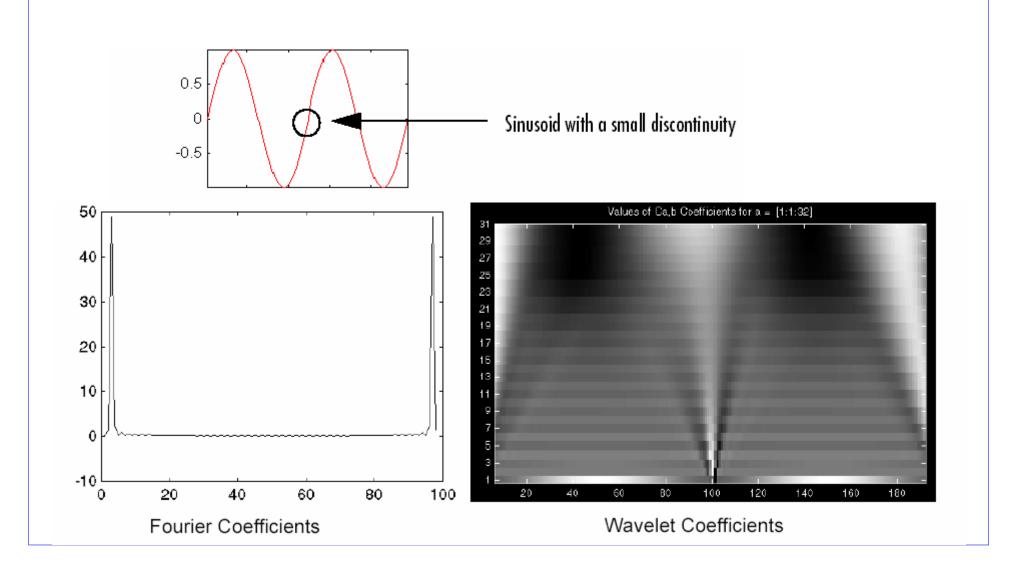


3D representation





Local discontinuities



Real Wavelets

Detect sharp signal transitions

$$Wf(u,s) = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) dt$$

- Measures the variations of f in the neighborhood of u whose size is proportional to s
- A real WT is complete and maintains energy conservation as long as it satisfies a weak admissibility condition (Theorem 4.3, next slide)
- The decay of the coefficients as s goes to zero characterizes the regularity of f in the neighborhood of u

Real wavelets: Admissibility condition

Theorem 4.3 (Calderon, Grossman, Morlet)

Let ψ in L²(R) be a real function such that

$$C_{\psi} = \int_{0}^{+\infty} \frac{|\hat{\psi}(\omega)|^{2}}{\omega} d\omega < +\infty$$
 Admissibility condition

Any f in L²(R) satisfies

$$f(t) = \frac{1}{C_{\psi}} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} Wf(u, s) \frac{1}{\sqrt{s}} \psi\left(\frac{t - u}{s}\right) du \frac{ds}{s^2}$$

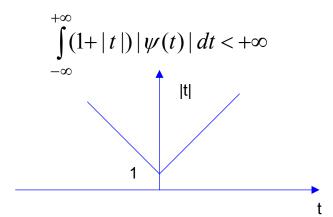
and

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \frac{1}{C_{\psi}} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} |Wf(u,s)|^2 du \frac{1}{s^2} ds$$

Admissibility condition

• Consequences

- The integral is finite if the wavelet has zero average $\hat{\psi}(0) = 0$
 - This condition is nearly sufficient →
- If $\hat{\psi}(0) = 0$ and $\hat{\psi}(\omega)$ is continuously differentiable, than the admissibility condition is satisfied
 - This happens if it has a sufficient time decay



→ The wavelet function must decay sufficiently fast in both time and frequency

Wavelet families

$$f(\vec{x}) \leftrightarrow Wf(u, s; \vec{x}) = c_{u, s}(\vec{x})$$

- In general, there is a redundancy in the representation
- The amount of redundancy depends on the grids over which the u and s parameters are sampled

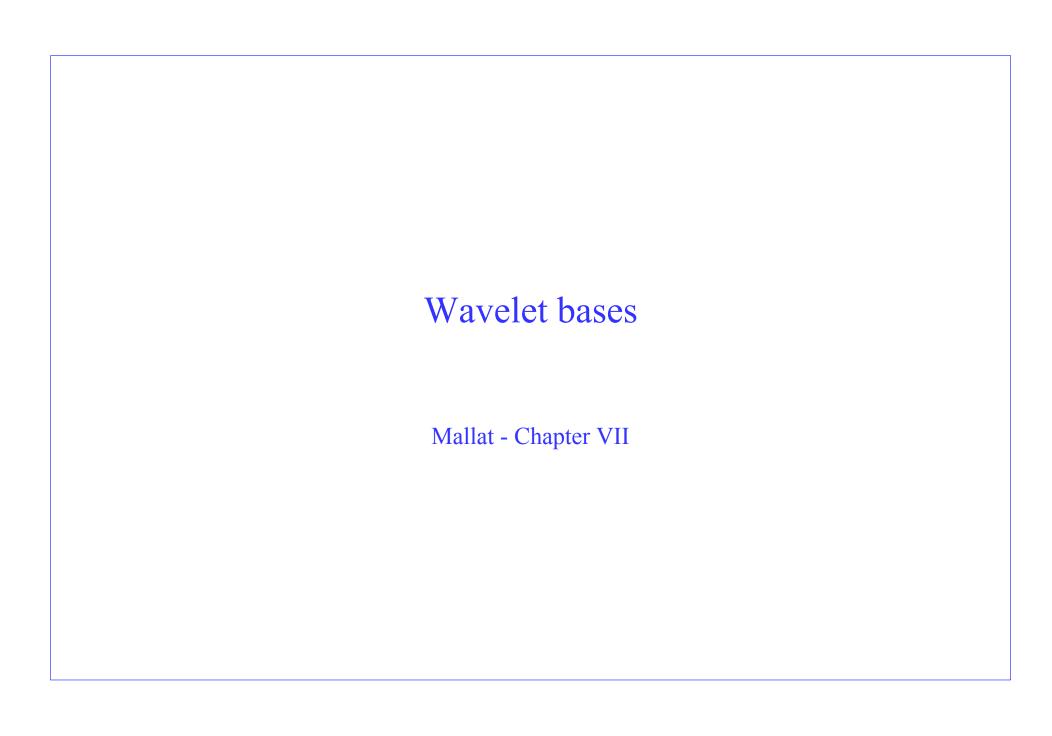
u,s are real : Continuous WT (CWT, overcomplete representation)

u in Z, $s=a^{j}$, j in Z: Wavelet Frames (DWF, DDWF, overcomplete)

- a=2 Dyadic wavelet frames

 $u=k2^{j}$, $s=2^{j}$, k in I: Discrete Wavelet Transform (DWT) (*critically sampled*)

• Note: removing completely the redundancy leads to complete basis (*critically sampled*)

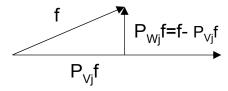


Wavelet bases

One can construct wavelets such that

$$\left\{ \psi_{j,n}(t) = \frac{1}{\sqrt{2^{j}}} \psi\left(\frac{t - 2^{j} n}{2^{j}}\right) \right\}_{j,n \in \mathbb{Z}^{2}}$$

is an orthonormal basis for $L^2(R)$.



