

Modellazione Matematica di Membrane Biologiche

Gaetano Napoli

Politecnico di Milano, Italia

Overview

- Membrane lipidiche
- Modello continuo
- Inclusioni
- 2D: deformazioni, interazione mediata
- 3D: soluzioni quasi-sferiche
- 3D: perturbazioni locali
- 3D: verso l'interazione mediata

Membrane lipidiche

- Strutture a doppio strato (molecole anfifiliche)
- Spessore $\sim 10^{-9} {\rm m} \Rightarrow$ superfici chiuse
- Interazione anfifilica \Rightarrow area fissata
- Membrane impermeabili \Rightarrow volume racchiuso fissato

Al microscopio...

Modello continuo

. . .

Modello continuo

Helfrich, Z. Nat. (1973)

$$H = \frac{c_1 + c_2}{2}, \qquad K = c_1 c_2$$

 $\mathcal{F}[\Sigma] := \kappa \int_{\Sigma} (H - \sigma_0)^2 da$ con area e volume racchiuso fissati. Minimizzare

- Σ : superficie descrivente la membrana
- κ : constante elastica
- c_1, c_2 : curvature principali di Σ
- σ_0 : curvatura spontanea

Eq.ne di equilibrio: $\kappa \left[\Delta_{\mathrm{s}} H + 2H \left(H^2 - K \right) - 2\sigma_0 K - 2\sigma_0^2 H \right] - 2\lambda H + \left[\mu \right] = 0$

 Δ_{s} : operatore di Laplace-Beltrami su Σ

Configurazioni di equilibrio

Seifert, Berndl, & Lipowski, Phys. Rev. A (1991)

$$c_0 = \sigma_0 R \qquad v = \frac{V}{\frac{4}{3}\pi R^3}$$

σ_0 induce "budding"

Seifert, Berndl, & Lipowski, Phys. Rev. A (1991)

$$c_0 = 2.4$$

 $c_0 = 3.0$

Inclusioni

Interazione membrana-inclusione:

strong anchoring: normale allo strato fissata nel punto di contatto. weak anchoring: potenziale di ancoraggio dipendente dalla normale allo strato.

2D: singola inclusione/ strong anchoring

Nell'ipotesi di strong anchoring, esiste un'unica configurazione di equilibrio, qualunque sia la lunghezza L>0 della membrana, con $a \in [0, L]$, e $\vartheta_0 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

2D: interazione tra inclusioni

P. Biscari, F. Bisi & R. Rosso, J. Math. Biol. (2002)P. Biscari & F. Bisi, Eur. Phys. Jnl. E (2002)

Forza mediata tra inclusioni:

$$F_{\mathrm{med}} := -\frac{d\mathcal{F}}{dL_1}$$
.

2D: caratterizzazione della forza mediata

2D: diagrammi dell'energia di deformazione

2D: configurazioni I-I

2D: configurazioni I-O

2D: configurazioni O-O

3D: soluzioni quasi-sferiche

P. Biscari, S.M. Canevese & G. Napoli, J. Phys. A, 37, 6859-6874 (2004)

Soluzioni assisimmetriche: Σ parametrizzata in coord sferiche: $r(\vartheta, \varphi) = r(\vartheta)$:

 $P(\vartheta,\varphi) - O = r(\vartheta)\sin\vartheta\cos\varphi e_x + r(\vartheta)\sin\vartheta\cos\varphi e_y + r(\vartheta)\cos\vartheta e_z$

L'inclusione è modellata da un tronco di cono retto di altezza trascurabile, con raggio di base a e angolo di apertura ϕ . Condizioni al bordo:

$$r(\vartheta_f) = \frac{a}{\sin \phi}$$
$$r'(\vartheta_f) = 0$$
$$\lim_{\vartheta \to 0^+} r'(\vartheta) = 0$$
$$\lim_{\vartheta \to 0^+} r'''(\theta) = 0$$

3D: soluzioni quasi-sferiche/ membrana permeabile

La soluzione di equilibrio è una sfera di raggio r_0 a patto che a_0 , ϕ_0 , l'area della membrana A_0 e il volume racchiuso V_0 soddifano le relazioni

 $a_0 = r_0 \sin \phi_0$ $A_0 = 4\pi r_0^2 \cos^2 \frac{\phi_0}{2}$, $36\pi \frac{V_0^2}{A_0^3} = (2 - \cos \phi_0)^2 \cos^2 \frac{\phi_0}{2}$

Posto $r(\vartheta) = r_0 (1 + \epsilon \rho_1(\vartheta))$, $\mathcal{A} = A_0 + \epsilon \Delta A$. Espandendo l'eq.ne d'equibrio ... eq.ne di Legendre lineare per ρ_1 Con la condizione ... $\int \rho_1 \sin \vartheta \, d\vartheta = \Delta A / (4\pi r_0^2)$

Nel caso permeabile \exists ! soluzione

Se $\mathcal{A} = A_0 + \epsilon \Delta A$ e $\mathcal{V} = V_0 + \epsilon \Delta V$... Perturbatione singolare: $r(\vartheta) = r_0 \left(1 + \sqrt{\epsilon} \rho_{\frac{1}{2}}(\vartheta) + \epsilon \rho_1(\vartheta) \right)$.

