1. Rings and Modules

Recall that a ring is a system $(R, +, \cdot, 0, 1)$ consisting of a set R, two binary operations, addition (+) and multiplication (\cdot) , and two elements $0 \neq 1$ of R, such that (R, +, 0) is an abelian group, $(R, \cdot, 1)$ is a monoid (i.e., a semigroup with identity 1) and multiplication is left and right distributive over addition. A ring whose multiplicative structure is abelian is called a *commutative ring*.

Example 1.1. (1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings.

- (2) Let K be a field; the ring $K[x_1, \ldots, x_n]$ of polynomials in the indeterminates x_1, \ldots, x_n is a commutative ring.
- (3) Let K be a field; consider the ring $R = M_n(K)$ of $n \times n$ -matrices with coefficients in K with the usual "rows times columns" product. Then R is a non-commutative ring

Definition 1.2. A left R-module is an abelian group M togeter with a map $R \times M \to M$, $(r,m) \mapsto rm$, such that for any $r, s \in R$ and any $x, y \in M$

- M1 r(x+y) = rx + ry
- M2 (r+s) = rx + sx
- M3 (rs)x = r(sx)
- M4 1x = x

We write $_{R}M$ to indicate that M is a left R-module.

- Example 1.3. (1) Any abelian group G is a left \mathbb{Z} -module by defining, for any $x \in G$ and $n > 0, nx = \underbrace{x + \dots + x}_{n \text{ times}}$.
 - (2) Given a field K, any vector space V over K is a left K-module.
 - (3) Let R be the matrix ring $M_n(K)$ and consider the vector space $V = K^n$. Given a matrix A and a vector $v \in V$, let Av the usual "rows times columns" product. Then V is a left R-module.
 - (4) Any ring R is a left R-module, by using the left multiplication of R on itself. It is called the *regular* module.
 - (5) Consider the zero element of the ring R. Then the abelian group $\{0\}$ is trivially a left R-module.

Remark 1.4. Consider M an abelian group and $\operatorname{End}^{l}(M)$ the ring of the endomorphism of M acting on the left (i.e. fg(x) = f(g(x))). A representation of R in $\operatorname{End}^{l}(M)$ is a homomorphism of ring

$$\lambda: R \to \operatorname{End}^{l}(M), \quad r \mapsto \lambda(r)$$

From the properties of ring homomorphisms it follows that for any $r, s \in R$ and $x, y \in M$

- (1) $\lambda(r)(x+y) = \lambda(r)x + \lambda(r)y$
- (2) $\lambda(r+s)x = \lambda(r)x + \lambda(s)x$
- (3) $\lambda(rs)x = \lambda(r)(\lambda(s)x)$
- (4) $\lambda(1)x = x$

In other words, we can consider $\lambda(r)$ acting on the elements of M as a left multiplication by the element $r \in R$: then we can define $rx := \lambda(r)x$, and this gives a structure of left R-module on M. Conversely, to any left R-module M, we can associate a representation of R in $\text{End}^{l}(M)$, by defining $\lambda(r) := rx$.

Similarly, we define right R-modules:

Definition 1.5. A right R-module is an abelian group M togeter with a map $M \times R \to M$, $(m,r) \mapsto mr$, such that for any $r, s \in R$ and any $x, y \in M$

M1 (x+y)r = xr + yrM2 x(r+s) = xr + xsM3 x(rs) = (xr)sM4 x1 = x

We write M_R to indicate that M is a right R-module.

For the connection between right modules and representations see Exercise 4.5.

If R is a commutative ring, then left R-modules and right R-modules coincide. Indeed, given a left R-module M with the map $R \times M \to M$ $(r, m) \mapsto rm$, we can define a map $M \times R \to M$ $(m, r) \mapsto mr := rm$. This map satisfies the axioms of Definition 1.5 (Verify!) and so M is also a right R-module. The crucial point is that, in the third axiom, since R is commutative we have x(rs) = (rs)x = (sr)x = s(rx) = (rx)s = (xr)s.

Example 1.6. Consider the ring $R = M_n(K)$ and V the vector space of the columns $M_{n\times 1}(K)$. This is in a obvious way a left R-module but not a right R-module. Similarly, the vector space of the rows $M_{1\times n}(K)$ is a right R-module but not a left R-module.

Exercise 1.7. Show that given $_RM$, for any $x \in M$ and $r \in R$, we have

- (1) r0 = 0
- (2) 0x = 0
- (3) r(-x) = (-r)x = -(rx)

Definition 1.8. Let $_RM$ be a left R-module. A subset L of M is a submodule of M if L is a subgroup of M and $rx \in L$ for any $r \in R$ and $x \in L$ (i.e. L is a left R-module under operations inherit from M). We write $L \leq M$.

Example 1.9.

- (1) Let G be a \mathbb{Z} -module. The submodules of G are exactly the subgroups of G.
- (2) Let K a field and V a K-module. The submodules of V are exactly the vector subspace of K.
- (3) Let R a ring. The submodules of the left R-module R are the left ideals of R. The submodules of the right R-module R_R are the right ideals of R.

Definition 1.10. Let _RM be a left R-module and $L \leq M$. The quotient module M/L is the quotient abelian group together with the map $R \times M/L \to M/L$ given by $(r, \overline{x}) \mapsto \overline{rx}$.

Remark 1.11. The map $R \times M/L \to M/L$ given by $(r, \overline{x}) \mapsto \overline{rx}$ is well-defined, since if $\overline{x} = \overline{y}$ then $x - y \in L$ and hence $r(x - y) = rx - ry \in L$, that is $\overline{rx} = \overline{ry}$.

In this part of the course we mainly deal with left modules. So, in the following, unless otherwise is stated, with *module* we always mean *left module*.

2. Homomorphisms of modules

Definition 2.1. Let $_RM$ and $_RN$ be R-modules. A map $f: M \to N$ is a homomorphism if f(rx + sy) = rf(x) + sf(y) for any $x, y \in M$ and $r, s \in R$.

Remark 2.2.

- (1) From the definition it follows that f(0) = 0.
- (2) Clearly if f and g are homomorphisms from M to N, also f + g is a homomorphism. Since the zero map is obviously a homomorphism, the set $\operatorname{Hom}_R(M, N) = \{f | f : M \to N \text{ is a homomorphism}\}$ is an abelian group.
- (3) If $f: M \to N$ and $g: N \to L$ are homomorphisms, then $gf: M \to L$ is a homomorphism. Thus the abelian group $\operatorname{End}_R(M) = \{f | f: M \to M \text{ is a homomorphism}\}$ has a natural structure of ring, called the *ring of endomorphisms of* M. The identity homomorphism $\operatorname{id}_M: M \to M, m \mapsto m$, is the unity of the ring.

Definition 2.3. Given a homomorphism $f \in \text{Hom}_R(M, N)$, the kernel of f is the set $\text{Ker } f = \{x \in M | f(x) = 0\}$. The image of f is the set $\text{Im } f = \{y \in N | y = f(x) \text{ for } x \in M\}$.

It is easy to verify that Ker $f \leq M$ and Im $f \leq N$. Thus we can define the *cokernel* of f as the quotient module Coker f = N/Im f.

A homomorphism $f \in \text{Hom}_R(M, N)$ is called a *monomorphism* if Ker f = 0. f is called an *epimorphism* if Im f = N. f is called *isomorphism* if it is both a monomorphism and an epimorphism. If f is an isomorphism we write $M \cong N$.

- Remark 2.4. (1) For any submodule $L \leq M$ there is a canonical monomorphism $i: L \to M$, which is the usual inclusion, and a canonical epimorphism $p: M \to M/N$ which is the usual quotient map.
 - (2) For any M the trivial map $0 \to M$, $0 \mapsto 0$, is a mono. The trivial map $M \to 0$, $m \mapsto 0$, is an epi.

(3) The monomorphisms, the epimorphisms and the isomorphisms are exactly the injective, surjective and bijective homomorphisms.

Exercise 2.5. Show that $f \in \text{Hom}_R(M, N)$ is an isomorphism if and only if there exist $g \in \text{Hom}_R(N, M)$ such that $gf = \text{id}_M$ and $fg = \text{id}_N$. In such a case g is unique. (We usually denote g as f^{-1}).

Proposition 2.6. Any $f \in \text{Hom}_R(M, N)$ induces an isomorphism $M/\text{Ker } f \cong \text{Im } f$.

Proof. The induced map $M/\operatorname{Ker} f \to \operatorname{Im} f$, $\overline{m} \mapsto f(m)$ is a homomorphism. Moreover it is clearly a mono and an epi.

The usual homomorphism theorems which hold for groups hold also for homomorphisms of modules.

Proposition 2.7. (1) If $L \le N \le M$, then $(M/L)/(N/L) \cong M/L$. (2) If $L, N \le M$, denote by $L + N = \{m \in M | m = l + n \text{ for } l \in L \text{ and } n \in N\}$. Then L + N is a submodule of M and $(L + N)/N \cong N/(N \cap L)$.

Exercise 2.8. Prove the previous Proposition.

3. Exact Sequences

Definition 3.1. A sequence of homomorphisms of *R*-modules

$$\cdots \to M_{i-1} \stackrel{f_{i-1}}{\to} M_i \stackrel{f_i}{\to} M_{i+1} \stackrel{f_{i+1}}{\to} \dots$$

is called exact if Ker $f_i = \text{Im } f_{i-1}$ for any *i*.

An exact sequence of the form $0 \to M_1 \to M_2 \to M_3 \to 0$ is called a short exact sequence

Observe that if $L \leq M$, then the sequence $0 \to L \xrightarrow{i} M \xrightarrow{p} M/L \to 0$, where *i* and *p* are the canonical inclusion and quotient homomorphisms, is short exact (Verify!) Conversely, if $0 \to M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \to 0$ is a short exact sequence, then *f* is a mono, *g* is an epi, and $M_3 \cong \text{Coker } f$ (Verify!).

The following result is very useful:

Proposition 3.2. Consider the commutative diagram with exact rows

$$\begin{array}{cccc} 0 & & \longrightarrow L & \stackrel{f}{\longrightarrow} M & \stackrel{g}{\longrightarrow} N & \longrightarrow 0 \\ & & & \downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} \\ 0 & & \longrightarrow L' & \stackrel{f'}{\longrightarrow} M' & \stackrel{g'}{\longrightarrow} N' & \longrightarrow 0 \end{array}$$

If α and γ are monomorphisms (epimorphims, or isomorphisms, respectively), then so is β

- *Proof.* (1) Suppose α and γ are monomorphisms and let m such that $\beta(m) = 0$. Then $\gamma(g(m)) = 0$ and so $m \in \text{Ker } g = \text{Im } f$. Hence $m = f(l), l \in L$ and $\beta(m) = \beta(f(l)) = f'(\alpha(l)) = 0$. Since f' and α are mono, we conclude l = 0 and so m = 0.
 - (2) Suppose α and γ are epimorphisms and let $m' \in M'$. Then $g'(m') = \gamma(g(m))$, so $g'(m') = g(\beta(m))$; hence $m' \beta(m) \in \operatorname{Ker} g' = \operatorname{Im} f'$ and so $m' \beta(m) = f'(l'), l' \in L'$. Let $l \in L$ such that $l' = \alpha(l)$: then $m' - \beta(m) = f'(\alpha(l)) = \beta(f(l))$ and so we conclude $m' = \beta(m - f(l))$.

4. Exercises

Exercise 4.1. Let $_RM$ be a R-module and $_RR$ the regular module. Consider the abelian group $\operatorname{Hom}_R(R, M)$ and the map $\varphi : \operatorname{Hom}_R(R, M) \to M$, $f \mapsto f(1)$. Verify that φ is an isomorphism of \mathbb{Z} -modules.

Exercise 4.2. Let $_RM$ and define $\operatorname{Ann}_R(M) = \{r \in R | rm = 0 \text{ for any } m \in M\}$. *M* is called *faithful* if $\operatorname{Ann}_R(M) = 0$. Verify that $\operatorname{Ann}_R(M)$ is an ideal of *R*. Verify that *M* has a natural structure of $R/\operatorname{Ann}_R(M)$ -module, given by the map $R/\operatorname{Ann}_R(M) \times M \to M$, $(\overline{r}, m) \mapsto rm$. Verify that *M* over $R/\operatorname{Ann}_R(M)$ is a faithful module.