• Multiresolution approximations

- The partial sum of wavelet coefficients giving $d_j(t)$ can be interpreted as the difference between two approximations of f at the scales 2^j and $2^{(j-1)}$
- Multiresolution approximations compute the approximations of signals at various resolutions with orthogonal projections to different spaces $\{V_i\}_{i \text{ in } Z}$
- The approximation of f at scale 2^j is specified by a discrete grid of samples that provides *local* averages of f on neighborhoods of size proportional to 2^j .
- A multiresolution consists of embedded grids of approximations

Orthogonal wavelet bases

• The search for orthogonal wavelets begins with multiresolution approximations

$$f \in L^2(\Re) \to \sum_{n=-\infty}^{+\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}$$
 difference bewteen two approximations at resolutions 2^{-j+1} and 2^{-j}

- Resolution = 1/scale
 - The larger the scale, the smaller the resolution
- Multiresolution approximations compute the approximation of signals at various resolutions with orthogonal projections on different spaces $\{V_j\}_{j\in Z}$
 - These are characterized by a one particular discrete filter that governs the loss of information across resolutions

Multiresolution approximations

- The approximation of a function f at a resolution 2^j is specified by a discrete grid of samples that provides local averages of f over neighborhoods of size proportional to 2^j .
- Thus, a multiresolution approximation is composed of *embedded grids of approximation*.
- More formally:
 - the approximation of a function at a resolution 2^j is defined as an **orthogonal projection** on a space $V_i \subset L^2(R)$.
 - The space V_j regroups all possible approximations at the resolution 2^j .
 - The orthogonal projection of f is the function $f_i \in V_j$ that minimizes $||f-f_i||$.

Multiresolution approximations

Definition 7.1 A sequence $\{V_j\}_{j \text{ in } Z}$ of closed subspaces of $L^2(R)$ is a multiresolution approximation if the following six conditions are satisfied

$$\forall (j,k) \in Z^{2}, f(t) \in V_{j} \Leftrightarrow f(t-2^{j}k) \in V_{j}$$

$$\forall j \in Z, \quad V_{j+1} \subset V_{j}$$

$$\forall j \in Z, f(t) \in V_{j} \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$$

$$\lim_{j \to +\infty} V_j = \bigcap_{j=-\infty}^{+\infty} V_j = \{0\}$$

$$\lim_{j \to -\infty} V_j = Closure \left(\bigcup_{j=-\infty}^{+\infty} V_j \right) = L^2(R)$$

 V_{j} is invariant for translations proportional to the scale

The *finer* approximation subspace encloses all the information concerning the coarser one

Stratching the function by a factor 2 spans a coarser subspace

When the resolution goes to zero all the details are lost $\lim_{f\to +\infty} \|P_{\mathbf{V}_j} f\| = 0.$

When the resolution goes to infinity the approximation converges to the signal

$$\lim_{j \to -\infty} \|f - P_{\mathbf{V}_j} f\| = 0.$$

There exists \mathcal{G} such that $\{\mathcal{G}(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz basis of V_0

Banach and Hilbert spaces

• A Hilbert space is an abstract <u>vector space</u> possessing the structure of an <u>inner product</u> that allows length and angle to be measured. Hilbert spaces are in addition required to be <u>complete</u>, a property that stipulates the existence of enough <u>limits</u> in the space to allow the techniques of calculus to be used.

Banach and Hilbert spaces

Banach space

Signals are often considered as vectors. To define a distance, we work within a vector space **H** that admits a norm. A norm satisfies the following properties:

$$\forall f \in \mathbf{H}, \quad ||f|| \ge 0 \quad \text{and} \quad ||f|| = 0 \quad \Leftrightarrow \quad f = 0, \tag{A.3}$$

$$\forall \lambda \in \mathbb{C} \ \|\lambda f\| = |\lambda| \|f\|, \tag{A.4}$$

$$\forall f, g \in \mathbf{H}, \quad \|f + g\| \le \|f\| + \|g\|.$$
 (A.5)

With such a norm, the convergence of $\{f_n\}_{n\in\mathbb{N}}$ to f in **H** means that

$$\lim_{n \to +\infty} f_n = f \iff \lim_{n \to +\infty} ||f_n - f|| = 0.$$

To guarantee that we remain in **H** when taking such limits, we impose a completeness property, using the notion of *Cauchy sequences*. A sequence $\{f_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence if for any $\varepsilon > 0$, if n and p are large enough, then $||f_n - f_p|| < \varepsilon$. The space **H** is said to be *complete* if every Cauchy sequence in **H** converges to an element of **H**.

Banach and Hilbert spaces

Hilbert space

Whenever possible, we work in a space that has an inner product to define angles and orthogonality. A *Hilbert space* **H** is a Banach space with an inner product. The inner product of two vectors $\langle f, g \rangle$ is linear with respect to its first argument:

$$\forall \lambda_1, \lambda_2 \in \mathbb{C}, \quad \langle \lambda_1 f_1 + \lambda_2 f_2, g \rangle = \lambda_1 \langle f_1, g \rangle + \lambda_2 \langle f_2, g \rangle. \tag{A.6}$$

It has an Hermitian symmetry:

$$\langle f, g \rangle = \langle g, f \rangle^*.$$

Moreover,

$$\langle f, f \rangle \ge 0$$
 and $\langle f, f \rangle = 0 \Leftrightarrow f = 0$.

One can verify that $||f|| = \langle f, f \rangle^{1/2}$ is a norm. The positivity (A.3) implies the Cauchy-Schwarz inequality:

$$|\langle f, g \rangle| \le ||f|| \, ||g||, \tag{A.7}$$

which is an equality if and only if f and g are linearly dependent.

We write V^{\perp} the orthogonal complement of a subspace V of H. All vectors of V are orthogonal to all vectors of V^{\perp} and $V \oplus V^{\perp} = H$.

Bases of Hilbert spaces

Orthonormal Basis

A family $\{e_n\}_{n\in\mathbb{N}}$ of a Hilbert space **H** is orthogonal if for $n\neq p$,

$$\langle e_n, e_p \rangle = 0.$$

If for $f \in \mathbf{H}$ there exists a sequence a[n] such that

$$\lim_{N \to +\infty} \|f - \sum_{n=0}^{N} a[n] e_n\| = 0,$$

then $\{e_n\}_{n\in\mathbb{N}}$ is said to be an *orthogonal basis* of **H**. The orthogonality implies that necessarily $a[n] = \langle f, e_n \rangle / \|e_n\|^2$, and we write

$$f = \sum_{n=0}^{+\infty} \frac{\langle f, e_n \rangle}{\|e_n\|^2} e_n. \tag{A.8}$$

A Hilbert space that admits an orthogonal basis is said to be *separable*.

The basis is *orthonormal* if $||e_n|| = 1$ for all $n \in \mathbb{N}$. Computing the inner product of $g \in \mathbf{H}$ with each side of (A.8) yields a Parseval equation for orthonormal bases:

$$\langle f, g \rangle = \sum_{n=0}^{+\infty} \langle f, e_n \rangle \langle g, e_n \rangle^*.$$
 (A.9)

Bases of Hilbert space

When g = f, we get an energy conservation called the *Plancherel formula*:

$$||f||^2 = \sum_{n=0}^{+\infty} |\langle f, e_n \rangle|^2.$$
 (A.10)

The Hilbert spaces $\ell^2(\mathbb{Z})$ and $\mathbf{L}^2(\mathbb{R})$ are separable. For example, the family of translated Diracs $\{e_n[k] = \delta[k-n]\}_{n \in \mathbb{Z}}$ is an orthonormal basis of $\ell^2(\mathbb{Z})$. Chapters 7 and 8 construct orthonormal bases of $\mathbf{L}^2(\mathbb{R})$ with wavelets, wavelet packets, and local cosine functions.