Espansione dell'eq.ne di equilibrio ... equazione di Legendre lineare

Espansione dei vincoli di area e di volume . . .

$$\int \left[\sqrt{\epsilon}\rho_{\frac{1}{2}} + \epsilon \left(\frac{\rho_{\frac{1}{2}}^2}{2} + \frac{\rho_{\frac{1}{2}}'^2}{4} + \rho_1\right)\right] \sin\vartheta \,d\vartheta = \frac{\epsilon\Delta A}{4\pi r_0^2} + o(\epsilon)$$
$$\int \left[\sqrt{\epsilon}\rho_{\frac{1}{2}} + \epsilon \left(\rho_{\frac{1}{2}}^2 + \rho_1\right)\right] \sin\vartheta \,d\vartheta = \frac{\epsilon\Delta V}{2\pi r_0^3} + o(\epsilon)$$

Soluzioni dell'equazioni di Legendre tali che

 $\int \rho_{\frac{1}{2}}(\vartheta) \sin \vartheta \, d\vartheta = 0 \quad \dots \quad \text{eigenvalue problem}$

- Una variatione di area e/o di volume $O(\epsilon)$ implica una perturbazione della forma $O(\sqrt{\epsilon})$
- Disuguaglianza di Poincaré ... non tutti i valori di ΔV , ΔA sono permessi
- Esiste un'infinità numerabile di soluzioni.

Soluzioni quasi-sferiche / caso impermabile 3/3

Minimizzanti dell'energia: Pera (+) o mela (-) ?

Limite di piccola proteina

$$\mathcal{F}[\pm] = \mathcal{F}_0 \mp \frac{4\sqrt{10}}{21} \left(\frac{r_0 \,\Delta A - 2\Delta V}{4\pi r_0^3}\right)^{\frac{3}{2}} \left(3 + 5\sigma_0 r_0\right) + \dots$$

Analisi numerica/forme di equibrio

P. Biscari & G. Napoli, Mol. Cryst. Liq. Cryst. 434, 599-607 (2005)

Si sono analizzate numericamente gli effetti di un'inclusione rigida sulle forme di equilibrio di membrane 3D impermabili

Stationary shapes for a vesicle of null spontaneous curvature, hosting an almost negligible inclusion. Column (a) shows the perturbating functions which give rise to the quasi-spherical shapes reported in the (b) column. When we decrease the reduced volume the stationary vesicle shapes (colums (c) and (d)) move away from those predicted by the linearized theory.

Analisi numerica/perturbazioni locali

P. Biscari & G. Napoli, Mol. Cryst. Liq. Cryst. 434, 599-607 (2005)

Dependence of ψ (the tilt angle of the profile with respect to inclusion plane) on the normalized arc-length s. Right: magnification of the left graphs, close to the contact points s = 1. Different graphs refer to different values of the inclusion apex angle (the continuous line labelled as "A" represents a free vesicle).

Perturbazioni locali/analisi di strato limite

P. Biscari & G. Napoli, Biomechan. Modeling Mechanobiol, DOI 10.1007/s10237-006-0066-6, 2006.

L'inclusione induce perturbazioni localizzate in una regione adiacente con dimensioni $\ \simeq a$

Analisi "boundary layer".

$$z(r) = \sum_{n=0}^{\infty} \varepsilon^n z_{in} \left(\frac{r}{\varepsilon a}\right) + \sum_{n=0}^{\infty} \varepsilon^n z_{on}(r) .$$

Risultati:

- Forma dello strato limite
- L'ecceso di energia libera va come $a^2 \varepsilon^2 (H_0 \sigma_0)$ quando $\varepsilon \to 0$.
- L'eccesso di energia libera è proporzionale a $\sin^2 \phi$.
- L'inclusione si posiziona seguendo un potenziale effettivo $U_{eff}\sim -\gamma(H_0-\sigma_0)^2$, $\gamma>0$

Ringraziamenti

In collaborazione con:

- Paolo Biscari, Politecnico di Milano
- Fulvio Bisi, Università di Pavia
- Silvia Maria Canevese, Politecnico di Milano
- Riccardo Rosso, Università di Pavia

Ricerca finanziata dal programma: Modelli Matematici di Membrane Fluide