Exercise 4.3. Let f be a homomorphism of R-modules. Show that f is a mono if and only if fg = 0 implies g = 0. Show f is an epi if and only if gf = 0 implies g = 0

Exercise 4.4. Consider the ring $R = \begin{pmatrix} K & K \\ 0 & K \end{pmatrix}$. Show that $P_1 = \{ \begin{pmatrix} k & 0 \\ 0 & 0 \end{pmatrix} | k \in K \}$ and $P_2 = \{ \begin{pmatrix} 0 & k_1 \\ 0 & k_2 \end{pmatrix} | k_1, k_2 \in K \}$ are left submodules of $_RR$. Show that $Q_1 = \{ \begin{pmatrix} k_1 & k_2 \\ 0 & 0 \end{pmatrix} | k_1, k_2 \in K \}$ and $Q_2 = \{ \begin{pmatrix} 0 & 0 \\ 0 & k \end{pmatrix} | k \in K \}$ are right submodules of R_R

Exercise 4.5. Consider M an abelian group and $\operatorname{End}^r(M)$ the ring of the endomorphism of M acting on the right (i.e. (x)fg = ((x)f)g. Show that any representation of R in $\operatorname{End}^r(M)$ corresponds to a right R-module M_R .

5. Sums and products of modules

Let I be a set and $\{M_i\}_{i \in I}$ a family of R-modules. The cartesian product $\prod_I M_i = \{(x_i) | x_i \in M_i\}$ has a natural structure of left R-module, by defining the operations component-wise:

$$(x_i)_{i \in I} + (y_i)_{i \in I} = (x_i + y_i)_{i \in I}, \quad r(x_i)_{i \in I} = (rx_i)_{i \in I}$$

This module is called the *direct product* of the modules M_i . It contains a submodule

$$\bigoplus_{I} M_i = \{(x_i) | x_i \in M_i \text{ and } x_i = 0 \text{ for almost all } i \in I\}$$

Recall that "almost all" means "except for a finite number". The module $\bigoplus_I M_i$ is called the *direct sum* of the modules M_i . Clearly if I is a finite set then $\prod_I M_i = \{(x_i) | x_i \in M_i\} = \bigoplus_I M_i$. For any component $j \in I$ there are canonical homomorphisms

$$\prod_{I} M_i \to M_j \ , \ (x_i)_{i \in I} \mapsto x_j \quad \text{and} \quad M_j \to \prod_{I} M_i \ , \ x_j \mapsto (0, 0, \dots, x_j, 0, \dots, 0)$$

called the *projection* on the j^{th} -component and the *injection* of the j^{th} -component. They are epimorphisms and monomorphism, respectively, for any $j \in I$. The same is true for $\bigoplus_I M_i$.

When $M_i = M$ for any $i \in I$, we use the following notations

$$\prod_{I} M_{i} = M^{I}, \quad \bigoplus_{I} M_{i} = M^{(I)}, \quad \text{and if} \quad I = \{1, \dots, n\}, \ \oplus_{I} M_{i} = M^{n}$$

Let $_RM$ be a module and $\{M_i\}_{i\in I}$ a family of submodules of M. We define the sum of the M_i as the module

$$\sum_{I} M_{i} = \{\sum_{i \in I} x_{i} | x_{i} \in M_{i} \text{ and } x_{i} = 0 \text{ for almost all } i \in I\}$$

Clearly $\sum_{I} M_i \leq M$ and it is the smallest submodule of M containing all the M_i . (Notice that in the definition of $\sum_{I} M_i$ we need almost all the components to be zero in order to define properly the sum of elements of M).

Remark 5.1. Let $_{R}M$ be a module and $\{M_i\}_{i \in I}$ a family of submodules of M. Following the previous definitions we can construct both the module $\oplus_{I}M_i$ and module $\sum_{I}M_i$ (which is a submodule of M). We can define a homomorphism

$$\alpha:\oplus_I M_i \to M, \ (x_i)_{i \in I} \mapsto \sum_{i \in I} x_i.$$

Then $\operatorname{Im} \alpha = \sum_{I} M_{i}$. If α is a monomorphism, then $\oplus_{I} M_{i} \cong \sum_{I} M_{i}$ and we say that the module $\sum_{I} M_{i}$ is the *(internal) direct sums* of its submodules M_{i} . Often we omit the word "internal" and if $M = \sum_{I} M_{i}$ and α is an isomorphism, we say that M is the direct sums of the submodules M_{i} and we write $M = \oplus_{I} M_{i}$.

Exercise 5.2. Let $_RM$ be a module and $\{M_i\}_{i \in I}$ a family of submodules of M. The following are equivalent:

- (1) α is an isomorphism
- (2) if $m \in \sum_I M_i$, then m can be written in a unique way as sum of elements of the M_i

6. Split exact sequences

If L and N are R-modules, there is a short exact sequence, called *split*,

$$0 \to L \xrightarrow{i_L} L \oplus N \xrightarrow{\pi_N} N \to 0$$
, with $i_L(l) = (l, 0) \ \pi_N(l, n) = n$, for any $l \in L, n \in N$.

More generally:

Definition 6.1. A short exact sequence $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ is said to be split if there is an isomorphism $M \cong L \oplus N$ such that the diagram

$$\begin{array}{cccc} 0 & & \longrightarrow L & \stackrel{f}{\longrightarrow} M & \stackrel{g}{\longrightarrow} N & \longrightarrow 0 \\ & & & \parallel & \\ 0 & & \longrightarrow L & \stackrel{i_L}{\longrightarrow} L \oplus N & \stackrel{\pi_N}{\longrightarrow} N & \longrightarrow 0 \end{array}$$

commutes.

Proposition 6.2. The following properties of an exact sequence $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ are equivalent:

- (1) the sequence is split
- (2) there exists a homomorphism $\varphi: M \to L$ such that $\varphi f = \mathrm{id}_L$
- (3) there exists a homomorphism $\psi: N \to M$ such that $g\psi = \mathrm{id}_N$

Proof. $1 \Rightarrow 2$. Since the sequence splits, then there exists α as in Definition 6.1. Let $\varphi = \pi_L \circ \alpha$. So for any $l \in L \ \varphi f(l) = \pi_L \alpha f(l) = \pi_L(l,0) = l$. $1 \Rightarrow 3$ Similar (Verify!)

 $2 \Rightarrow 1$. Define $\alpha : M \to L \oplus N, m \mapsto (\varphi(m), g(m))$. Since $\alpha f(l) = (\varphi(f(l)), g(f(l))) = (l, 0)$ and $\pi_N \alpha(m) = g(m)$ we get that the diagram

$$\begin{array}{cccc} 0 & & \longrightarrow L & \stackrel{f}{\longrightarrow} M & \stackrel{g}{\longrightarrow} N & \longrightarrow 0 \\ & & & & & & \\ & & & & & & \\ 0 & & \longrightarrow L & \stackrel{i_L}{\longrightarrow} L \oplus N & \stackrel{\pi_N}{\longrightarrow} N & \longrightarrow 0 \end{array}$$

commutes. Finally, by Proposition 3.2, we conclude that α is an isomorphism. $2 \Rightarrow 3$ Similar (Verify!)

Definition 6.3. Given $_{R}L \leq_{R} M$, L is a direct summand of M if there exists a submodule $_{R}N \leq_{R} M$ such that M is the direct sum of L and N. N is called a complement of L. If M does not admit direct summands it is said to be indecomposable.

By the results in the previous section, if L is a direct summand of M and N a complement of L, it means that any m in M can be written in a unique way as m = l + n, $l \in L$ and $n \in N$. We write $M = L \oplus N$ and $L \stackrel{\oplus}{\leq} M$.

- *Example* 6.4. (1) consider the \mathbb{Z} -module $\mathbb{Z}/6\mathbb{Z}$. Then $\mathbb{Z}/6\mathbb{Z} = 3\mathbb{Z}/6\mathbb{Z} \oplus 2\mathbb{Z}/6\mathbb{Z}$. The regular module $\mathbb{Z}\mathbb{Z}$ is indecomposable
 - (2) let K be a field and V a K-module. Then, by a well-know result of linear algebra, any $L \leq V$ is a direct summand of V.

(3) Let
$$R = \begin{pmatrix} K & K \\ 0 & K \end{pmatrix}$$
. Then $R = P_1 \oplus P_2$, where $P_1 = \{ \begin{pmatrix} k & 0 \\ 0 & 0 \end{pmatrix} | k \in K \}$ and $P_2 = \{ \begin{pmatrix} 0 & k_1 \\ 0 & k_2 \end{pmatrix} | k_1, k_2 \in K \}.$

7. Exercises

Exercise 7.1. Let $_{R}L \leq_{R} M$. Show that L is a direct summand of M if and only if there exists $_{R}N \leq_{R} M$ such that L + N = M and $L \cap N = 0$.

Exercise 7.2. Let $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ be a split exact sequence and α the isomorphism as in Definition 6.1. Show that $M = \alpha^{-1}(L) \oplus \alpha^{-1}(N)$, $\alpha^{-1}(L) \cong L$, and $\alpha^{-1}(N) \cong N$.

8. Free modules and finitely generated modules

Definition 8.1. A module $_RM$ is said to be generated by a family $\{x_i\}_{i \in I}$ of elements of M if each $x \in M$ can be written as $x = \sum_I r_i x_i$, with $r_i \in R$ for any $i \in I$, and $r_i = 0$ for almost every $i \in I$.

The $\{x_i\}_{i \in I}$ are called a set of generator of M and we write $M = \langle x_i, i \in I \rangle$. If the coefficients r_i are uniquely determined by x, the $(x_i)_{i \in I}$ are called a basis of M. The module M is said to be free if it admits a basis.

Proposition 8.2. A module $_RM$ is free if and only $M \cong R^{(I)}$ for some set I.

Proof. The module $R^{(I)}$ is free with basis $(e_i)_{i \in I}$, where e_i is the canonical vector with all zero components except for the *i*-th equal to 1.

Conversely if M is free with basis $(x_i)_{i \in I}$, then we can define a homomorphism $\alpha : R^{(I)} \to M$, $(r_i)_{i \in I} \to \sum_I r_i x_i$. It is easy to show that α is an isomorphism, as a consequence of the definition of a basis: indeed, it is clearly an epi and if $\alpha(r_i) = \sum r_i x_i = 0$, since the r_i are uniquely determined by 0, we conclude that $r_i = 0$ for all i, i.e. α is a mono.

Given a free module M with basis $(x_i)_I$, then every homomorphism $f: M \to N$ is uniquely determined by its value on the x_i and the elements $f(x_i)$ can be chosen arbitrarily in N. Indeed, chosen the $f(x_i)$, given $x = \sum r_i x_i \in M$, we construct $f(x) = \sum r_i f(x_i)$. Since $(x_i)_{i \in I}$ is a basis this is a good definition. (Notice: analogy with vector spaces!).

Proposition 8.3. Any module is quotient of a free module

Proof. Let M be an R-module. Since we can always choose I = M, the module M admits a set of generators. Let $(x_i)_{i \in I}$ a set of generators for M and define a homomorphism $\alpha : R^{(I)} \to M$, $(r_i)_{i \in I} \mapsto \sum_i r_i x_i$. Clearly α is an epi and so $M \cong R^{(I)} / \operatorname{Ker} \alpha$

Definition 8.4. A module $_RM$ is finitely generated it there exists a finite set of generators for M. A module is cyclic if it can be generated by a single element.

By Proposition 8.3 $_{R}M$ is finitely generated if and only if there exists an epimorphism $\mathbb{R}^{n} \to M$ for some $n \in \mathbb{N}$. Similarly, $_{R}M$ is cyclic if and only if $M \cong J$, for a left ideal $J \leq \mathbb{R}$.

Example 8.5. The regular module $_{R}R$ is cyclic, generated by the unity element $_{R}R = <1>$

Proposition 8.6. Let $_{R}L \leq _{R}M$.

- (1) If M is finitely generated, then M/L is finitely generated.
- (2) If L and M/L are finitely generated, so is M
- *Proof.* (1) If $\{x_1, \ldots, x_n\}$ is a set of generator of M, then $\{\overline{x}_1, \ldots, \overline{x}_n\}$ is a set of generator for M/L.
 - (2) Let $\langle x_1, \ldots, x_n \rangle = L$ and $\langle \overline{y}_1, \ldots, \overline{y}_m \rangle = M/L$, where $x_1, \ldots, x_n, y_1, \ldots, y_m \in M$. Let $x \in M$ and consider $\overline{x} = \sum_{i=1,\ldots,m} r_i \overline{y_i}$ in M/L. Then $x - \sum_{i=1,\ldots,m} r_i y_i \in L$ and so $x - \sum_{i=1,\ldots,m} r_i y_i = \sum_{j=1,\ldots,n} r_j x_j$. Hence $x = \sum_{i=1,\ldots,m} r_i y_i + \sum_{j=1,\ldots,n} r_j x_j$, i.e. $\{x_1,\ldots,x_n,y_1\ldots,y_m\}$ is a finite set of generators of M.