Riesz basis

Link to the discrete domain: the existance of a Riesz bases provides a discretization theorem

Definition: A family of vectors is a Riesz basis of a space H if

- 1. it is linearly independent
- 2. there exist A,B>0 such that

$$\forall y \in H \qquad \exists \lambda[n]: \qquad y = \sum_{n=0}^{+\infty} \lambda[n] e_n$$

$$\frac{1}{B} \|y\|^2 \le \sum_{n=0}^{+\infty} |\lambda[n]|^2 \le \frac{1}{A} \|y\|^2$$

The existance of a Riesz basis for V_0 provides a discretization theorem

$$\forall f(t) \in V_0 \to f(t) = \sum_n a[n] \mathcal{G}(t-n)$$

$$A \|f\|^2 \le \sum_n |a[n]|^2 \le B \|f\|^2$$

$$\left\{ \frac{1}{\sqrt{2^j}} \mathcal{G}\left(\frac{t-2^j n}{2^j}\right) \right\} \quad \text{is a Riesz basis for } V_j$$

Scaling function

• The scaling function is obtained by the orthogonalization of the Riesz basis

Theorem 7.1

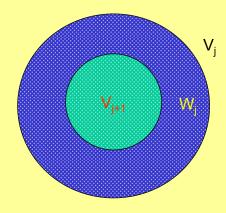
Let V_i be a multiresolution approximation and φ be the scaling function whose FT is

$$\hat{\varphi}(\omega) = \frac{\hat{\mathcal{G}}(\omega)}{\left(\sum_{k=-\infty}^{+\infty} \left| \hat{\mathcal{G}}(\omega + 2k\pi) \right|^2 \right)^{1/2}}$$

Let us denote

$$\varphi_{j,n}(t) = \frac{1}{\sqrt{2^j}} \varphi \left(\frac{t - 2^j n}{2^j} \right)$$

The family $\{\boldsymbol{\varphi}_{j,n}\}_{n \text{ in } Z}$ is an orthonormal basis of V_j for all j in Z



Approximation

• The orthogonal projection of f onto V_j is obtained as an expansion in the scaling orthogonal basis

$$P_{V_j}f = \sum_{n=-\infty}^{+\infty} \langle f, \varphi_{j,n} \rangle \varphi_{j,n}$$

• The inner products $a_i[n]$ are the projection coefficients at scale 2^j

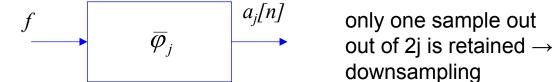
$$a_{j}[n] = \left\langle f, \varphi_{j,n} \right\rangle = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{2^{j}}} \varphi\left(\frac{t - 2^{j} n}{2^{j}}\right) = f * \overline{\varphi}_{j}(2^{j} n)$$
$$\overline{\varphi}_{j}(2^{j} n) = \frac{1}{\sqrt{2^{j}}} \varphi\left(-\frac{t}{2^{j}}\right)$$

- The normalization factor at the denominator ensures that

$$\sum_{k=-\infty}^{\infty} \left| \hat{\varphi} \left(\omega + 2k\pi \right) \right|^2 = 1$$

Approximation

$$a_j[n] = f * \overline{\varphi}_j(2^j n)$$



- The energy of φ_i is mostly concentrated in $[-\pi/2^j,\pi/2^j]$ which corresponds to low pass filtering
- The *signal approximation* is obtained by convolving f with a *low-pass filter* and downsampling by 2 -> any scaling function corresponds to a *conjugate mirror filter*
- A multiresolution is *completely characterized* by the scaling function

Wavelet representation

Summarizing

$$A^{d}_{2^{j}} f = PV_{j} f = \sum_{n=-\infty}^{+\infty} \langle f, \varphi_{j,n} \rangle \varphi_{j,n}$$

$$a_{j}[n] = \langle f, \varphi_{j,n} \rangle$$

$$d_{2^{j}} f = PW_{j} f = \sum_{n=-\infty}^{+\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}$$

$$d_{j}[n] = \langle f, \psi_{j,n} \rangle$$

discrete approximation at resolution j

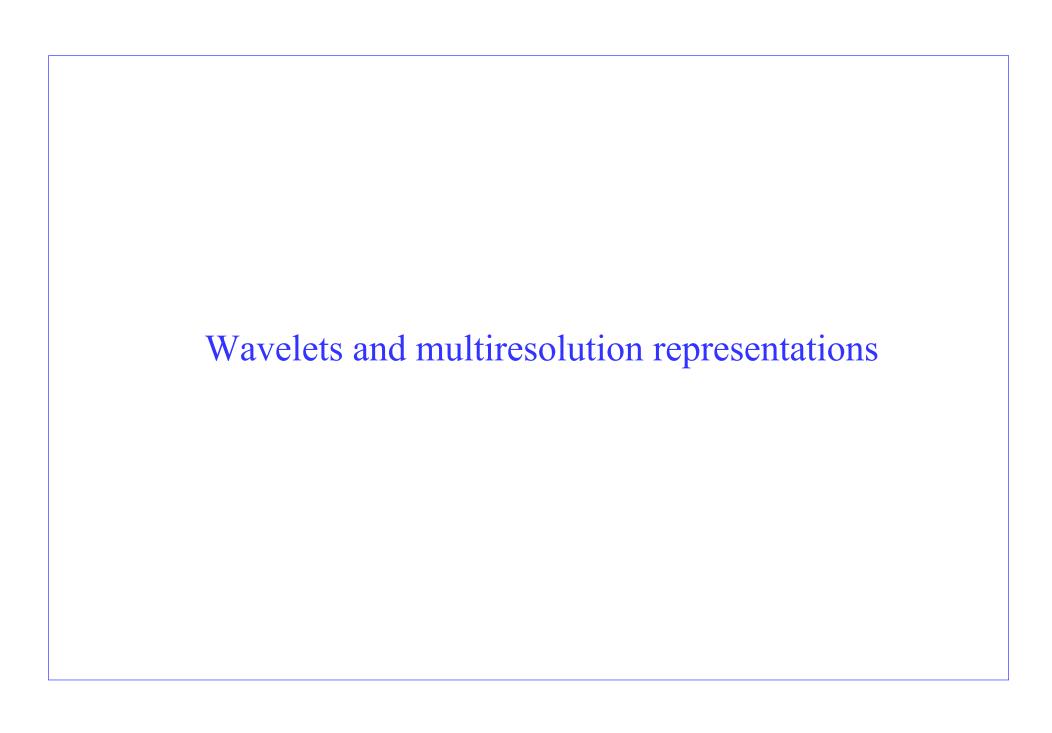
discrete approximation coefficients at resolution j

details at resolution j

wavelet coefficients at resolution j

$$\left\{A^{d}_{2^{J}}f,\left\{d_{2^{j}}f\right\}_{1\leq j\leq J}\right\}$$

wavelet representation



- A multiresolution approximation is completely characterized by the function ϕ that generates the orthonormal bases for each V_i
- \rightarrow We study the properties of ϕ which guarantee that all the spaces V_j satisfy all conditions of a multiresolution approximation.
- → It is proved that any scaling function corresponds to a discrete filter called conjugate mirror filter
- Procedure
 - 1. Link φ to the corresponding discrete filter h[n]
 - 2. Determine the properties of h/n such that φ is a scaling function

From multiresolution conditions follows

$$V_{j} \subset V_{j-1}$$

$$\frac{1}{\sqrt{2}} \varphi \left(\frac{t}{2}\right) \subset V_{1} \subset V_{0}$$

$$\frac{1}{\sqrt{2}} \varphi \left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} h[n] \varphi(t-n) \qquad (1)$$

$$h[n] = \left\langle \frac{1}{\sqrt{2}} \varphi \left(\frac{t}{2}\right), \varphi(t-n) \right\rangle$$

- The **scaling equation** relates a dilation of ϕ by 2 to its integer translations.
- The sequence h[n] will be interpreted as a discrete filter

• Taking the F-trasform of (1)

$$\Im\left\{\frac{1}{\sqrt{2}}\varphi\left(\frac{t}{2}\right)\right\} = \Im\left\{\sum_{n=-\infty}^{+\infty}h[n]\varphi(t-n)\right\} \to$$

$$\hat{\phi}(2\omega) = \frac{1}{\sqrt{2}}\hat{h}(\omega)\hat{\phi}(\omega) \tag{2}$$

