
NaCo Exam Solution

Instructor: Dr Giuditta Franco

December the 19th, 2017

1. Let a membrane system have [1c[2]2]1 as initial configuration, and rules R1 = {a → b1b2,
cb1 → cb1

′, b2 → b2ein |b1}. Input skin membrane is [1]1 and output membrane is [2]2.

Show first 4 computational steps, starting from the input a3. Then explain which function
f(n) is computed by the system, if the number n is encoded by an.

Sol.

Step 0. [1a
3c [2]2]1;

Step 1. [1cb
3
1b

3
2 [2]2]1;

Step 2. [1cb
2
1b
′
1b

3
2 [2 e

3]2]1;

Step 3. [1cb1b
′
1
2
b32 [2 e

6]2]1;

Step 4. [1cb
′
1
3
b32 [2 e

9]2]1. HALT (no more rules may be applied)

We notice that input a3 produces output e9. Analogously, one may verify that an produces
en

2

, then the system computes the function f(n) = n2.

2. Given a metabolic system with rules r1 : c → a, r2 : a → b, r3 : a → bc, r4 : b → bc,
r5 : b → ab, and corresponding flux maps: u1 = f1(a, b, c) = ab, u2 = f2(a, b, c) = c2, u3 =
f3(a, b, c) = 2a, u4 = f4(a, b, c) = a, u5 = f5(a, b, c) = c, compute its state X[1], by starting
from the initial state X[0] = (2,2,2). Explain the computational step to pass from X[0] to X[1].

Sol. By EMA:
X[1] = A× U [0] +X[0]

In this case: A =

 1 −1 −1 0 1
0 1 1 0 0
−1 0 1 1 0

, U [0] =

4
4
4
2
2

, and X(0) =

 2
2
2

, therefore

X(1) =

 0
10
4

.

3. Prove that any regular language is decidable.

Sol. L ∈ REG⇒ ∃M ∈ FSA recognizing L, that is, M answers to the membership question
in a number of steps equal to the length of the input string.

Alternative Sol. Same proof seen in class to show that a monotonic grammar generates a
decidable language may be applied for a grammar of type 3 (which is monotonic as well).

4. Enunciate the first theorem of Shannon.

Sol. The theorem claims that no code of an information source may reach an average
encoding length smaller than the entropy of the source:

H(X, p) ≤ LC

where C is any code (surjective function from the encodings to the data) of an information
source (X, p), LC is its average length, defined as

∑
w∈C |w|p(w), and H(X, p) is the entropy

of source (X, p).

5. Exhibit one non-decidable language from the class RE.

Sol. Given an alphabet, first enumerate all possible words over the alphabet αi, i ∈ N, and
all possible grammars (of type 0) Gi, i ∈ N. Given this algorithm: ∀(i, j) ∈ N × N if Gi
has generated αi in j steps, then αi ∈ K, we have defined an RE language

K = {αi/αi ∈ L(Gi)}.

We prove that K = {αi / αi 6∈ L(Gi)} is not in RE (that is, the language is outside RE).
Indeed, by contradiction, if K would be in RE (since RE = L0) then it would exists d ∈ N
such that K = L(Gd). Contradiction is obtained by the question: αd ∈ K? In fact,

αd ∈ K ⇔ αd ∈ L(Gd)⇔ αd ∈ K ⇔ αd 6∈ K.

By the Post theorem, to be decidable an RE language needs to have its complement con-
tained in RE. Therefore, K is non-decidable language from the class RE.

6. Solve only one of the following exercises:

(a) Explain the quaternary recombination algorithm, and prove its correctness.

(b) Explain one DNA computing algorithm solving SAT, both in formal and implementa-
tion terms.

Sol (a). The quaternary recombination algorithm generates an n-dimensional DNA library
of binary strings starting from one pool P0 containing four specific strings (all α-prefixed
and β-suffixed for given oligos α and β): I1 = X1X2X3X4X5 . . . Xn, I2 = Y1Y2Y3Y4Y5 . . . Yn,
I3 = X1Y2X3Y4X5 . . ., I4 = Y1X2Y3X4Y5

Let P1 and P2 be two copies of the pool P0 = {αI1β, αI2β, αI3β, αI4β}.
for i = 2, 3, 4, 5 do

• perform XPCRXi
on P1 and XPCRYi

on P2;

• mix P := P1 ∪ P2;

• (P1, P2) := split(P)

The above algorithm is correct, as for any binary assigment α1α2 . . . αn, there exists a se-
quence of recombination rules rαj

(implemented by XPCRαj
) which generates it starting

from the four axioms. Such a sequence may be infered by the following algorithm.