Notice that M finitely generated doesn't imply L finitely generated. For example, let R be the ring $R = K[x_i, i \in \mathbb{N}]$. Consider the regular module $_RR$ and its submodule $L = \langle x_i, i \in \mathbb{N} \rangle$.

9. EXERCISES

Exercise 9.1. Show that any submodule of $_{\mathbb{Z}}\mathbb{Z}$ is finitely generated.

Exercise 9.2. Show that the \mathbb{Z} -module \mathbb{Q} is not finitely generated.

Exercise 9.3. A module M is simple if $L \leq M$ implies L = 0 or L = M (i.e. M doesn't have non trivial submodules).

- (1) show that any simple module is cyclic
- (2) Exhibit a cyclic module which is not simple.

Exercise 9.4. Let R be a ring. An element $e \in R$ is *idempotent* if $e^2 = e$. Show that

- (1) if e is idempotent, then (1 e) is idempotent and $R = Re \oplus R(1 e)$ (where Re and R(1 e) denote the cyclic modules generated by e and (1 e), respectively)
- (2) if $R = I \oplus J$, with I and J left ideals of R, then there exist idempotents e and f such that 1 = e + f, I = Re and J = Rf.

10. CATEGORIES AND FUNCTORS

This is very short introduction to the basic concepts of category theory. For more details and for the set-theoretical foundation (in particular the distinction between sets and classes) we refer to S. MacLane, Category for the working mathematician, Graduate Texts in Math., Vol 5, Springer 1971.

Definition 10.1. A category C consists in:

- (1) A class $Obj(\mathcal{C})$, called the objects of \mathcal{C} ;
- (2) for each ordered pair (C, C') of objects of C, a set $\operatorname{Hom}_{\mathcal{C}}(C, C')$ whose elements are called morphisms from C to C';
- (3) for each ordered triple (C, C', C'') of objects of C, a map

$$\operatorname{Hom}_{\mathcal{C}}(C, C') \times \operatorname{Hom}_{\mathcal{C}}(C', C'') \to \operatorname{Hom}_{\mathcal{C}}(C, C'')$$

called composition of morphisms

such that the following axioms C1, C2, C3 hold:

(before stating the axioms, we introduce the notations $\alpha : C \to C'$ for any $\alpha \in \operatorname{Hom}_{\mathcal{C}}(C, C')$, and $\beta \alpha$ for the composition of $\alpha \in \operatorname{Hom}_{\mathcal{C}}(C, C')$ and $\beta \in \operatorname{Hom}_{\mathcal{C}}(C', C'')$)

- C1: if $(C, C') \neq (D, D')$, then $\operatorname{Hom}_{\mathcal{C}}(C, C') \cap \operatorname{Hom}_{\mathcal{C}}(D, D') = \emptyset$
- C2: if $\alpha: C \to C', \beta: C' \to C'', \gamma: C'' \to C'''$ are morphisms, then $\gamma(\beta \alpha) = (\gamma \beta) \alpha$
- C3: for each object C there exists $1_C \in \text{Hom}_{\mathcal{C}}(C, C)$, called *identity morphism*, such that $1_C \alpha = \alpha$ and $\beta 1_C = \beta$ for any $\alpha : C' \to C$ and $\beta : C \to C'$.

Notice that, for any $C \in Obj(\mathcal{C})$, the identity morphism 1_C is unique. Indeed, if also $1'_C$ satisfies [C3], then $1_C = 1_C 1'_C = 1'_C$.

A morphism $\alpha : C \to C'$ is an *isomorphism* if there exists $\beta : C' \to C$ such that $\beta \alpha = 1_C$ and $\alpha \beta = 1_{C'}$. If α is an isomorphism, C and C' are called *isomorphic* and we write $C \cong C'$.

- *Example* 10.2. (1) The category **Sets**: the class of objects is the class of all sets; the morphisms are the maps between sets with the usual compositions.
 - (2) The category **Ab**: the objects are the abelian groups; the morphisms are the group homomorphisms with the usual compositions.
 - (3) The category *R*-Mod for a ring *R*: the objects are the left *R*-modules and the morphisms are the module homomorphisms with the usual compositions.
 - (4) The category **Mod-***R* for a ring *R*: the objects are the right *R*-modules and the morphisms are the module homomorphisms with the usual compositions.

Notice that, given a category \mathcal{C} , we can construct the *dual* category \mathcal{C}^{op} , with $Obj(\mathcal{C}^{op}) = Obj(\mathcal{C})$, $\operatorname{Hom}_{\mathcal{C}^{op}}(C, C') = \operatorname{Hom}_{\mathcal{C}}(C', C)$, and $\alpha * \beta = \beta \cdot \alpha$, where * denotes the composition in \mathcal{C}^{op} and \cdot the composition in \mathcal{C} (\mathcal{C}^{op} is obtained from \mathcal{C} by "reversing the arrows"). Any statement regarding a category \mathcal{C} dualizes to a corresponding statement for \mathcal{C}^{op} .

Definition 10.3. Let \mathcal{B} and \mathcal{C} be two categories. A functor $F : \mathcal{B} \to \mathcal{C}$ assigns to each object $B \in \mathcal{B}$ an object $F(B) \in \mathcal{C}$, and assigns to any morphism $\beta : B \to B'$ in \mathcal{B} a morphism $F(\beta) : F(B) \to F(B')$ in \mathcal{C} , in such a way:

F1: $F(\beta\alpha) = F(\beta)F(\alpha)$ for any $\alpha : B \to B', \beta : B' \to B''$ in \mathcal{B} F2: $F(1_B) = 1_{F(B)}$ for any B in \mathcal{B} .

By construction, a functor $F : \mathcal{B} \to \mathcal{C}$ defines a map for any B, B' in \mathcal{B}

$$\operatorname{Hom}_{\mathcal{B}}(B, B') \to \operatorname{Hom}_{\mathcal{C}}(F(B), F(B')), \quad \beta \mapsto F(\beta)$$

The functor F is called *faithful* if all these maps are injective and is called *full* it they are surjective.

A functor $F : \mathcal{B}^{op} \to \mathcal{C}$ is called a *contravariant* functor from \mathcal{B} to \mathcal{C} . In particular a contravariant functor F assigns to any morphism $\beta : B \to B'$ in \mathcal{B} a morphism $F(\beta) : F(B') \to F(B)$ in \mathcal{C} .

Example 10.4. (1) Let \mathcal{B} and \mathcal{C} two categories. \mathcal{B} is a subcategory of \mathcal{C} if $Obj(\mathcal{B}) \subseteq Obj(\mathcal{C})$, Hom_{\mathcal{B}} $(B, B') \subseteq$ Hom_{\mathcal{C}}(B, B') for any B, B' objects of \mathcal{B} , and the compositions in \mathcal{B} and \mathcal{C} are the same. In this case there is a canonical functor $\mathcal{B} \to \mathcal{C}$ which is clearly faithful. If this functor is also full, \mathcal{B} is said a *full subcategory* of \mathcal{C} .

- 9
- (2) Let $M \in R$ -Mod. As we have already observed $\operatorname{Hom}_R(M, N)$ is an abelian group for any $N \in R$ -Mod. So we can define a functor (Verify the axioms!)

 $\operatorname{Hom}_R(M, -) : R\operatorname{-Mod} \to \operatorname{Ab}, N \mapsto \operatorname{Hom}_R(M, N)$

such that for any $\alpha: N \to N'$,

$$\operatorname{Hom}_R(M, \alpha) : \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, N'), \ \varphi \mapsto \alpha \varphi$$

(3) Let $M \in R$ -Mod and consider the abelian group $\operatorname{Hom}_R(N, M)$ for any $N \in R$ -Mod. So we can define a contravariant functor (Verify the axioms!)

$$\operatorname{Hom}_R(-, M) : (R-\operatorname{Mod})^{op} \to \operatorname{Ab}, N \mapsto \operatorname{Hom}_R(N, M)$$

such that for any $\alpha : N \to N'$,

 $\operatorname{Hom}_{R}(\alpha, M) : \operatorname{Hom}_{R}(N', M) \to \operatorname{Hom}_{R}(N', M), \ \psi \mapsto \psi \alpha$

In these lectures we will deal mainly with categories having some kind of additive structure. For instance in the category R-Mod, any set of morphisms $\operatorname{Hom}_R(M, N)$ is an abelian group and the composition preserves the sums.

Definition 10.5. A category C is called preadditive if each set $\operatorname{Hom}_{\mathcal{C}}(C, C')$ is an abelian group and the compositions maps $\operatorname{Hom}_{\mathcal{C}}(C, C') \times \operatorname{Hom}_{\mathcal{C}}(C', C'') \to \operatorname{Hom}_{\mathcal{C}}(C, C'')$ are bilinear.

If \mathcal{B} and \mathcal{C} are preadditive categories, a functor $F : \mathcal{B} \to \mathcal{C}$ is additive if $F(\alpha + \alpha') = F(\alpha) + F(\alpha')$ for $\alpha, \alpha' : \mathcal{C} \to \mathcal{C}'$.

Example 10.6. The category *R*-Mod is a preadditive category. If $M \in R$ -Mod, then $\text{Hom}_R(M, -)$ and $\text{Hom}_R(-, M)$ are additive functors.

Definition 10.7. Let R and S two rings and let F : R-Mod $\rightarrow S$ -Mod be an additive functor. F is called left exact if, for any exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in R-Mod, the sequence $0 \rightarrow F(L) \rightarrow F(M) \rightarrow F(N)$ in S-Mod is exact. F is called right exact if, for any exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in R-Mod, the sequence $F(L) \rightarrow F(M) \rightarrow F(N) \rightarrow 0$ in S-Mod is exact. The functor F is exact if it is both left and right exact.

In particular, if F is exact then for any exact sequence in R-Mod $0 \to L \to M \to N \to 0$, the corresponding sequence $0 \to F(L) \to F(M) \to F(N) \to 0$ in S-Mod is exact.

Proposition 10.8. Let $X \in R$ -Mod. The functor $\operatorname{Hom}_R(X, -)$ is left exact

Proof. Let $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ be an exact sequence in *R*-Mod. Denoted by $f^* = \operatorname{Hom}_R(X, f)$ and $g^* = \operatorname{Hom}_R(X, g)$, we have to show that the sequence of abelian groups $0 \to \operatorname{Hom}_R(X, L) \xrightarrow{f^*} \operatorname{Hom}_R(X, M) \xrightarrow{g^*} \operatorname{Hom}_R(X, N)$ is exact. In particular, we have to show that f^* is a mono and that $\operatorname{Im} f^* = \operatorname{Ker} g^*$.

Let us start considering $\alpha : X \to L$ such that $f^*(\alpha) = 0$. So for any $x \in X$ $f^*(\alpha)(x) = f\alpha(x) = 0$. Since f is a mono we conclude $\alpha(x) = 0$ for any $x \in X$, that is $\alpha = 0$.

Consider now $\beta \in \text{Im } f^*$; then there exists $\alpha \in \text{Hom}_R(X, L)$ such that $\beta = f^*(\alpha) = f\alpha$. Hence $g^*(\beta) = g\beta = gf\alpha = 0$, since gf = 0. So we get $\text{Im } f^* \leq \text{Ker } g^*$.

Finally, let $\beta \in \text{Ker } g^*$, so that $g\beta = 0$ This means $\text{Im } \beta \leq \text{Ker } g = \text{Im } f$. For any $x \in X$ define α as $\alpha(x) = f^{\leftarrow}(\beta(x))$: α is well-defined since f is a mono and clearly $\beta = f\alpha = f^*(\alpha)$. So we get $\text{Ker } g^* \leq \text{Im } f^*$

In a similar way one prove that the functor $\operatorname{Hom}_R(-, X)$ is left exact. Notice that, since $\operatorname{Hom}_R(-, X)$ is a contravariant functor, left exact means that for any exact sequence in R-Mod $0 \to L \to M \to N \to 0$, the corresponding sequence of abelian groups $0 \to \operatorname{Hom}_R(N, X) \to \operatorname{Hom}_R(M, X) \to \operatorname{Hom}_R(L, X)$ is exact.