- where

$$\hat{h}(\omega) = \sum_{n=-\infty}^{+\infty} h[n]e^{-j\omega n}$$

- Next step is thus the expression of $^{\circ}\phi(\omega)$ as a product of dilations of $^{\circ}h(\omega)$.
 - For any p≥0, (2) implies

$$\hat{\phi}\left(2^{-p+1}\omega\right) = \frac{1}{\sqrt{2}}\hat{h}\left(2^{-p}\omega\right)\hat{\phi}\left(2^{-p}\omega\right)$$

Iterating:

$$\hat{\Phi}(2\omega) = \frac{1}{\sqrt{2}}\hat{h}(\omega)\hat{\Phi}(\omega) \rightarrow$$

$$\hat{\Phi}(\omega) = \frac{1}{\sqrt{2}}\hat{h}\left(\frac{\omega}{2}\right)\hat{\Phi}\left(\frac{\omega}{2}\right), \qquad \hat{\Phi}\left(\frac{\omega}{2}\right) = \frac{1}{\sqrt{2}}\hat{h}\left(\frac{\omega}{4}\right)\hat{\Phi}\left(\frac{\omega}{4}\right) \rightarrow \dots \hat{\Phi}\left(2^{-p+1}\omega\right) = \hat{h}\left(2^{-p}\omega\right)\hat{\Phi}\left(2^{-p}\omega\right)$$

replacing in the expression above for all values of p up to P:

$$\hat{\Phi}(\omega) = \left(\frac{1}{\sqrt{2}}\right)^2 \hat{\Phi}\left(\frac{\omega}{4}\right) \hat{h}\left(\frac{\omega}{4}\right) \hat{h}\left(\frac{\omega}{2}\right)$$

.

$$\hat{\Phi}(\omega) = \prod_{p=1}^{P} \frac{\hat{h}(2^{-p}\omega)}{\sqrt{2}} \hat{\Phi}(2^{-P}\omega)$$

If $\hat{\varphi}(\omega)$ is continuous at $\omega=0$ then

$$\lim_{P\to +\infty} \left(\hat{\Phi} \left(2^{-p} \, \omega \right) \right) = \hat{\Phi} \left(0 \right) \to$$

$$\hat{\Phi}(\omega) = \prod_{p=1}^{+\infty} \frac{\hat{h}(2^{-p}\omega)}{\sqrt{2}} \hat{\Phi}(0)$$

 \rightarrow find the necessary and sufficient conditions on $^{\wedge}h(\omega)$ to guarantee that this infinite product is the F-transform of a scaling function

Conjugate Mirror Filters

Teorem 7.2 (Mallat&Meyer)

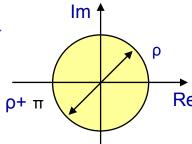
Let ϕ in $L^2(R)$ be an integrable scaling function. The F-series of h[n] satisfies

(2)
$$\forall \omega \quad \left| \hat{h}(\omega) \right|^2 + \left| \hat{h}(\omega + \pi) \right|^2 = 2 \quad and \quad \hat{h}(0) = \sqrt{2}$$
 CMF

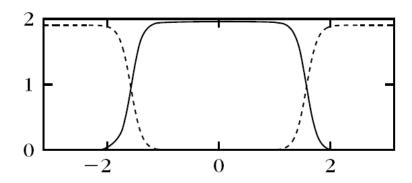
Conversely, if $h^{\wedge}(\omega)$ is 2π periodic and continuously differentiable in a neighborhood of $\omega=0$, if it satisfies (2) and if

$$\inf_{\omega \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} \left| \hat{h}(\omega) \right| > 0$$

Then,
$$\hat{\Phi}(\omega) = \prod_{p=1}^{+\infty} \frac{\hat{h}(2^{-p}\omega)}{\sqrt{2}} \hat{\Phi}(0)$$
 is the F-transform of a scaling function.



CMF property



The solid line gives $|\hat{h}(\omega)|^2$ on $[-\pi,\pi]$ for a cubic spline multiresolution. The dotted line corresponds to $|\hat{g}(\omega)|^2$.

Conjugate mirror filters

Table 7.1 Conjugate Mirror Filters h[n] for Linear Splines m = 1 and Cubic Splines m = 3

	n	h[n]		n	h[n]
m = 1	0	0.817645956	m = 3	5, -5	0.042068328
	1, -1	0.397296430		6, -6	-0.017176331
	2, -2	-0.069101020		7, -7	-0.017982291
	3, -3	-0.051945337		8, -8	0.008685294
	4, -4	0.016974805		9, -9	0.008201477
	5, -5	0.009990599		10, -10	-0.004353840
	6, -6	-0.003883261		11, -11	-0.003882426
	7, -7	-0.002201945		12, -12	0.002186714
	8, -8	0.000923371		13, -13	0.001882120
	9, -9	0.000511636		14, -14	-0.001103748
	10, -10	-0.000224296		15, -15	-0.000927187
	11, -11	-0.000122686		16, -16	0.000559952
m=3	0	0.766130398		17, -17	
	1, -1	0.433923147		18, -18	-0.000285414
	2, -2	-0.050201753		19, -19	-0.000232304
	3, -3	-0.110036987		20, -20	0.000146098
	4, -4	0.032080869			

Note: The coefficients below 10 - are not given.

What about wavelets?

- Orthonormal wavelets carry the details needed to increase the resolution of a signal approximation.
- The approximations of f at scales 2^j and $2^{(j+1)}$ are respectively equal to its orthogonal projections in V_i and V_{i+1}
- We know that V_{i+1} is included in V_i
- Let W_{j+1} be the orthogonal complement of V_{j+1} in V_j

$$V_{j-1} = V_j \oplus W_j$$

• The orthogonal projection of f on V_i can be decomposed as follows

$$PV_{j-1}f = PV_{j}f + PW_{j}f$$

- The complement $PW_{j+1}f$ provides the details that appear at scale j but disappear at the next coarser scale.
- Next theorem will show that basis for W_j can be constructed by scaling and translating a wavelet ψ

Corresponding orthogonal wavelet family

Theorem 7.3 [Mallat&Meyer]

Let ϕ be a scaling function and h the corresponding CMF. Let Ψ be such that

$$\hat{\Psi}(\omega) = \frac{1}{\sqrt{2}} \hat{g}\left(\frac{\omega}{2}\right) \hat{\Phi}\left(\frac{\omega}{2}\right)$$

with

$$\hat{g}(\omega) = e^{-j\omega} \hat{h}^*(\omega + \pi)$$

Let us denote

$$\psi_{j,n}(t) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{t - 2^j n}{2^j}\right)$$

For any scale, $\{\Psi_{j,n}\}_{j \text{ in } Z}$ is an orthonormal basis for W_j .