Let us call li the initial sequence containing αi−1αi as subsequence, for i = 2, . . . , n, and let
c, s1, s2 be string variables.

c := l2
for j = 2, . . . , n− 1
apply rαj

: c, lj+1 −→ s1, s2;
c := s1

Sol (b). Namely, we choose to explain the Sakamoto’s algorithm solving SAT. (This algo-
rithm could have been explained much more shortly, as we have done in class).

An instance 3-SAT(n,m) is solved first by generating DNA molecules containing, for each
clause, one out of its three literals (that is, molecules with m literals, one for each clause

Ci = l
(i)
1 ∨l

(i)
2 ∨l

(i)
3 , i = 1, 2, . . . ,m), and then by extracting all non-contradictory assignments

for the literals. These are the solutions of the instance.

INPUT: P = {αC1, C1L1C2, . . . , Cm−1Lm−1Cm, CmLmβ | |Ci| = |Ci| = 20 long sticky ends, |α| =
|β| = 20 Li ∈ {l(i)1 , l

(i)
2 , l

(i)
3 }, |Li| = 20, γz ∈ Li, i = 1, . . . ,m, γz restriction site of the enzyme Enz}.

ALGORITHM:

(a) P := Lig(C(P)); \\ Assembly of 3m assignments satisfying all clauses

(b) P = PCR(α, β)(P); \\ material amplification

(c) P = H(P); \\ heating to get single filaments

(d) P = Enz(C(P)); \\ sudden cooling, to form hairpins and immediate cut by the enzyme

(e) P = El40(m+1)(P)); \\ selection of filaments of initial lenght

(f) P = PCR(α, β)(P); \\ material amplification

(g) if El(P) 6= ∅ then X= Yes else X=NO

OUTPUT: Value of X.

7. Given the following pattern: (ab)n + (bc)m with n,m ∈ N, provide the corresponding regular
expression, the FSA recognizer, and a Chomsky grammar generating it.

Sol. Regual expression: (ab)∗ + (bc)∗. Finite state automaton, recognizing (ab)∗ + (bc)∗:
q0a→ q1
q1b→ q2
q2a→ q1
q0b→ q3
q3c→ q4
q4b→ q3
q0 initial and final state, q2 and q4 final states.

Grammar (of type 3, directly deduced by the automaton above) generating (ab)∗ + (bc)∗:
q0 → aq1
q1 → bq2
q1 → b
q2 → aq1
q0 → bq3

q3 → cq4
q3 → c
q4 → bq3
q0 → λ
where q0 = S, and q1, q2, q3, q4 are non-terminal symbols.

Alternative grammar:
S → λ
S → abS
S → ab
S → S′

S′ → bcS′

S′ → bc

8. Give a definition for:

• Computation: Process performed on a physical system, assuming a finite number of
states (namely, an initial and a final one), by means of a list of instructions and a ter-
mination criterion.

• Natural Computing: It is an instance of computation inspired by or performed by nat-
ural systems.

• Information: A set of data which may be stored, transformed, and transmitted.
The information of an event is a function of its probability/distribution.

• Enzymatic paradox: Enzymes (are proteins which) catalize/activate biochemical reac-
tions, producing enzymes. Which of them comes first?

• (Given a dictionary D and a genome G) Average genomic positional coverage: The
average (over all the positions of the genome) number of words of D that cover each
position p. A position p of genome G is covered by the word G[i, j] ∈ D, if i ≤ p ≤ j.

• Minimal Forbidden Length: Let Σ denote the DNA alphabet, and G a genome. MFL =
min{k : Dk(G) 6= Σk}, where Dk(G) is the dictionary of k-mers occurring in the genome.

• Optimal code: A code C is optimal if no code C ′ exists with a smaller average length
(in other terms, LC′ > LC for all other codes C ′).

• Evolutionary computing: Computation inspired by evolution theories, both Darwinian
and Genetic drift.
More in details, we are given with a fitness function F and a generation mechanism G.
Over an initial population, evaluate the fitness function. While F is under a threshold,
select a subset and expand it by G. Stop when F exceeds the threshold, or a prefixed
number of steps has been executed.

– Initialize S with a set S0 of possible solutions

– Evaluate a fitness level F over S, and while F is under a given threshold, do

∗ Select a subset S′ of S

∗ Expand S′ into a population S according to G

– Output the population S reaching the fitness threshold.