Remark 10.9. Notice that if F is an additive functor and $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ is a split exact sequence in R-Mod, then $0 \to F(L) \xrightarrow{F(f)} F(M) \xrightarrow{F(g)} F(N) \to 0$ is split exact. Indeed, since there exists φ such that $\varphi f = id_L$ (see Proposition 6.2), $F(\varphi)F(f) = id_{F(L)}$, so F(f) is a split mono. Similarly one show that F(g) is a split epi.

In particular, for a given module $X \in R$ -Mod the functors $\operatorname{Hom}_R(X, -)$ and $\operatorname{Hom}_R(-, X)$ could be not exact. Nevertheless, if $0 \to L \to M \to N \to 0$ is a split exact sequence in R-Mod, then the sequence $0 \to \operatorname{Hom}_R(X, L) \to \operatorname{Hom}_R(X, M) \to \operatorname{Hom}_R(X, N) \to 0$ and the sequence $0 \to$

 $\operatorname{Hom}_R(N, X) \to \operatorname{Hom}_R(M, X) \to \operatorname{Hom}_R(L, X) \to 0$ are split exact. In particular $\operatorname{Hom}_R(X, L \oplus N) = \operatorname{Hom}_R(X, L) \oplus \operatorname{Hom}_(X, N)$ and $\operatorname{Hom}_R(L \oplus N, X) = \operatorname{Hom}_R(L, X) \oplus \operatorname{Hom}_(N, X)$

One often wishes to compare two functors with each other. So we introduce the following notion:

Definition 10.10. Let F and G two functors $\mathcal{B} \to \mathcal{C}$. A natural transformation $\eta : F \to G$ is a family of morphisms $\eta_B : F(B) \to G(B)$, for any $B \in \mathcal{B}$, such that for any morphism $\alpha : B \to B'$ in \mathcal{B} the following diagram in \mathcal{C} is commutative

$$F(B) \xrightarrow{\eta_B} G(B)$$

$$F(\alpha) \downarrow \qquad \qquad \qquad \downarrow^{G(\alpha)}$$

$$F(B') \xrightarrow{\eta_{B'}} G(B')$$

If η_B is an isomorphism in \mathcal{C} for any $B \in \mathcal{B}$, then η is called a natural equivalence.

Two categories \mathcal{B} and \mathcal{C} are *isomorphic* if there exist functors $F : \mathcal{B} \to \mathcal{C}$ and $G : \mathcal{C} \to \mathcal{B}$ such that $GF = 1_{\mathcal{B}}$ and $FG = 1_{\mathcal{C}}$. This is a very strong notion, in fact there are several and relevant examples of categories \mathcal{B} and \mathcal{C} which have essentially the same structure, but where there is a bijective correspondence between the isomorphism classes of objects rather than between the individual objects. Therefore we define the following concept:

Definition 10.11. A functor $F : \mathcal{B} \to \mathcal{C}$ is an equivalence if there exists a functor $G : \mathcal{C} \to \mathcal{B}$ and natural equivalences $GF \to 1_{\mathcal{B}}$ and $FG \to 1_{\mathcal{C}}$

If the functor F is contravariant and gives an equivalence between \mathcal{B}^{op} and \mathcal{C} , we say that F is a *duality*.

Proposition 10.12. A functor $F : \mathcal{B} \to \mathcal{C}$ is an equivalence if and only if it is full and faithful, and every object of \mathcal{C} is isomorphic to an object of the form F(B), with $B \in \mathcal{B}$.

11. EXERCISE

Exercise 11.1. Let (P, \leq) be a partially ordered set. Let us define a category C in this way: the objects of C are the elements of P, and with a unique morphism $p \to q$ whenever $p \leq q$, while $\operatorname{Hom}_{\mathcal{C}}(p,q) = 0$ if $p \nleq q$. Verify that the axioms [C1], [C2], [C3] are satisfied. This is an example of a *small* category, i.e. a category where the class of objects is a set.

Exercise 11.2. Let $\varphi : R \to S$ be a homomorphism of rings. Each left S-module M has also a structure of left R-module, defining $rx := \varphi(r)x$ for any $x \in M$ and any $r \in R$. Let $\varphi^* : S$ -Mod $\to R$ -Mod, $M \mapsto M$, $\alpha \mapsto \alpha$ for any $M \in S$ -Mod and for any $\alpha \in \operatorname{Hom}_S(M, N)$. Verify that φ^* is an additive and faithful functor (called *restriction of scalars*)

Exercise 11.3. A functor F is exact if and only if $F(L) \to F(M) \to F(N)$ is exact whenever $L \to M \to N$ is exact.

12. Projective modules

In general, for a given R-module M, the functor $\operatorname{Hom}_R(M, -)$ is left exact but not right exact. In this section we study the R-modules P for which $\operatorname{Hom}_R(P, -)$ is also right exact.

Definition 12.1. A module $P \in R$ -Mod is projective if $\operatorname{Hom}_R(P, -)$ is an exact functor.

The right exactness is equivalent to require that for any $M \xrightarrow{g} N \to 0$ in *R*-Mod the homomorphism $\operatorname{Hom}_R(P, M) \xrightarrow{\operatorname{Hom}_R(P,g)} \operatorname{Hom}_R(P, N)$ is an epi, that is for any $\varphi \in \operatorname{Hom}_R(P, N)$ there exists $\psi \in \operatorname{Hom}_R(P, M)$ such that $g\psi = \phi$.

$$\begin{array}{ccc} M \xrightarrow{g} N & \longrightarrow 0 \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Example 12.2. Any free module is projective. Indeed, let $R^{(I)}$ a free *R*-module with $(x_i)_{i \in I}$ a basis. Given $M \xrightarrow{g} N \to 0$ and $\varphi : R^{(I)} \to N$ in *R*-Mod, let $m_i \in M$ such that $g(m_i) = \varphi(x_i)$ for any $i \in I$. Define $\psi(x_i) = m_i$ and, for $x = \sum r_i x_i, \psi(x) = \sum r_i m_i$. We get that $g\psi = \varphi$. Notice that from the construction is clear that the homomorphism ψ could be not unique.

Proposition 12.3. Let $P \in R$ -Mod. The following are equivalent:

- (1) P is projective
- (2) P is a direct summand of a free module
- (3) every exact sequence $0 \to L \xrightarrow{f} M \xrightarrow{g} P \to 0$ splits.

Proof. $1 \Rightarrow 3$ Let $0 \to L \xrightarrow{f} M \xrightarrow{g} P \to 0$ be an exact sequence in *R*-Mod and consider the homorphism $1_P : P \to P$. Since *P* is projective there exists $\psi : P \to M$ such that $g\psi = 1_P$. By Proposition 6.2 we conclude that the sequence splits.

 $3 \Rightarrow 2$ The module P is a quotient of a free module, so there exist an exact sequence $0 \to K \xrightarrow{f} R^{(I)} \xrightarrow{g} P \to 0$, which is split.

 $2 \Rightarrow 1$ If $R^{(I)} = P \oplus L$, then $\operatorname{Hom}_R(R^{(I)}, N) = \operatorname{Hom}_R(P, N) \oplus \operatorname{Hom}_R(L, N)$ for any $N \in R$ -Mod. So let us consider the homorphisms

$$\begin{array}{cccc} M \xrightarrow{g} N \longrightarrow 0 & \text{and} & M \xrightarrow{g} N \longrightarrow 0 \\ & \uparrow^{\varphi} & & & \uparrow^{\kappa} & \uparrow^{(\varphi,0)} \\ P & & & & R^{(I)} \end{array}$$

where $(\varphi, 0)(p+l) = \varphi(p) + 0(l) = \varphi(p)$ for any $p \in P$ and $l \in L$ and α exists since $R^{(I)}$ is projective. Then $\alpha = (\psi, \beta)$, with $\psi \in \operatorname{Hom}_R(P, N)$ and $\beta \in \operatorname{Hom}_R(L, N)$, where $\alpha(p+l) = \psi(p) + \beta(l)$ for any $p \in P$ and $l \in L$. Hence $g(\psi(p)) = g(\alpha(p)) = \varphi(p)$ for any $p \in P$. So we conclude that P is projective.

- *Example* 12.4. (1) Let R be a principal ideal domain (for instance, $R = \mathbb{Z}$). Then any projective module is free. In particular, free abelian groups and projective abelian group coincide.
 - (2) Let $R = \mathbb{Z}/6\mathbb{Z}$. Then $\mathbb{Z}/6\mathbb{Z} = 3\mathbb{Z}/6\mathbb{Z} \oplus 2\mathbb{Z}/6\mathbb{Z}$. The ideals $3\mathbb{Z}/6\mathbb{Z}$ and $2\mathbb{Z}/6\mathbb{Z}$ are projective *R*-modules, but not free *R*-modules (why?)

Proposition 12.5. Let $P \in R$ -Mod. P is projective if and only if there exists a family $(\varphi_i, x_i)_{i \in I}$ with $\varphi_i \in \operatorname{Hom}_R(P, R)$ and $x_i \in P$ such that for any $x \in P$ one has $x = \sum_i \varphi_i(x) x_i$ where $\varphi_i(x) = 0$ for almost every $i \in I$.

Proof. Let P be projective and let $R^{(I)} \xrightarrow{\beta} P \to 0$ be a spli epi. Consider $(e_i)_{i \in I}$ a basis of $R^{(I)}$ and define $x_i = \beta(e_i)$. Observe that $\beta(\sum_i r_i e_i) = \sum_i r_i \beta(e_i) = \sum_i r_i x_i$. By Proposition 6.2, there exists $\varphi : P \to R^{(I)}$ such that $\beta \varphi = id_P$, which induces homomorphisms $\varphi_i = \pi_i \varphi$ where π_i is the projection on the *i*-th component, so $\varphi_i(x) \in R$ for any $i \in I$ and $\varphi(x) = \sum \varphi_i(x)$. Hence for any $x \in P$ one has $x = \beta \varphi(x) = \beta(\sum_i \varphi_i(x)) = \sum_i \varphi_i(x)x_i$, so $(\varphi_i, x_i)_{i \in I}$ satisfies the stated properties.

Conversely, let $(\varphi_i, x_i)_{i \in I}$ satisfy the statement and let $\beta : R^{(I)} \to P$, $e_i \mapsto x_i$. The homomorphism β is an epi, since the family $(x_i)_{i \in I}$ generates P, and $\beta(\sum r_i) = \sum r_i x_i$. Define $\varphi : P \to R^{(I)}, x \mapsto \sum \varphi_i(x)$. Then for any $x \in P$ one gets $\beta\varphi(x) = \beta(\sum \varphi_i(x)) = \sum \varphi_i(x)x_i = x$. By Proposition 6.2 we conclude that β is a split epi and so P is projective.

Note that, from the results in the previous sections, the projective module $_RR$ plays a crucial role in the category R-Mod, since for any $M \in R$ -Mod there exists an epi $R^{(I)} \to M \to 0$, for some set I. A module with such property is called a *generator* and so R is a *projective generator* for R-Mod.

In particular, for any $M \in R$ -Mod there exists a short exact sequence $0 \to K \to P_0 \to M \to 0$, with P_0 projective. The same holds for the module K, and so, iterating the argument, we can construct an exact sequence

$$\cdots \rightarrow P_i \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

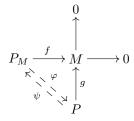
where all the P_i are projectiveSuch a sequence is called a *projective resolution* of P. It is clearly not unique.

It is natural to ask if, for a given $M \in R$ -Mod, there exists a projective module P and a "minimal" epi $P \to M \to 0$, in the sense that $f_{|L} : L \to M$ is epi for no proper projective submodule of P. More precisely, we define:

Definition 12.6. A homomorphism $f : M \to N$ is right minimal if for any $g \in \text{End}_R(M)$ such that fg = f, one gets g is an isomomorphism.

If P_M is a projective module and $P_M \to M$ is epimorphism right minimal, then P_M is a projective cover of M.

Remark 12.7. Consider the diagram



where P_M is a projective cover of M and P is a projective module. Since P_M and P are projective, there exist φ and ψ such that the diagram commutes. Hence $f\psi = g$ and $g\varphi = f$, so $f\psi\varphi = f$ and, since f is an right minimal, we conclude $\psi\varphi$ is an iso. In particular φ is a mono. Define $\theta : P \to P_M$ as $\theta = (\psi\varphi)^{-1}\psi$: then $\theta\varphi = id_P$ and so φ is a split mono (see Proposition 6.2). We conclude that P_M is a direct summand of P. This explains the minimality property of the projective cover announced above.

If also P is a projective cover of M, using the same argument we get that $\varphi \psi$ is an iso, that is $\varphi = \psi^{-1}$ and P_M is isomorphic to P. We have shown that the projective cover is unique (modulo isomorphisms).