For all j,

$$\left\{oldsymbol{\psi}_{j,n}
ight\}_{j,n\in\mathbb{Z}^2}$$

 $\{\psi_{j,n}\}_{\substack{i \ n \in \mathbb{Z}^2}}$ is an orthonormal basis for L².

$$\hat{g}(\omega) = e^{-j\omega} \hat{h}^*(\omega + \pi) \leftrightarrow g(z) = z^{-1} h(-z^{-1}) \leftrightarrow g[n] = (-1)^{1-n} h[1-n]$$

Corresponding orthogonal wavelet family

- Lemma 7.1. The family $\{\psi_{j,n}\}_{n\in Z}$ is an orthonormal basis for W_j iif

$$\begin{vmatrix} \hat{g}(\omega) \end{vmatrix}^2 + \left| \hat{g}(\omega + \pi) \right|^2 = 2$$
and
$$\hat{g}(\omega) \hat{h}^*(\omega) + \hat{g}(\omega + \pi) \hat{h}^*(\omega + \pi) = 2$$

Furthermore

$$\begin{split} V_{j-1} &= V_j + W_j \to \frac{1}{\sqrt{2}} \psi \left(\frac{t}{2} \right) \in W_1 \subset V_0 \\ \text{since} & \left\{ \varphi(t-n) \right\}_{n \in \mathbb{Z}} \text{ is an ortonormal basis of } V_0 \to \\ & \frac{1}{\sqrt{2}} \psi \left(\frac{t}{2} \right) = \sum_{n=-\infty}^{+\infty} g[n] \varphi(t-n) \quad \text{ with} \\ & g[n] = \left\langle \frac{1}{\sqrt{2}} \psi \left(\frac{t}{2} \right), \varphi(t-n) \right\rangle \end{split}$$

- The orthogonal wavelets **carry the details lost going from scale j to scale j+1**
- Wavelets are the basis functions for W_i
- The details at scale j are obtained by **projecting the signal onto the wavelet family** $\psi_{j,n}$

Summary

Approximation function at scale 2^j:

$$P_{V_j} f = \sum_{n=-\infty}^{+\infty} \langle f, \varphi_{j,n} \rangle \varphi_{j,n}$$

Details ("residual" functions) at scale 2^j:

$$P_{V_{j}}f = \sum_{n=-\infty}^{+\infty} \langle f, \varphi_{j,n} \rangle \varphi_{j,n}$$

$$P_{W_{j}}f = \sum_{n=-\infty}^{+\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}$$

Wavelet representation:

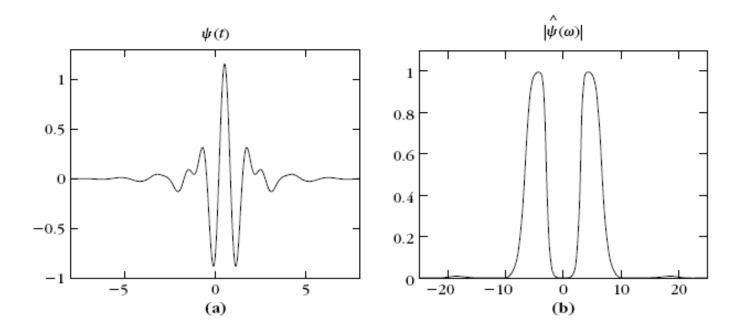
$$f = \sum_{j=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}$$

If the basis is orthogonal, the scaling function characterizes the multi-resolution completely

Scaling function $\phi \rightarrow h[n] \rightarrow g[n] \rightarrow wavelet \psi$

Example

• Battle-Lemarié cubic spline wavelet and its spectrum



Example

• Property: for any ψ that can generate an orthonormal family, one can verify that

$$\forall \omega \in \mathbb{R} - \{0\}, \quad \sum_{j=-\infty}^{+\infty} \left| \hat{\psi} \left(2^j \omega \right) \right|^2 = 1$$

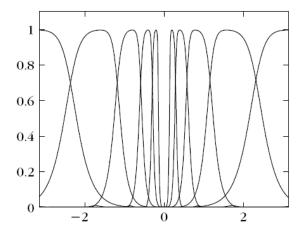


FIGURE 7.6

Graph of $|\hat{\psi}(2^j\omega)|^2$ for the cubic spline Battle-Lemarié wavelet, with $1 \le j \le 5$ and $\omega \in [-\pi, \pi]$.

Example of wavelet analysis

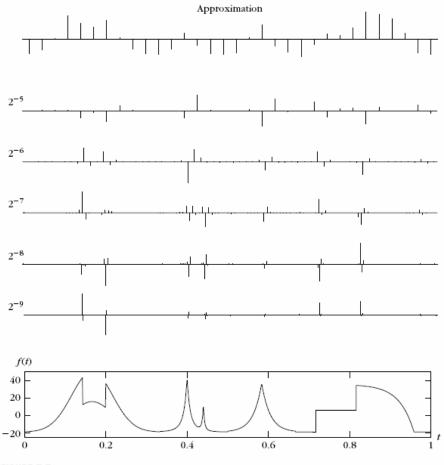


FIGURE 7.7

Wavelet coefficients $d_j[n] = \langle f, \psi_{j,n} \rangle$ calculated at scales 2^j with the cubic spline wavelet. Each up or down Dirac gives the amplitude of a positive or negative wavelet coefficient. At the top is the remaining coarse-signal approximation $a_J[n] = \langle f, \phi_{J,n} \rangle$ for J = -5.

Warning

- Each CMF generates a wavelet orthonormal bases
- Does any wavelet orthonormal bases correspond to a multiresolution approximation and CMF? It depends on the support:
 - If ψ has compact support than it corresponds to a multiresolution approximation [Lemarié]
 - However, there exists "pathological" wavelets that decay as |t|-1 that cannot be derived from any multiresolution approximation

Classes of wavelet bases

- Wavelets are interesting for applications for their ability to represent signals with **few non zero coefficients**
- The best basis for an application is the one that maximizes the number of zero or close to zero coefficients. This depends on
 - The regularity of f
 - The number of vanishing moments of the wavelet
 - The size of its support
- The constraints on the wavelet translate to **design rules for the filter g[n], thus h[n]**
 - Thus, we need conditions on $^{h}(\omega)$

Wavelet properties

- Vanishing moments
 - The wavelet has p vanishing moments if

$$\int_{-\infty}^{+\infty} t^k \psi(t) dt = 0 \qquad \text{for} \qquad 0 \le k$$

- The number of vanishing moments is equal to the multiplicity of zeros of $h^{\wedge}(\omega)$ in π or, equivalently, the number of vanishing derivatives of $^{\wedge}\psi$ in zero
- Theorem 7.4: Vanishing moments

Let φ and ψ be a scaling function and a wavelet that generate an orthonormal basis. Suppose that $|\psi(t)| = O((1+t^2)^{-p/2-1})$ and $|\varphi(t)| = O((1+t^2)^{-p/2-1})$. The four following statements are equivalent

- 1. The wavelet ψ has p vanishing moments
- 2. $\hat{\psi}(\omega)$ and its first p-1 derivatives are zero at $\omega=0$
- 3. $h(\omega)$ and its first p-1 derivatives are zero at $\omega = \pi$
- 4. for any $0 \le k < p$ $q_k(t) = \sum_{n = -\infty} n^k \varphi(t n)$ is a polynomial of degree k

hints of the proof

- Point 1. The decay of $|\varphi(t)|$ and $|\psi(t)|$ imply that $|^{\diamond}\varphi(\omega)|$ and $|^{\diamond}\psi(\omega)|$ are p-times differentiable
- Point 2. The k-th order derivative of $\hat{\psi}^{(k)}(\omega)$ is the F-transform of $(-it)^k \psi(t)$ thus

$$\hat{\psi}^{(k)}(0) = \int_{-\infty}^{+\infty} (-it)^k \, \psi(t) \, dt. \tag{4}$$

- (4) is equivalent to (3), which proves 2.
- Point 3.

$$\hat{\Psi}(\omega) = \frac{1}{\sqrt{2}} \hat{g}\left(\frac{\omega}{2}\right) \hat{\Phi}\left(\frac{\omega}{2}\right) \qquad \hat{g}(\omega) = e^{-j\omega} \hat{h}^*(\omega + \pi) \qquad \text{thus}$$

$$\hat{\Psi}(2\omega) = \frac{1}{\sqrt{2}}\hat{g}(\omega)\hat{\Phi}(\omega) = e^{-i\omega}\hat{h}^*(\omega + \pi)\hat{\Phi}(\omega)$$

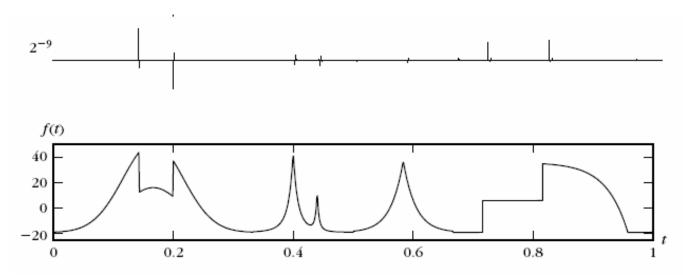
since $\hat{\Phi}(0) \neq 0$ by differentiating this expression we prove that 2. is equivalent to 3.

• Finally, it is proved that 4. is equivalent to 1. and viceversa.

hints of the proof

Let us now prove that (4) implies (1). Since ψ is orthogonal to $\{\phi(t-n)\}_{n\in\mathbb{Z}}$, it is also orthogonal to the polynomials q_k for $0 \le k < p$. This family of polynomials is a basis of the space of polynomials of degree at most p-1. Thus, ψ is orthogonal to any polynomial of degree p-1 and in particular to t^k for $0 \le k < p$. This means that ψ has p vanishing moments.

A wavelet with p vanishing moments kills polynomials up to degree p



Wavelet properties

Support

The larger the support, the more the singularities will spread along scales: it should be as short as possible

BUT a wavelet with p vm will have a support at least $2p-1 \rightarrow \text{trade-off}$

• **Theorem 7.5:** Compact Support. The scaling function has a compact support if and only if h has a compact support and their supports are equal. If the support of h and ϕ is $[N_1, N_2]$, then the support of ψ is $[(N_1-N_2+1)/2, (N_1-N_2+1)/2]$.

$$h[n] = \frac{1}{\sqrt{2}} \left\langle \phi\left(\frac{t}{2}\right), \phi(t-n) \right\rangle, \qquad \frac{1}{\sqrt{2}} \phi\left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} h[n] \phi(t-n).$$

$$\frac{1}{\sqrt{2}}\psi\left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} g[n]\phi(t-n) = \sum_{n=-\infty}^{+\infty} (-1)^{1-n} h[1-n]\phi(t-n).$$

If the supports of ϕ and h are equal to $[N_1, N_2]$, the sum on the right side has a support equal to $[N_1 - N_2 + 1, N_2 - N_1 + 1]$. Thus, ψ has a support equal to $[(N_1 - N_2 + 1)/2, (N_2 - N_1 + 1)/2]$.

Properties

• Support

- To minimize the size of the support of the wavelet, we must synthesize conjugate mirror filters with as few nonzero coefficients as possible
- However, the constraints imposed on orthogonal wavelets imply that if has p vanishing moments, then its support is at least of size $2p-1 \rightarrow \text{trade off}$
- Daubechies wavelets are optimal in the sense that they have a minimum size support for a given number of vanishing moments
 - If f has **few isolated singularities** and is very regular between singularities, we must choose a wavelet with **many** vanishing moments to produce a large number of small wavelet coefficients $\langle f, \psi_{j,n} \rangle$. If the density of singularities increases, it might be better to decrease the size of its support at the cost of reducing the number of vanishing moments. Indeed, **wavelets that overlap the singularities create high-amplitude coefficients**.

Regularity

- The regularity or *smoothness* has mostly a cosmetic influence on the error introduced by quantizing or thresholding the coefficients. Such operation introduces a noise which is less visible if it is smooth. Better quality is reached with smoother wavelets
 - The Haar wavelet is not a good choice

Popular wavelet families

- Shannon, Meyer, Haar, and Battle-Lemarié Wavelets
 - Starting point

$$\hat{\Psi}(\omega) = \frac{1}{\sqrt{2}} \hat{g} \left(\frac{\omega}{2} \right) \hat{\Phi} \left(\frac{\omega}{2} \right) \qquad \hat{g}(\omega) = e^{-j\omega} \hat{h}^* (\omega + \pi)$$

$$\hat{\Psi}(2\omega) = \frac{1}{\sqrt{2}} \hat{g}(\omega) \hat{\Phi}(\omega) = e^{-i\omega} \hat{h}^* (\omega + \pi) \hat{\Phi}(\omega)$$

$$\hat{\psi}(\omega) = \frac{1}{\sqrt{2}} \hat{g}\left(\frac{\omega}{2}\right) \hat{\phi}\left(\frac{\omega}{2}\right) = \frac{1}{\sqrt{2}} \exp\left(\frac{-i\omega}{2}\right) \hat{h}^* \left(\frac{\omega}{2} + \pi\right) \hat{\phi}\left(\frac{\omega}{2}\right). \tag{7.82}$$

Shannon wavelets

Shannon Wavelet

The Shannon wavelet is constructed from the Shannon multiresolution approximation, which approximates functions by their restriction to low-frequency intervals. It corresponds to $\hat{\phi} = \mathbf{1}_{[-\pi,\pi]}$ and $\hat{h}(\omega) = \sqrt{2} \, \mathbf{1}_{[-\pi/2,\pi/2]}(\omega)$ for $\omega \in [-\pi,\pi]$. We derive from (7.82) that

$$\hat{\psi}(\omega) = \begin{cases} \exp(-i\omega/2) & \text{if } \omega \in [-2\pi, -\pi] \cup [\pi, 2\pi] \\ 0 & \text{otherwise,} \end{cases}$$
 (7.83)

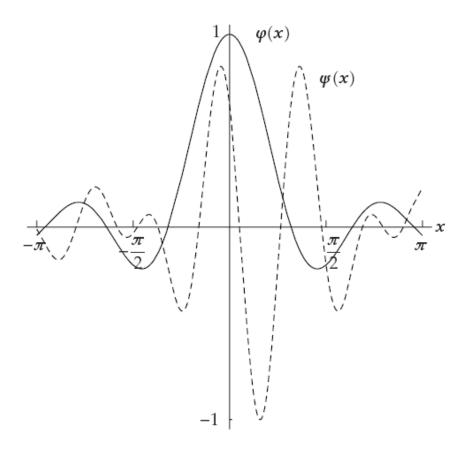
and thus,

$$\psi(t) = \frac{\sin 2\pi (t - 1/2)}{2\pi (t - 1/2)} - \frac{\sin \pi (t - 1/2)}{\pi (t - 1/2)}.$$

This wavelet is \mathbb{C}^{∞} but has a slow asymptotic time decay. Since $\hat{\psi}(\omega)$ is zero in the neighborhood of $\omega = 0$, all its derivatives are zero at $\omega = 0$. Thus, Theorem 7.4 implies that ψ has an infinite number of vanishing moments.

Since $\hat{\psi}(\omega)$ has a compact support we know that $\psi(t)$ is \mathbf{C}^{∞} . However, $|\psi(t)|$ decays only like $|t|^{-1}$ at infinity because $\hat{\psi}(\omega)$ is discontinuous at $\pm \pi$ and $\pm 2\pi$.

Shannon wavelets



Shannon scaling function (continuous) and wavelet (dashed) lines.

Meyer wavelets

Meyer Wavelets

A Meyer wavelet [375] is a frequency band-limited function that has a Fourier transform that is smooth, unlike the Fourier transform of the Shannon wavelet. This smoothness provides a much faster asymptotic decay in time. These wavelets are constructed with conjugate mirror filters $\hat{h}(\omega)$ that are \mathbb{C}^n and satisfy

$$\hat{h}(\omega) = \begin{cases} \sqrt{2} & \text{if } \omega \in [-\pi/3, \pi/3] \\ 0 & \text{if } \omega \in [-\pi, -2\pi/3] \cup [2\pi/3, \pi]. \end{cases}$$
 (7.84)

The only degree of freedom is the behavior of $\hat{h}(\omega)$ in the transition bands $[-2\pi/3, -\pi/3] \cup [\pi/3, 2\pi/3]$. It must satisfy the quadrature condition

$$|\hat{h}(\omega)|^2 + |\hat{h}(\omega + \pi)|^2 = 2,$$
 (7.85)

and to obtain \mathbb{C}^n junctions at $|\omega| = \pi/3$ and $|\omega| = 2\pi/3$, the *n* first derivatives must vanish at these abscissa. One can construct such functions that are \mathbb{C}^{∞} .