We state the following characterization of projective covers:

Theorem 12.8. Let P a projective module. Then $P \xrightarrow{f} M \to 0$ is a projective cover of M if and only if Ker f is a superfluous submodule of P (i.e. for any submodule $L \leq P$, L + Ker f = P implies L = P.)

Observe that, given $M \in R$ -Mod, a projective cover for M could not exist. A ring in which any module admits a projective cover is called *semiperfect*

Let now $M \in R$ -Mod and suppose there exist a projective resolution of M

$$\dots P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$$

such that P_0 is a projective cover of M and P_i is a projective cover of Ker f_{i-1} for any $i \in \mathbb{N}$. Such a resolution is called a *minimal projective resolution* of M.

13. EXERCISE

Exercise 13.1. Let $P_1, P_2, \ldots, P_n \in R$ -Mod. Then $\bigoplus_{i=1,\ldots,n} P_i$ is projective if and only if P_i is projective for any $i = 1, \ldots, n$.

Exercise 13.2. Let $0 \to L \to M \to N \to 0$ a short exact sequence in *R*-Mod. If *L* and *N* are projective, then *M* is projective

Exercise 13.3. Show that any abelian group $n\mathbb{Z}$, $n \in \mathbb{N}$, is a projective \mathbb{Z} -module.

14. BIMODULES

Definition 14.1. Let R and S rings. An abelian group M is a left R- right S-bimodule if M is a left R-module and a right S-module such that the two scalar multiplications satisfy r(xs) = (rx)s for any $r \in R$, $s \in S$, $x \in M$. We write $_RM_S$.

Example 14.2. Let $M \in R$ -Mod and consider $S = \operatorname{End}_R^r(M)$, the ring of homomorphism R-linear of M, where homorphisms act on the right (i.e. mf = f(m) and m(fg) = g(f(m))). So M is a right S-module (Verify!) and $_RM_S$ is a bimodule. Indeed (rm)f = f(rm) = rf(m) = r(mf) for any $r \in R$, $m \in M$ and $f \in S$.

Given a bimodule $_RM_S$ and a left R-module N, the abelian group $\operatorname{Hom}_R(M, N)$ is naturally endowed with a structure of left S-module, by defining (sf)(x) := f(xs) for any $f \in \operatorname{Hom}_R(M, N)$ and any $x \in M$. (Verify! crucial point: $(s_1(s_2f))(x) = (s_2f(xs_1)) = f(xs_1s_2) = ((s_1s_2)f)(x))$.

Similary, if $_RN_T$ is a left R- right T-bimodule and $M \in R$ -Mod, then $\operatorname{Hom}_R(M, N)$ is naturally endowed with a structure of right T-module, by defining (ft)(x) := f(x)t (Verify! crucial point: $(f(t_1t_2))(x) = f(x)(t_1t_2) = (f(x))t_1)t_2 = ((ft_1)(x))t_2 = ((ft_1)t_2)(x)).$

Moreover, one can show that if $_RM_S$ and $_RN_T$ are bimodules, then $\operatorname{Hom}_R(_RM_S, _RN_T)$ is a left S- right T-bimodule (Verify!).

Arguing in a similar way for right *R*-modules, if ${}_{S}M_{R}$ and ${}_{T}N_{R}$ are bimodules, then the abelian group Hom_{*R*}(${}_{S}M_{R}, {}_{T}N_{R}$) is a left *T*-right *S*-bimodule, by (tf)(x) = t(f(x)) and (fs)(x) = f(sx).

15. Injective modules

In this section we study the *R*-modules *E* for which $\text{Hom}_R(-, E)$ is an exact functor. Observe that many results we are going to show are dual of those proved for projective modules.

Definition 15.1. A module $E \in R$ -Mod is injective if $\operatorname{Hom}_R(-, E)$ is an exact functor.

The exactness is equivalent to require that for any $0 \to L \xrightarrow{f} M$ in *R*-Mod the homomorphism Hom_{*R*}(*M*, *E*) $\xrightarrow{\text{Hom}_R(f,E)}$ Hom_{*R*}(*L*, *E*) is an epi, that is for any $\varphi \in \text{Hom}_R(L, E)$ there exists $\psi \in \text{Hom}_R(M, E)$ such that $\psi f = \varphi$.

Any module is quotient of a projective module. Does the dual property hold? that is, given any module $M \in R$ -Mod, is it true that M embeds in a injective R-module? In the sequel we will answer to this crucial question.

An abelian group G is *divisible* if, for any $n \in \mathbb{Z}$ and for any $g \in G$, there exists $t \in G$ such that g = nt. We are going to show that an abelian group is injective if and only if it is divisible. We need the following useful criterion to check whether a module is injective, known as Baer's Lemma.

Lemma 15.2. Let $E \in R$ -Mod. The module E is injective if and only if for any left ideal J of R and for any $\varphi \in \operatorname{Hom}_R(J, E)$ there exists $\psi \in \operatorname{Hom}_R(R, E)$ such that $\psi i = \varphi$, where i is the canonical inclusion $0 \to J \xrightarrow{i} R$.

The lemma states that it is sufficient to check the injectivity property only for left ideals of the ring. In particular, the Baer's Lemma says that E is injective if and only if for any $_RJ \leq _RR$ and for any $\varphi \in \operatorname{Hom}_R(J, E)$ there exists $y \in E$ such that $\varphi(x) = xy$ for any $x \in J$.

Proposition 15.3. A module $G \in \mathbb{Z}$ -Mod is injective if and only if it is divisible.

Proof. Let us assume G injective, consider $n \in \mathbb{Z}$ and $g \in G$ and the commutative diagram

$$0 \longrightarrow \mathbb{Z} n \xrightarrow{i} \mathbb{Z}$$

$$\downarrow^{\varphi}_{\mathsf{K}} \swarrow^{\psi}_{\psi}$$

$$G$$

where $\varphi(sn) = sg$ for any $s \in \mathbb{Z}$ and ψ exists since G is injective. Let $t = \psi(1), t \in G$. Then $\varphi(n) = \psi(i(n))$ implies g = nt and we conclude that G is divisible.

Conversely, suppose G divisible and apply Baer's Lemma. The ideal of \mathbb{Z} are of the form $\mathbb{Z}n$ for $n \in \mathbb{Z}$, so we have to verify that for any $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}n, G)$ there exists ψ such that

$$\begin{array}{cccc} 0 & & \longrightarrow \mathbb{Z}n \xrightarrow{i} \mathbb{Z} \\ & & & \swarrow^{\varphi} & \swarrow^{\varphi} \\ & & & G \end{array}$$

commutes. Let $g \in G$ such that $\varphi(n) = g$. Since \mathbb{Z} is a free \mathbb{Z} -module, define $\psi(1) = t$ where g = nt and so $\psi(r) = rt$ for any $r \in \mathbb{Z}$. Hence $\varphi(sn) = sg = snt = \psi(i(sn))$.

The result stated in the previous proposition holds for any Principal Ideal Domain R (see Exercise 16.1).

Example 15.4. The \mathbb{Z} -module \mathbb{Q} is injective.

Remark 15.5. Any abelian group G embeds in a injective abelian group. Indeed, consider a short exact sequence $0 \to K \to \mathbb{Z}^{(I)} \to G \to 0$ and the canonical inclusion in \mathbb{Z} -Mod $0 \to \mathbb{Z} \to \mathbb{Q}$. One easily check that $\mathbb{Q}^{(I)}/K$ is divisible (Verify!) and so injective. Then we get the induced monomorphism $0 \to G \cong \mathbb{Z}^{(I)}/K \to \mathbb{Q}^{(I)}/K$. **Proposition 15.6.** Let R be a ring. If $D \in \mathbb{Z}$ -Mod is injective, then $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is an injective left R-module

Proof. First notice that, since $\mathbb{Z}R_R$ is a bimodule, $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is naturally endowed with a structure of left *R*-module. In order to verify that it is injective, we apply Baer's Lemma. So let ${}_{R}I \leq {}_{R}R$ and $h: I \to \operatorname{Hom}_{\mathbb{Z}}(R, D)$ an *R*-homomorphism. Then $\gamma: I \to D, a \mapsto h(a)(1)$ defines a \mathbb{Z} -homomorphism and, since *D* is an injective abelian group, there exists $\overline{\gamma}: R \to D$ which extends γ . Now we have, for any $a \in I$ and $r \in R$,

$$(a\overline{\gamma})(r) = \overline{\gamma}(ra) = \gamma(ra) = [h(ra)](1) = [rh(a)](1) = [h(a)](r)$$

so $h(a) = a\overline{\gamma}$ for any $a \in I$. Hence we conclude $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is injective by Baer's Lemma. \Box

Corollary 15.7. Let $M \in R$ -Mod. Then there exists an injective module $E \in R$ -Mod and a monomorphism $0 \to M \to E$.

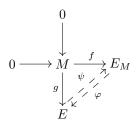
Proof. Consider the isomorphism of \mathbb{Z} -modules $\varphi : \operatorname{Hom}_R(R, M) \to M, f \mapsto f(1)$. Observe that since ${}_RR_R$ is a left R- right R-bimodule, then $\operatorname{Hom}_R(R, M)$ is naturally endowed with a structure of left R-module. One easily check that φ is also R-linear, hence ${}_RM \cong \operatorname{Hom}_R(R_R, M) \leq$ $\operatorname{Hom}_{\mathbb{Z}}(R_R, M)$. By Remark 15.5, there is a mono of \mathbb{Z} -modules $0 \to M \to G$ from which we obtain a mono of R-modules $0 \to \operatorname{Hom}_{\mathbb{Z}}(R_R, M) \to \operatorname{Hom}_{\mathbb{Z}}(R_R, G)$, where $\operatorname{Hom}_{\mathbb{Z}}(R_R, G)$ is an injective left R-module by Proposition 15.6. \Box

Since any module M embeds in a injective one, it is natural to ask whether there exists a "minimal" injective module containing M.

Definition 15.8. A homomorphism $f : M \to N$ is left minimal if for any $g \in \text{End}_R(N)$ such that gf = f, one gets g is an isomomorphism.

If E_M is an injective module and $M \to E_M$ is a monomorphism left minimal, then E_M is an injective envelope of M.

Remark 15.9. Consider the diagram



where E_M is an injective envelope of M and E is an injective module. Since E_M and E are injective, there exist φ and ψ such that the diagram commutes. Hence $\psi g = f$ and $\varphi f = g$, so $\psi \varphi f = f$ and, since f is left minimal, we conclude that $\psi \varphi$ is an iso. In particular φ is a mono and so it is a split mono. We conclude that E_M is a direct summand of E. This explains the minimality property of the injective envelope announced above.

If also E is an injective envelope of M, using the same argument we get that $\varphi \psi$ is an iso, that is φ is an iso and E_M is isomorphic to E. We have shown that the injective envelope is unique (modulo isomorphisms).

We state the following characterization of injective envelope.

Theorem 15.10. Let E be an injective module. Then $0 \to M \xrightarrow{f} E$ is an injective envelope if and only if Im f is an essential submodule of M (i.e. for any submodule $L \leq E, L \cap \text{Im } f \neq \{0\}$)

Proof. Suppose $0 \to M \xrightarrow{f} E$ is an injective envelope and let $L \leq E$ such that $L \cap \text{Im } f = \{0\}$. Then $\text{Im } f \oplus L \leq E$ and we can consider the commutative diagram

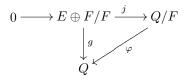
where *i* is the canonical inclusion of Im $f \oplus L$ in *E* and φ exists since *E* is injective. Then $\varphi f = f$ but φ is clearly not an iso.

Conversely, let Im f be essential in M and let $g \in \operatorname{End}_R(E)$ such that gf = f. Since f is an essential mono we conclude that g is a mono (see Exercise 16.4), so it is a split mono. In particular, Im $f \leq \operatorname{Im} g \stackrel{\oplus}{\leq} E$, contradicting the essentiality of Im f.

Not every module has a projective cover. Thus the next result is especially remarkable

Theorem 15.11. Every module has an injective envelope.