The scaling function $\hat{\phi}(\omega) = \prod_{p=1}^{+\infty} 2^{-1/2} \hat{h}(2^{-p}\omega)$ has a compact support and one can verify that

$$\hat{\phi}(\omega) = \begin{cases} 2^{-1/2} \, \hat{h}(\omega/2) & \text{if } |\omega| \le 4\pi/3 \\ 0 & \text{if } |\omega| > 4\pi/3. \end{cases}$$
 (7.86)

Meyer wavelets

The resulting wavelet (7.82) is

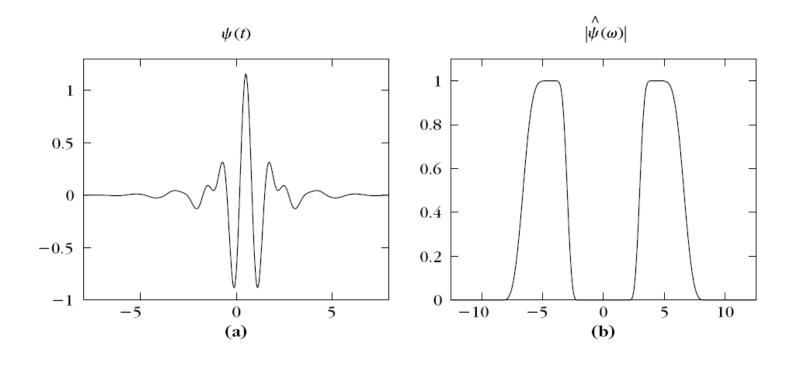
$$\hat{\psi}(\omega) = \begin{cases} 0 & \text{if } |\omega| \le 2\pi/3 \\ 2^{-1/2} \,\hat{g}(\omega/2) & \text{if } 2\pi/3 \le |\omega| \le 4\pi/3 \\ 2^{-1/2} \,\exp(-i\omega/2) \,\hat{h}(\omega/4) & \text{if } 4\pi/3 \le |\omega| \le 8\pi/3 \\ 0 & \text{if } |\omega| > 8\pi/3. \end{cases}$$
(7.87)

The functions ϕ and ψ are \mathbf{C}^{∞} because their Fourier transforms have a compact support. Since $\hat{\psi}(\omega) = 0$ in the neighborhood of $\omega = 0$, all its derivatives are zero at $\omega = 0$, which proves that ψ has an infinite number of vanishing moments.

If \hat{h} is \mathbb{C}^n , then $\hat{\psi}$ and $\hat{\phi}$ are also \mathbb{C}^n . The discontinuities of the $(n+1)^{\text{th}}$ derivative of \hat{h} are generally at the junction of the transition band $|\omega| = \pi/3$, $2\pi/3$, in which case one can show that there exists A such that

$$|\phi(t)| \le A (1+|t|)^{-n-1}$$
 and $|\psi(t)| \le A (1+|t|)^{-n-1}$.

Meyer wavelet: example



Haar wavelets

Haar Wavelets

The Haar basis is obtained with a multiresolution of piecewise constant functions. The scaling function is $\phi = \mathbf{1}_{[0,1]}$. The filter h[n] given in (7.46) has two nonzero coefficients equal to $2^{-1/2}$ at n = 0 and n = 1. Thus,

$$\frac{1}{\sqrt{2}}\psi\left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} (-1)^{1-n} h[1-n]\phi(t-n) = \frac{1}{\sqrt{2}} \left(\phi(t-1) - \phi(t)\right),$$

SO

$$\psi(t) = \begin{cases} -1 & \text{if } 0 \le t < 1/2 \\ 1 & \text{if } 1/2 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$
 (7.90)

The Haar wavelet has the shortest support among all orthogonal wavelets. It is not well adapted to approximating smooth functions because it has only one vanishing moment.

reminder:
$$\frac{1}{\sqrt{2}}\psi\left(\frac{t}{2}\right) = \sum_{n=-\infty}^{+\infty} g[n]\phi(t-n) = \sum_{n=-\infty}^{+\infty} (-1)^{1-n} h[1-n]\phi(t-n).$$

Battle-Lemarié wavelets

Battle-Lemarié Wavelets

Polynomial spline wavelets introduced by Battle [99] and Lemarié [345] are computed from spline multiresolution approximations. The expressions of $\hat{\phi}(\omega)$ and $\hat{h}(\omega)$ are given, respectively, by (7.18) and (7.48). For splines of degree m, $\hat{h}(\omega)$ and its first m derivatives are zero at $\omega = \pi$. Theorem 7.4 derives that ψ has m+1 vanishing moments. It follows from (7.82) that

$$\hat{\psi}(\omega) = \frac{\exp(-i\omega/2)}{\omega^{m+1}} \sqrt{\frac{S_{2m+2}(\omega/2+\pi)}{S_{2m+2}(\omega) S_{2m+2}(\omega/2)}}.$$

This wavelet ψ has an exponential decay. Since it is a polynomial spline of degree m, it is m-1 times continuously differentiable. Polynomial spline wavelets are less regular than Meyer wavelets but have faster time asymptotic decay. For m odd, ψ is symmetric about 1/2. For m even, it is antisymmetric about 1/2. Figure 7.5 gives the graph of the cubic spline wavelet ψ corresponding to m=3. For m=1, Figure 7.9 displays linear splines ϕ and ψ . The properties of these wavelets are further studied in [15, 106, 164].

Battle-Lemarié: example

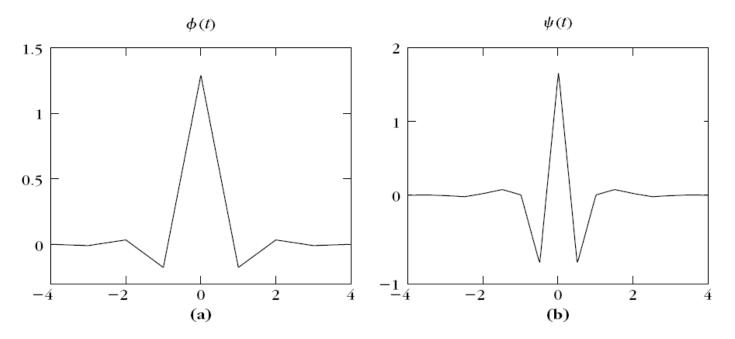


FIGURE 7.9

Linear spline Battle-Lemarié scaling function ϕ (a) and wavelet ψ (b).

Daubechies compactly supported wavelets

7.2.3 Daubechies Compactly Supported Wavelets

Daubechies wavelets have a support of minimum size for any given number p of vanishing moments. Theorem 7.5 proves that wavelets of compact support are computed with finite impulse-response conjugate mirror filters h. We consider real causal filters h[n], which implies that \hat{h} is a trigonometric polynomial:

$$\hat{h}(\omega) = \sum_{n=0}^{N-1} h[n] e^{-in\omega}.$$

To ensure that ψ has p vanishing moments, Theorem 7.4 shows that \hat{h} must have a zero of order p at $\omega = \pi$. To construct a trigonometric polynomial of minimal size, we factor $(1 + e^{-i\omega})^p$, which is a minimum-size polynomial having p zeros at $\omega = \pi$:

$$\hat{h}(\omega) = \sqrt{2} \left(\frac{1 + e^{-i\omega}}{2} \right)^p R(e^{-i\omega}). \tag{7.91}$$

The difficulty is to design a polynomial $R(e^{-i\omega})$ of minimum degree m such that \hat{h} satisfies

$$|\hat{h}(\omega)|^2 + |\hat{h}(\omega + \pi)|^2 = 2.$$
 (7.92)

As a result, h has N = m + p + 1 nonzero coefficients. Theorem 7.7 by Daubechies [194] proves that the minimum degree of R is m = p - 1.

Daubechies compactly supported wavelets

- Theorem 7.7: Daubechies. A real conjugate mirror filter h, such that $h(\omega)$ has p zeroes at π , has at least 2p nonzero coefficients. Daubechies filters have 2p nonzero coefficients.
- Theorem 7.9: Daubechies. If is a wavelet with p vanishing moments that generates an orthonormal basis of $L^2(\mathbb{R})$, then it has a support of size larger than or equal to 2p+1.

A Daubechies wavelet has a *minimum-size support* equal to [-p+1, p]. The support of the corresponding scaling function is [0, 2p-1].

Daubechies wavelets: example

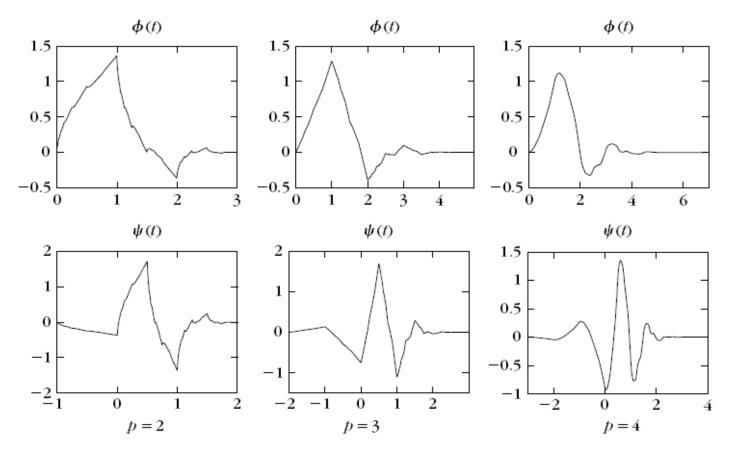


FIGURE 7.10

Daubechies scaling function ϕ and wavelet ψ with p vanishing moments.

Symlets

Symmlets

Daubechies wavelets are very asymmetric because they are constructed by selecting the minimum-phase square root of $Q(e^{-i\omega})$ in (7.97). One can show [51] that filters corresponding to a minimum-phase square root have their energy optimally concentrated near the starting point of their support. Thus, they are highly nonsymmetric, which yields very asymmetric wavelets.

To obtain a symmetric or antisymmetric wavelet, the filter h must be symmetric or antisymmetric with respect to the center of its support, which means that $\hat{h}(\omega)$ has a linear complex phase. Daubechies proved [194] that the Haar filter is the only real compactly supported conjugate mirror filter that has a linear phase. The Daubechies *symmlet* filters are obtained by optimizing the choice of the square root $R(e^{-t\omega})$ of $Q(e^{-t\omega})$ to obtain an almost linear phase. The resulting wavelets still have a minimum support [-p+1,p] with p vanishing moments, but they are more symmetric, as illustrated by Figure 7.11 for p=8. The coefficients of the symmlet filters are in Wavelab. Complex conjugate mirror filters with a compact support and a linear phase can be constructed [352], but they produce complex wavelet coefficients that have real and imaginary parts that are redundant when the signal is real.

Dubechies versus Symlets

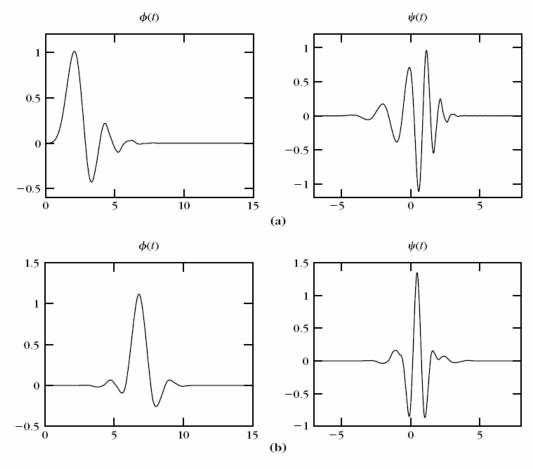


FIGURE 7.11

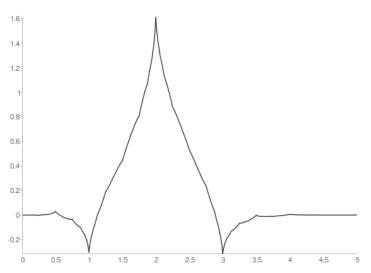
Daubechies (a) and symmlet (b) scaling functions and wavelets with p=8 vanishing moments.

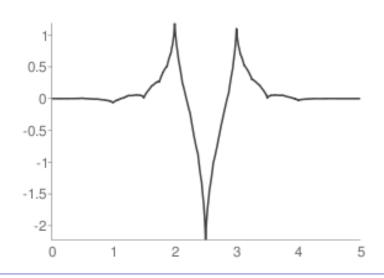
Coiflets

Coiflets

For an application in numerical analysis, Coifman asked Daubechies [194] to construct a family of wavelets ψ that have p vanishing moments and a minimum-size support, with scaling functions that also satisfy

$$\int_{-\infty}^{+\infty} \phi(t) \, dt = 1 \quad \text{and} \quad \int_{-\infty}^{+\infty} t^k \, \phi(t) \, dt = 0 \quad \text{for } 1 \le k < p. \tag{7.99}$$





An approximation tour

Approximation theory

Wavelets

Signal processing

Linear approximation

 Projects the signal f over M vectors of the ortho-normal basis B which are chosen *a-priori* among the basis B, say the first M

$$f_M = \sum_{n=0}^{M-1} \langle f, \phi_n \rangle \phi_n$$

- Approximation error $\varepsilon[M] = \|f - f_M\|^2 = \sum_{n=M}^{+\infty} |\langle f, \phi_n \rangle|^2$

choosing the first M vectors amounts to reconstruct f at a given resolution. The convergence properties similar as in the Fourier domain

Non-linear approximations

- The M vectors are chosen a posteriori

$$f_M = \sum_{n \in I_M} \langle f, \phi_n \rangle \phi_n$$

Approximation error

$$\varepsilon[M] = \|f - f_M\|^2 = \sum_{n \in I_M}^{+\infty} |\langle f, \phi_n \rangle|^2$$

The error can be minimized by choosing the vectors corresponding to the highest

In wavelet basis this amounts to an adaptive approximation grid whose *resolution is locally increased where the signal is irregular!*

Adaptive basis choice

- Instead of choosing the basis a-priori, one could choose the *best* basis, depending on the signal
- The basis is chosen to minimize the non linear approximation error of f
- Same problem as the choice of the *optimal basis* for stimulus representation in visual perception
- The optimal basis could be chosen for *classes of signals*, considered as random processes
 - Gaussian processes → Karunen Loeve transform (KLT)
 - Diagonalization of the covariance matrix which removes the inter-dependencies among the samples and results in a set of independent coefficients (i.e. redundancy has been removed)
 - Other kind of processes \rightarrow no golden rule
 - Images are not Gaussian and not stationary
 - In some cases wavelets do better

Adaptive basis

- Wavelet packets
 - The subband tree is progressively split according to the optimization of a cost function (i.e. rate/distortion)
- Matching pursuit
 - Vectors are progressively selected from a dictionary, while optimizing the signal approximation at each step
- Key issue: a good basis should be able to provide a good description (approximation properties) of the signal while being concise (sparseness properties)
 - Classical approaches: approximation theory, information theory, estimation in noise...
 - Perception based approaches: bring humans into the loop

Wavelet Packets