Proof. Let $M \in R$ -Mod; by Corollary 15.7 there exists an injective module Q such that $0 \to M \to Q$. Consider the set $\{E' \mid M \leq E' \leq Q \text{ and } M$ essential in $E'\}$. One easily check that it is an inductive set so, by Zorn's Lemma, it contains a maximal elemnt E. Let us show that E is a direct summand of Q and so E is injective (see Exercise 16.3). To this aim, consider the set $\{F'|F' \leq Q \text{ and } F' \cap E = 0\}$. It is inductive so, again by Zorn's Lemma, it contains a maximal element F. Then there exists an obvious iso $g : E \oplus F/F \to E$ and $E \oplus F/F \leq Q/F$: from the maximality of F it follows that $E \oplus F/F \leq Q/F$ is an essential inclusion (Verify!) so consider the diagram



where j is the canonical inclusion and φ exists since Q is injective. Moreover φ is a mono since $\varphi j = g$ is a mono and j is an essential mono (see Exercise 16.4). It follows that M is essential in $E = \operatorname{Im} g$ and $E = \operatorname{Im} g = \varphi(E \oplus F/F)$ is essential in $\operatorname{Im} \varphi$. Thus M is essential in $\operatorname{Im} \varphi$ so, from the maximality of E we conclude that $E = \operatorname{Im} \varphi$ and hence $\varphi(E \oplus F/F) = \varphi(Q/F)$. Since φ is a mono we conclude $E \oplus F = Q$.

Proposition 15.12. Let $E \in R$ -Mod. The following are equivalent:

- (1) E is injective
- (2) every exact sequence $0 \to E \xrightarrow{f} M \xrightarrow{g} N \to 0$ splits.

Proof. $1 \Rightarrow 2$ Consider the commutative diagram

$$0 \longrightarrow E \xrightarrow{f} M$$
$$\downarrow_{\mathsf{id}_E} \bigvee_{\mathsf{k}} \varphi$$
$$E$$

where φ exists since E is injective. Since $\varphi f = id_E$, by Proposition 6.2 we conclude that f is a split mono.

 $2 \Rightarrow 1$ By Corollary 15.7 there exists an exact sequence $0 \rightarrow E \rightarrow F \rightarrow N \rightarrow 0$, where F is an injective module. Since the sequence splits, we get that E is a direct summand of a injective module, and so E is injective (see Exercise 16.3).

Comparing the previous proposition with the analogous one for projective modules (see Proposition 12.3), there is an evident difference. Speaking about projective modules, we saw that a special role is played by the projective generator R. Does a module with the dual property exist? An injective module $E \in R$ -Mod such that any $M \in R$ -Mod embeds in E^{I_M} , for a set I_M , is called an *injective cogenerator* of R-Mod. We will see in the sequel that such a module always exists.

Remark 15.13. Dualizing what we showed in the projective case, for any module $M \in R$ -Mod there exists a long exact sequence $0 \to M \xrightarrow{f_0} E_0 \xrightarrow{f_1} E_1 \xrightarrow{f_2} E_2 \to \ldots$, where the E_i are injective. This is called an *injective coresolution* of M. If E_0 is an injective envelope of M and E_i in an injective envelope of Ker f_i for any $i \ge 1$, then the sequence is called a *minimal injective* coresolution of M.

16. Exercises

Exercise 16.1. Let R be a Principal Ideal Domain. Prove that an R-module is injective if and only if it is divisible.

Exercise 16.2. Let G be a divisible abelian group. Then $G^{(I)}$ and G/N are divisible, for any set I and for any subgroup N of G.

Exercise 16.3. Let E_i for i = 1, ..., n in *R*-Mod. Then $\bigoplus_{i \in I} E_i$ is injective if and only if E_i is injective for any i = 1 ... n.

Exercise 16.4. A monomorphism $0 \to L \to M$ is *R*-Mod is called *essential monomorphism* if Im *L* is essential in *M*. Prove that if *f* is an essential morphism and *gf* is a mono, then *g* is a mono.

Exercise 16.5. Let $0 \to M \xrightarrow{f} L$ and $0 \to L \xrightarrow{g} N$ two essential monomorphism. Show that gf is an essential monomorphism.

Let $M \in R$ -Mod and consider the partially ordered set $\mathcal{L}_M = \{L | L \leq M\}$. Then \mathcal{L}_M is a complete lattice, where for any $N, L \in \mathcal{L}$, $\sup\{N, L\} = L + N$ and $\inf\{N, L\} = L \cap N$. The greatest element of \mathcal{L}_M is M and the smallest if $\{0\}$.

Given an arbitrary module $M \in R$ -Mod, it is natural to ask whether minimal or maximal elements of \mathcal{L} exist. They are exactly the maximal submodules of M and the simple submodules of M, respectively. More precisely we introduce the following definitions:

Definition 17.1. A module $S \in R$ -Mod is simple if $L \leq S$ implies $L = \{0\}$ or L = S. A submodule $N \leq M$ is a maximal submodule of M if $N \leq L \leq M$ implies L = N or L = M.

- Example 17.2. (1) Let K be a field. Then K is the unique (modulo isomorphisms) simple module in K-Mod.
 - (2) In \mathbb{Z} -Mod any abelian group $\mathbb{Z}/\mathbb{Z}p$ with p prime is a simple abelian group. So in \mathbb{Z} -Mod there are infinite simple modules.
 - (3) The regular module \mathbb{Z} does not contain any simple submodule, since any ideal of \mathbb{Z} is of the form $\mathbb{Z}n$ and $\mathbb{Z}m \leq \mathbb{Z}n$ whenever n divides m.

In general, it is not true that any module contains a simple or a maximal submodule. Nevertheless we have the following result (see also Exercise 18.1)

Proposition 17.3. Let R be a ring and $_{R}I \leq _{R}R$. There exists a maximal left ideal M of R such that $I \leq M \leq R$. In particular R adimits maximal left ideals.

Proof. Let $\mathcal{F} = \{L | I \leq L < R\}$. The set \mathcal{F} is inductive since, given a sequence $L_0 \leq L_1 \leq \ldots$, the left ideal $\bigcup L_i$ contains all the L_i and it is a proper ideal of R. Indeed, if $\bigcup L_i = R$, there would exist an index $j \in \mathbb{N}$ such that $1 \in L_j$ and so $L_j = R$. So by Zorn's Lemma, \mathcal{F} has a maximal element, which is clearly a maximal left ideal of R.

Example 17.4. Consider the regular module \mathbb{Z} . Then $\mathbb{Z}p$ is a maximal submodule of \mathbb{Z} for any prime number p. Moreover the ideal $\mathbb{Z}n$ is contained in $\mathbb{Z}p$ for any p such that p|n.

Remark 17.5. Let $\mathcal{M} \leq R$ a maximal left ideal of R. Clearly R/\mathcal{M} is a simple R-module, and this shows that simple modules always exists in R-Mod, for any ring R.

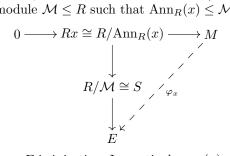
Conversely, let $S \in R$ -Mod be a simple module. So S = Rx for an element $x \in S$ and let $\operatorname{Ann}_R(x) = \{r \in R | rx = 0\}$. $\operatorname{Ann}_R(x)$ is a maximal left ideal of R, since it is the kernel of the epimorphism $\varphi : R \to S$, $1 \mapsto x$, and hence $S \cong R / \operatorname{Ann}_R(x)$.

Finally, for any simple module S consider the module $\operatorname{Ann}_R(S) = \bigcap_{x \in S} \operatorname{Ann}_R(x)$. It is easy to show that $\operatorname{Ann}_R(S)$ is a two-sided ideal of R, called the *annihilator of the simple module* S (see Exercise 18.2).

The simple modules play an crucial role in the study of the category *R*-Mod, for instance:

Proposition 17.6. Let $E \in R$ -Mod be an injective module. The module E is a cogenerator of R-Mod if and only if for any simple module $S \in R$ -Mod there exists a mono $0 \to S \to E^{I_S}$, for a set I_S .

Proof. Assume for any simple module $S \in R$ -Mod there exists a mono $0 \to S \xrightarrow{I_S} E^{I_S}$, for a set I_S . Then there exist $j \in I_S$ such that $\pi_j \circ f : S \to E$ is not the zero map. So, since $\operatorname{Ker}(\pi_j \circ f) \leq S$, we get that for any simple module S there exists a mono $\pi_j \circ f : S \to E$. Let now $M \in R$ -Mod, and $x \in M, x \neq 0$. So $Rx \leq M$ and $Rx \cong R/\operatorname{Ann}_R(x)$. By Proposition 17.3 there exists a maximal submodule $\mathcal{M} \leq R$ such that $\operatorname{Ann}_R(x) \leq \mathcal{M}$. Consider the diagram



where $\varphi_x : M \to E$ exists since E is injective. In particular $\varphi_x(x) \neq 0$. Hence we can construct a mono $\varphi : M \to E^M$, $x \mapsto (0, 0, \dots, 0, \varphi_x(x), 0, \dots, 0)$, where $\varphi_x(x)$ is the x^{th} position. \Box **Corollary 17.7.** Let $\{S_{\lambda}\}_{\lambda \in \Lambda}$ be a set of representative of the simple modules (modulo isomorphisms) in R-Mod. Then the injective envelope $E(\oplus S_{\lambda})$ is a minimal injective cogenerator of R-Mod

Proof. The injective module $E(\oplus S_{\lambda})$ cogenerates all the simple modules, so by the previous Proposition it is an injective cogenerator. If W is a injective cogenerator of R-Mod, since $S_{\lambda} \leq W$ for any $\lambda \in \Lambda$ (see the argument in the previous proof) one gets $\oplus S_{\lambda} \leq W$. Since

 $E(\oplus S_{\lambda})$ is the injective envelope of $\oplus S_{\lambda}$, we conclude $E(\oplus S_{\lambda}) \stackrel{\oplus}{\leq} W$.

Remark 17.8. If there is a finite number of simple modules in *R*-Mod (modulo isomorphisms), S_1, S_2, \ldots, S_n , then $E(\oplus S_i) = \oplus E(S_i)$ is a minimal injective cogenerator of *R*-Mod

Definition 17.9. Let $M \in R$ -Mod. The socle of M is the submodule $Soc(M) = \sum \{S | S \text{ is a simple submodule of } M\}$. The radical of M is the submodule $Rad(M) = \cap \{N | N \text{ is a maximal submodule of } M\}$.

Remark 17.10. If M does not contain any simple module, we set Soc(M) = 0. If M does not contain any maximal submodule, we set Rad(M) = M.

In the next Proposition we list some important properties of the socle and of the radical of a module. We leave the proofs for exercise.

Proposition 17.11. Let $M \in R$ -Mod.

- (1) $\operatorname{Soc}(M) = \bigoplus \{S | S \text{ is a simple submodule of } M\}$. In particular, $\operatorname{Soc}(M)$ is a semisimple module.
- (2) $\operatorname{Soc}(M) = \cap \{L | L \text{ is an essential submodule of } M\}.$
- (3) $\operatorname{Rad}(M) = \sum \{ U | U \text{ is a superfluous submodule of } M \}.$
- (4) Let $f: M \to N$. Let $f(\operatorname{Soc}(M)) \leq \operatorname{Soc}(N)$ and $f(\operatorname{Rad}(M)) \leq \operatorname{Rad}(N)$.
- (5) if $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$, then $\operatorname{Soc}(M) = \bigoplus_{\lambda \in \Lambda} \operatorname{Soc}(M_{\lambda})$ and $\operatorname{Rad}(M) = \bigoplus_{\lambda \in \Lambda} \operatorname{Rad}(M_{\lambda})$.
- (6) $\operatorname{Rad}(M/\operatorname{Rad}(M)) = 0$ and $\operatorname{Soc}(\operatorname{Soc}(M)) = \operatorname{Soc}(M)$.
- (7) If M is finitely generated, then $\operatorname{Rad}(M)$ is a superfluous submodule of M.

Remark 17.12. It is clear that the radical can be described also by

 $Rad(M) = \{x \in M | \varphi(x) = 0 \text{ for every } \varphi : M \to S \text{ with } S \text{ simple} \}$

Indeed, given $\varphi : M \to S$ with S simple, the kernel of φ is a maximal submodule of M. Conversely, if N is a maximal submodule of M, then consider $\pi : M \to M/N$ where M/N is simple.

A crucial role is played by the radical of the regular module $_{R}R$.

Definition 17.13. Let R be a ring. The Jacobson radical of R is the ideal $\operatorname{Rad}(_RR)$. It is denoted by J(R).

By the Remarks 17.5 and 17.12, the Jacobson radical of R can be described as the intersection of the annihilators of the simple left R-modules $\operatorname{Ann}_R(S)$. In particular it is two-sided ideal of R.

Lemma 17.14. For every $M \in R$ -Mod, $J(R)M \leq Rad(M)$

Proof. Since J(R) annihilates any simple module S, all homomorphisms $M \to S$ are zero on J(R)M so, by Remark 17.12, $J(R)M \leq \text{Rad}(M)$

Proposition 17.15 (Nakayma's Lemma). Let M be a finitely generated R-module. If L is a submodule of M such that L + J(R)M = M, then L = M.

Proof. L + J(R)M = M implies L + Rad(M) = M and since Rad(M) is superfluous in M (see Proposition ??) we get L = M.

We conclude with the following characterization of J(R)

Proposition 17.16. $J(R) = \{r \in R | 1 - xr \text{ has a left inverse for any } x \in R\}$

18. EXERCISE

Exercise 18.1. Let $M \in R$ -Mod be finitely generated. Show that, for any L < M, there exists a maximal submodule of M containing L. In particular, Rad(M) < M.

Exercise 18.2. Show that, for any simple module $S \in R$ -Mod, $Ann_R(S)$ is a two-sided ideal of R.

Exercise 18.3. Let $p \in \mathbb{N}$ a prime and $M = \{\frac{a}{v^n} \in \mathbb{Q} \mid a \in \mathbb{Z}, n \in \mathbb{N}\}.$

- (1) Verify that $\mathbb{Z} \leq M \leq \mathbb{Q}$ in \mathbb{Z} -Mod.
- (2) Let $\mathbb{Z}_{p^{\infty}} = M/\mathbb{Z}$. Show that $\mathbb{Z}_{p^{\infty}}$ is a divisible group.
- (3) show that any $L \leq \mathbb{Z}_{p^{\infty}}$ is cyclic, generated by an element $\frac{1}{p^l}, l \in \mathbb{N}$.

Conclude the lattice of the subgroups of $\mathbb{Z}_{p^{\infty}}$ is a well-ordered chain and so $\mathbb{Z}_{p^{\infty}}$ does not have any maximal subgroup.

19. Local rings

Definition 19.1. A ring R is a local ring if all the non-invertible elements form a proper ideal of R.

In other words, setting $U(R) = \{x \in R | x \text{ is invertible}\}$, R is a local ring if $R \setminus U(R)$ is a left ideal of R. One easily shows that $R \setminus U(R)$ is a left ideal if and only if it is a two-sided ideal of R (Verify!).

Proposition 19.2. Let R be a local ring. Then

- (1) $R \setminus U(R)$ is the Jacobson radical J(R) of R.
- (2) R/J(R) is a division ring.
- (3) there is a unique simple module (modulo isomorphisms) in R-Mod, S = R/J(R). In particular E(R/J(R)) is the minimal injective cogenerator of R-Mod.
- (4) The unique idempotent elements in R are 0 and 1.

Proof. 1) Given a ring R, any left ideal of R is contained in $R \setminus U(R)$. So, if R is local, $R \setminus U(R)$ is the unique maximal ideal of $_RR$. In particular $R \setminus U(R)$ is the Jacobson radical J(R) of R. 2) is obvious, since every element in R/J(R) is invertible.

3) It follows since J(R) is the unique maximal ideal of R.

4) Let e an idempotent element in a ring R. Observe that from e(1-e) = 0, if e is invertible one gets e = 1. So, if R is local and e is a not invertible idempotent, then $e \in R \setminus U(R) = J(R)$ and so the idempotent $1 - e \in U(R)$ (otherwise we would have $1 \in J(R)$). Hence, 1 - e = 1 and so e = 0. We conclude that the only idempotents in R are the trivial ones, i.e. 0 and 1.

Remark 19.3. If R is a local ring, then $_RR$ is an indecomposable R-module, since the direct summands of $_RR$ correspond to the idempotent elements of R (see Exercise 9.4).

If $M \in R$ -Mod and $\operatorname{End}_R(M)$ is a local ring, then M is indecomposable. Indeed, to any decomposition $M = N \oplus L$, we can associate an idempotent element $\pi_N \in \operatorname{End}_R(M), \pi_N : M \to M, n+l \mapsto n$. Thus $\pi_N = 0$ or $\pi_N = \operatorname{id}_M$ in $\operatorname{End}_R(M)$, from which we get N = 0 or N = M, respectively.

20. Finite length modules

Let $M \in R$ -Mod. A sequence $0 = N_0 \leq N_1 \leq \cdots \leq N_{s-1} \leq N_s = M$ of submodules of M is called a *filtration* of M, with *factors* N_i/N_{i-1} , $i = 1, \cdots, s$. The *length* of the filtration is the number of non-zero factors.

Consider now a filtration $0 = N'_0 \leq N'_1 \leq \cdots \leq N'_{t-1} \leq N_t = M$; it is a *refinement* of the latter one if $\{N_i | 0 \leq i \leq s\} \subseteq \{N'_i | 0 \leq i \leq t\}$.

Two filtrations of M are said equivalent if s = t and there exists a permutation $\sigma : \{0, 1, \dots, s\} \rightarrow \{0, 1, \dots, s\}$ such that $N_i/N_{i-1} \cong N'_{\sigma(i)}/N'_{\sigma(i-1)}$, for $i = 1, \dots, s$. Finally, a filtration $0 = N_0 \leq N_1 \leq \dots \leq N_{s-1} \leq N_s = M$ of M is a composition series

Finally, a filtration $0 = N_0 \leq N_1 \leq \cdots \leq N_{s-1} \leq N_s = M$ of M is a composition series of M if the factors N_i/N_{i-1} , $i = 1, \cdots, s$, are simple modules. In such a case they are called composition factors of M.

Theorem 20.1. Any two filtrations of M admit equivalent refinements.

Proof. The proof follows from the following Lemma: Let $U_1 \leq U_2 \leq M$ and $V_1 \leq V_2 \leq M$. Then $(U_1 + U_2 \cap V_2)/(U_1 + V_1 \cap U_2) \cong (U_2 \cap V_2)/(U_1 \cap V_2) + (U_2 + V_1) \cong (V_1 + U_2 \cap V_2)/(V_1 + U_1 \cap V_2)$ In our setting, consider $0 = N_0 \leq N_1 \leq \cdots \leq N_{s-1} \leq N_s = M$ and $0 = L_0 \leq L_1 \leq \cdots \leq L_{s-1} \leq L_t = M$ two filtrations of M. For any $1 \leq i \leq s$ and $1 \leq j \leq t$ define $N_{i,j} = N_{i-1} + (L_j \cap N_i)$

and $L_{j,i} = L_{j-1} + (N_j \cap L_i)$. Then

$$0 = N_{1,0} \le N_{1,1} \le \dots \le N_{1,t} \le N_{2,0} \le \dots \le N_{2,t} \le \dots N_{s,t} = M$$

is a refinement of the first filtration with factors $F_{i,j} = N_{i,j}/N_{i,j-1}$ and

$$0 = L_{1,0} \le L_{1,1} \le \dots \le L_{1,s} \le L_{2,0} \le \dots \le L_{2,s} \le \dots L_{t,s} = M$$

is a refinement of the second filtration with factors $G_{j,i} = L_{j,i}/L_{j,i-1}$. Clearly the two refinements have the same length st and by the stated lemma $F_{i,j} \cong G_{j,i}$.

As a corollary of the previous Theorem, we get the following crucial result, known as Jordan-Hölder Theorem:

Theorem 20.2 (Jordan-Hölder). Let $M \in R$ -Mod a module with a composition series of length l. Then

- (1) Any filtration of M has length at most l and it can be refined in a composition series of M.
- (2) All the composition series of M are equivalent and have length l.

Proof. The proof follows by the previous proposition, since a composition series does not admit any non trivial refinement. \square

This leads to the following definition:

Definition 20.3. A module $M \in R$ -Mod is of finite length if it admits a composition series. The length l of any composition series of M is called the length of L, denoted by l(M).

- Example 20.4. (1) Any vector space of finite dimension over a field K is a K-module of finite length. Its length coincides with its dimension.
 - (2) The regular module $\mathbb{Z}\mathbb{Z}$ is not of finite length.

In the following proposition we collect some relevant properties of finite length modules: some of them are trivial, some of them need a short proof that we leave for exercise.

Proposition 20.5. Let $M \in R$ -Mod be a finite length module. Then

- (1) M is finitely generated
- (2) for any $N \leq M$, N and M/N are of finite length
- (3) If $0 \to N \to M \to L \to 0$ is an exact sequence, then l(M) = l(N) + l(L)
- (4) M is a direct sums of indecomposable submodules.
- (5) $\operatorname{Soc}(M)$ is an essential submodule of M
- (6) $M/\operatorname{Rad}(M)$ is semisimple (i.e. direct sum of simple modules)
- (7) M contains a finite number of simple modules

Proof. 4) If M is indecomposable the statement is trivially true. Otherwise we argue by induction on l(M). If $M = V_1 \oplus V_2$, by point 3) we get that $l(V_1) < l(M)$ and $l(V_2) < l(M)$, so V_1 and V_2 are direct sums of indecomposable submodules.

5) Any $L \leq M$ has a composition series, so it contains a simple submodule, which is of course also a simple submodule of M.

6) By induction on $l(M/\operatorname{Rad}(M))$

7) Any simple submodule of M is a direct summand of Soc(M). Since Soc(M) is finitely generated (by (1) and (2)), it has only a finite number of summands. \square

For modules of finite length the converse of Remark 19.3 holds.

Lemma 20.6. Let $M \in R$ -Mod a module of finite length l(M) = n. Then, for any $f: M \to M$, one has $M = \operatorname{Im} f^n \oplus \operatorname{Ker} f^n$.

Proof. Consider the sequence of inclusions $\cdots \leq \text{Im } f^2 \leq \text{Im } f \leq M$. Since M has finite length, the inclusions are trivial for almost every $i \in \mathbb{N}$. In particular, there exists m such that $\text{Im } f^m = \text{Im } f^{2m}$ and we can assume m = n. Let now $x \in M$: hence $f^n(x) = f^{2n}(y)$ for $y \in M$ and so $x = f^n(y) - (x - f^n(y)) \in \text{Im } f^n + \text{Ker } f^n$.

Moreover, from the sequence of inclusions $0 \leq \operatorname{Ker} f \leq \operatorname{Ker} f^2 \leq \cdots \leq M$, arguing as before we can assume $\operatorname{Ker} f^n = \operatorname{Ker} f^{2n}$. Consider now $x \in \operatorname{Im} f^n \cap \operatorname{Ker} f^n$. So $x = f^n(y)$ and $f^n(x) = f^{2n}(y) = 0$. Hence $y \in \operatorname{Ker} f^n$ and so $x = f^n(y) = 0$.

Proposition 20.7. Let $M \in R$ -Mod an indecomposable module of finite length. Then $\operatorname{End}_R(M)$ is a local ring

Proof. Let $f: M \to M$. Since M is indecomposable, by the previous lemma one easily conclude that f is a mono if and only if it is an epi if and only if it is an iso if and only if $f^m \neq 0$ for any $m \in \mathbb{N}$ (see Exercise 21.1).

Thus let $U = \{f \in \operatorname{End}_R(M) | f$ is invertible $\}$. Let us show that $\operatorname{End}_R(M) \setminus U$ is an ideal of $\operatorname{End}_R(M)$. So let f, g in $\operatorname{End}_R(M) \setminus U$. The crucial point is to show that f + g is not invertible (see Exercise 21.1). If f + g would be invertible, there would exist $h \in U$ such that $(f+g)h = \operatorname{id}_M$. Since $g \notin U$, then $gh \notin U$, so gh would be nilpotent. Let r such that $(gh)^r = 0$: from $(\operatorname{id}_M - gh)(\operatorname{id}_M + gh + (gh)^2 + \cdots + (gh)^{r-1}) = \operatorname{id}_M$ we would conclude $fh \in U$ and so $f \in U$.

Theorem 20.8 (Krull-Remak-Schimdt-Azumaya). Let $M \cong A_1 \oplus A_2 \oplus \cdots \oplus A_m \cong C_1 \oplus C_2 \oplus \cdots \oplus C_n$ where $\operatorname{End}_R(A_i)$ is a local ring for any $i = 1, \cdots, m$ and C_j is indecomposable for any $j = 1, \cdots, n$. Then n = m and there exists a bijection $\sigma : \{1, \cdots, n\} \to \{1, \cdots, n\}$ such that $A_i \cong C_{\sigma(i)}$ for any $i = 1, \cdots, n$.

Proof. By induction on m.

If m = 1, then $M \cong A_1$ is indecomposable and so we conclude.

If m > 1, consider the equalities

$$\operatorname{id}_{A_m} = \pi_{A_m} i_{A_m} = \pi_{A_m} (\sum_{j=1}^n i_{C_j} \pi_{C_j}) i_{A_m} = \sum_{j=1}^n \pi_{A_m} i_{C_j} \pi_{C_j} i_{A_m}$$

where π and i are the canonical projections and inclusions. Since $\operatorname{End}_R(A_m)$ is local, and in any local ring the sum of not invertible elements is not invertible, there exist \overline{j} such that $\alpha = \pi_{A_m} i_{C_{\overline{j}}} \pi_{C_{\overline{j}}} i_{A_m}$ is invertible. We can assume $\overline{j} = n$, and consider $\gamma = \alpha^{-1} \pi_{A_m} i_{C_n} : C_n \to A_m$. Since $\gamma \pi_{C_n} i_{A_m} = \alpha^{-1}$, we get that γ is a split epimorphism. Since C_n is indecomposable, we conclude γ is an iso, and so $C_n \cong A_m$. Then apply induction to get the thesis.

The previous theorem says that if M is a module which is a direct sum of modules with local endomorphism rings, then any two direct sum decompositions of M into indecomposable direct summands are isomorphic. We conclude that the modules of finite length admits a unique (modulo isomorphisms) decomposition in indecomposable modules

21. Exercises

Exercise 21.1. Let M an indecomposable R- module of finite length and $f \in \operatorname{End}_R(M)$. Show that the following are equivalent:

- (1) f is a mono
- (2) f is an epi
- (3) f is an iso
- (4) f is not nilpotent.

In particular, if f is not invertible, then gf is not invertible for any $g \in \text{End}_R(M)$. Which of the previous implications hold also if M is of finite length but not indecomposable?

Exercise 21.2. Let M be an R-module.

- (1) Let $M_1, M_2 \leq M$ such that $M_1 + M_2 = M$. Show that $M/M_1 \cap M_2 \cong M_1/M_1 \cap M_2 \oplus M_2/M_1 \cap M_2$.
- (2) Suppose $\operatorname{Rad}(M) = M_1 \cap M_2$, where M_1 and M_2 are maximal submodules of M. Show that $M/\operatorname{Rad}(M) = S_1 \oplus S_2$ where S_1 and S_2 are simple R-modules.
- (3) Let M be a finite length R-module. Show that $M/\operatorname{Rad}(M)$ is semisimple.

Definition 22.1. Let K be a field. A K-algebra Λ is a ring with a map $K \times \Lambda \to \Lambda$, $k \mapsto ka$, such that Λ is a K-module and k(ab) = a(kb) = (ab)k for any $k \in K$ and $a, b \in \Lambda$. Λ is finite dimensional if $\dim_K(\Lambda) < \infty$.

In other words, a K-algebra is a ring with a further structure of K-vector space, compatible with the ring structure.

Remark 22.2. Any element $k \in K$ can be identify with an element of Λ by means of $K \times \Lambda \to \Lambda$, $k \mapsto k \cdot 1$. Thanks to this identification, we get that $K \leq \Lambda$ so any Λ -module is in particular a K-module.

- Example 22.3. (1) The ring $M_n(K)$ is a finite dimensional K-algebra. with $\dim_K(M_n(K)) = n^2$. Any element $k \in K$ is identified with the diagonal matrix with k on the diagonal elements.
 - (2) The ring K[x] is a K-algebra, not finite dimensional.

Proposition 22.4. Let Λ be a finite dimensional K-algebra. Then $M \in \Lambda$ -Mod is finitely generated if and only if $\dim_K(M) < \infty$.

Proof. Assume dim_K(Λ) = n and { a_1, \ldots, a_n } a K-basis.

If $\{m_1, \ldots, m_r\}$ is a set of generator of M as Λ -module, then one verifies that $\{a_i m_j\}_{i=1,\ldots,n}^{j=1,\ldots,r}$ is a set of generators for M as K-module.

Conversely, if M is generated by $\{m_1, \ldots, m_s\}$ as K-module, since $K \leq \Lambda$, one gets that M is generated by $\{m_1, \ldots, m_s\}$ also as Λ -module.

In the following we denote by Λ -mod the full subcategory of Λ -Mod consisting on the finitely generated Λ -modules.

Corollary 22.5. Any finitely generated module $M \in \Lambda$ -mod is a finite length module, and $l(M) \leq \dim_K(M)$.

Proof. Since any $M \in \Lambda$ -mod is a finite dimensional vector space, M admits a composition series in K-mod of length n, where $\dim_K(M) = n$. So any filtration of M in Λ -Mod is at most of length n and any refinement is a refinement also in K-mod. Thus we conclude.

Proposition 22.6. Let $M, N \in \Lambda$ -mod. Then $\operatorname{Hom}_{\Lambda}(M, N)$ is a finitely generated K-module. In particular, $\Gamma = \operatorname{End}_{\Lambda}(M)$ is a finite dimensional K-algebra and M_{Γ} is finitely generated.

Proof. The K-module Hom_Λ(M, N) is a K-submodule of Hom_K(M, N), and the latter is finitely generated by a well-known result of linear algebra. Thus Hom_Λ(M, N) is finitely generated as K-module. In particular, $\Gamma = \text{Hom}_{\Lambda}(M, M)$ is a finite dimensional K-algebra. Since M has a natural structure of right Γ -module and it is a finitely generated K-module, it is also a finitely generated Γ -module.

In the sequel, let Λ be a finite dimensional K-algebra.

Since $_{\Lambda}\Lambda$ is of finite length, it admits a unique decomposition in indecomposable submodules. The indecomposable summands of a ring are in correspondence with the idempotent elements, so there exists a set $\{e_1, e_2, \ldots, e_n\}$ of idempotents of Λ such that $_{\Lambda}\Lambda = \Lambda e_1 \oplus \ldots \Lambda e_n$. Moreover we can assume $1 = e_1 + \cdots + e_n$ and one easily shows that $e_i e_j = 0$ for any $i \neq j$ (a set of idempotents with this property is called *orthogonal*). Finally since Λe_i are indecomposable, each idempotent e_i is primitive (i.e. it cannot be a sum of two non-zero orthogonal idempotents, see Exercise 23.1). Notice that $\Lambda_{\Lambda} = e_1 \Lambda \oplus \cdots \oplus e_n \Lambda$ is a decomposition in indecomposable summands of the regular right module Λ_{Λ} . From this discussion it follows that, for $i = 1, \ldots, n$, the $P_i = \Lambda e_i$ are the indecomposable projective left Λ -modules and the $Q_i = e_i \Lambda$ are the indecomposable projective right Λ -modules (Why?).

Consider the functor $D : \Lambda$ -mod $\to \mod \Lambda$, $M \mapsto D(M) = \operatorname{Hom}_{K}(\Lambda M, K)$. For simplicity, we denote by D the analogous functor $D : \operatorname{mod} \Lambda \to \Lambda$ -mod, $N \mapsto D(N) = \operatorname{Hom}_{K}(N_{\Lambda}, K)$. For any $M \in \Lambda$ -mod define the *evaluation morphism* $\delta_{M} : M \to D^{2}(M), x \mapsto \delta_{M}(x)$, where $\delta_{M}(x) : D(M) \to K, \varphi \mapsto \varphi(x)$. One easily verify that δ_{M} is an isomorphism for any $M \in \Lambda$ -mod. Similarly one define δ_{N} for any $N \in \operatorname{mod} \Lambda$, which is an iso for any N. It turns out that $\delta : D^2 \to 1$ is a natural transformation which defines a duality between Λ -mod and mod- Λ . So P is indecomposable projective in Λ -mod if and only if D(P) is indecomposable injective in mod- Λ . S is simple in Λ -mod if and only if D(S) is simple in mod- Λ (Why?)

Thanks to the duality (D, D), we conclude that $D(\Lambda_{\Lambda})$ is the minimal injective cogenerator of Λ -mod and the $E_i = D(Q_i)$ are the unique indecomposable injective modules in Λ -mod. Observe that if S and T are non isomorphic simple modules in Λ -mod, then their injective envelopes E(S) and E(T) are non isomorphic indecomposable injective modules (Why?). We conclude that there is a finite number of simple left Λ -modules S_1, S_2, \ldots, S_n .

Observe that in mod- Λ there exist injective envelopes so, thanks to the duality, we get that in Λ -mod there exist projective covers. Let us see how to compute injective envelopes and projective covers.

First observe that, denoted by $J = J(\Lambda)$, for any $M \in \Lambda$ -mod the submodule J M is superfluous in M 17.11. In particular $J e_1$ is superfluous in Λe_i , so Λe_i is the projective cover of $\Lambda e_i/J e_i$ (see 12.8). Moreover, since Λe_i is indecomposable, we get that $\Lambda e_i/J e_i$ is a simple module (see Exercise 23.2) and so $J e_1$ is a maximal submodule of Λe_i . We conclude that $S_i = \Lambda e_i/J e_i$ is a complete list of the simple modules in Λ -mod. Similarly, $T_i = e_i \Lambda/e_i J$ is a complete list of the simple modules in mod- Λ . Notice that, as a consequence of the the above discussion, we get that $J e_1$ is the radical of Λe_i (Why?). One can show that the same result holds for any $M \in \Lambda$ -mod: $\operatorname{Rad}(M) = J M$.

Since $S_i = D(T_i)$, we get that $E_i = D(Q_i)$ is the injective envelope of S_i .

How to compute injective envelopes and projective covers for any $M \in \Lambda$ -mod? Since it is of finite length, $M/\operatorname{Rad}(M)$ and $\operatorname{Soc}(M)$ are semisimple. Let $M/\operatorname{Rad}(M) = S_1 \oplus \cdots \oplus S_r$ (eventually with a certain multiplicity). Then $P(M) = P(S_1) \oplus \cdots \oplus P(S_r)$. Similarly, if $\operatorname{Soc}(M) = S_1 \oplus \cdots \oplus S_m$, then $E(M) = E(S_1) \oplus \cdots \oplus E(S_m)$. (see Exercises 23.3 and 23.4).

To conclude: in Λ -mod the simples are the $S_i = \Lambda e_i / J e_i$, the indecomposable projectives are the $P_i = \Lambda e_i$, the indecomposable injectives are the $E_i = D(e_i\Lambda)$. The regular module $_{\Lambda}\Lambda$ is the minimal projective generator of Λ -mod and $D(\Lambda_{\Lambda})$ is the minimal injective cogenerator of Λ -mod. Moreover P_i is the projective cover of S_i and E_i is the injective envelope of S_i .

In mod- Λ the simples are the $T_i = \Lambda e_i / \operatorname{J} e_i = D(S_i)$, the indecomposable projectives are the $Q_i = e_i \Lambda$, the indecomposable injectives are the $F_i = D(\Lambda e_i)$. The regular module Λ_{Λ} is the minimal projective generator of mod- Λ and $D(\Lambda \Lambda)$ is the minimal injective cogenerator of mod- Λ . Moreover Q_i is the projective cover of T_i and F_i is the injective envelope of T_i .

23. Exercises

Exercise 23.1. A idempotent element $e \in \Lambda$ is called *primitive* if it is not a sum of two non zero orthogonal idempotents. Show that Λe is indecomposable if and only if e is primitive.

Exercise 23.2. Let Λ a finite dimensional algebra. Let $M = N_1 \oplus N_2$ and assume that P_1 and P_2 are projective covers of N_1 and N_2 , respectively. Show that $P_1 \oplus P_2$ is the projective cover of M. Similarly, assume that E_1 and E_2 are the injective envelopes of N_1 and N_2 , respectively, then $E_1 \oplus E_2$ is the injective envelope of M.

Exercise 23.3. Let $M \in \Lambda$ -mod and $\operatorname{Soc}(M) = S_1 \oplus \ldots S_r$. Show that there exists an essential monomorphism $0 \to M \to E(S_1) \oplus \cdots \oplus E(S_r)$ and conclude that $E(M) = E(\operatorname{Soc}(M)) = E(S_1) \oplus \cdots \oplus E(S_r)$.(Hint: $\operatorname{Soc}(M)$ is essential in M, so...)

Exercise 23.4. Let $M \in \Lambda$ -mod and $M / \operatorname{Rad}(M) = S_1 \oplus \ldots S_r$. Show that there exists a superfluous epimorphism $M \to P(S_1) \oplus \cdots \oplus P(S_r) \to 0$ and conclude that $P(M) = P(M / \operatorname{Rad}(M)) = P(S_1) \oplus \cdots \oplus P(S_r)$. (Hint: $\operatorname{Rad}(M)$ is superfluous in M, so...)