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Wavelets and multiresolution representations

Time meets frequency
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Time-Frequency resolution

• Depends on the time-frequency spread of the wavelet atoms
Assuming that ψ is centred in t=0 
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Time/frequency resolution

• The energy spread of a wavelet time-frequency atom corresponds to an Heisemberg box centred 
at (u,(u,ηη/s)/s) of size ssσσt along the time and σσωω/s along the frequency.

• The area of the rectangle remains equal to σσt σσωω at all scales, while the resolution in time and 
frequency depends on s.

• A wavelet defines a local time-frequency energy density PWf which measures the energy in the 
Heisemberg box of each wavelet centred at (u, ηη /s). This energy density is called scalogramscalogram
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Time/frequency localization
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Increasing the scale (s gets larger) pushes the box towards low frequencies →
frequency resolution increases, spatial resolution decreases

Time spread is proportional to scale
Frequency spread is proportional to 1/scale

s1>s0
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Wavelet domain
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Dyadic Wavelets
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Scalogram

• The scalogram represents the local time/frequency energy density
– Energy density in the Heisenberg box of each wavelet ψu,s
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3D representation
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Local discontinuities
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Real Wavelets

• Detect sharp signal transitions

• Measures the variations of f in the neighborhood of u whose size is proportional to s

• A real WT is complete and maintains energy conservation as long as it satisfies a weak 
admissibility condition (Theorem 4.3, next slide)

• The decay of the coefficients as s goes to zero characterizes the regularity of f in the 
neighborhood of u
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Real wavelets: Admissibility condition

• Theorem 4.3 (Calderon, Grossman, Morlet)
Let ψ in L2(R) be a real function such that 

Any f in L2(R) satisfies

and
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Admissibility condition

• Consequences
– The integral is finite if the wavelet has zero average

This condition is nearly sufficient →

– If                                   is continuously differentiable, than the admissibility condition is satisfied
This happens if it has a sufficient time decay

→ The wavelet function must decay sufficiently fast in both time and frequency
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Wavelet families

• In general, there is a redundancy in the representation

• The amount of redundancy depends on the grids over which the u and s parameters are 
sampled

u,s are real : Continuous WT (CWT, overcomplete representation)

u in Z, s=a j, j in Z : Wavelet Frames (DWF, DDWF, overcomplete)
– a=2 Dyadic wavelet frames

u=k2j, s=2j, k in I : Discrete Wavelet Transform (DWT) (critically sampled)

• Note: removing completely the redundancy leads to complete basis (critically sampled)
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Wavelet bases

Mallat - Chapter VII
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Wavelet basesbases

One can construct wavelets such that

is an orthonormal basis for L2(R).

• Multiresolution approximations
– The partial sum of wavelet coefficients giving dj(t) can be interpreted as the difference between 

two approximations of f at the scales 2j and 2(j-1)

– Multiresolution approximations compute the approximations of signals at various resolutions 
with orthogonal projections to different spaces {Vj}j in Z

– The approximation of f at scale 2j is specified by a discrete grid of samples that provides local 
averages of f on neighborhoods of size proportional to 2j.

– A multiresolutionmultiresolution consists of embedded grids of approximationsembedded grids of approximations
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Orthogonal wavelet bases

• The search for orthogonal wavelets begins with multiresolution approximations

• Resolution = 1/scale
– The larger the scale, the smaller the resolution

• Multiresolution approximations compute the approximation of signals at various 
resolutions with orthogonal projections on different spaces 

– These are characterized by a one particular discrete filter that governs the loss of information 
across resolutions
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Multiresolution approximations

• The approximation of a function f at a resolution 2j is specified by a discrete grid of 
samples that provides local averages of f over neighborhoods of size proportional to 2j. 

• Thus, a multiresolution approximation is composed of embedded grids of approximation. 

• More formally: 
– the approximation of a function at a resolution 2j is defined as an orthogonal projection on a 

space Vj ⊂L2(R).
– The space Vj regroups all possible approximations at the resolution 2j . 
– The orthogonal projection of f is the function fj ∈Vj that minimizes  ||f –fj||.
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Multiresolution approximations

Definition 7.1 A sequence {Vj}j in Z of closed subspaces of L2(R) is a multiresolution
approximation if the following six conditions are satisfied
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When the resolution goes to zero all the details are lost

When the resolution goes to infinity the approximation 
converges to the signal

Vj is invariant for translations proportional to the scale

The finer approximation subspace encloses all the 
information concerning the coarser one

Stretching the function by a factor 2 spans a coarser 
subspace

n Z 0There exists  such that { (t-n)}  is a Riesz basis of Vϑ ϑ ∈ j   ↔scale
2-j ↔ resolution

discretization theorem
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Banach and Hilbert spaces

• A Hilbert space is an abstract vector space possessing the structure of an inner product that 
allows length and angle to be measured. 

• Hilbert spaces are in addition required to be complete, a property that stipulates the 
existence of enough limits in the space to allow the techniques of calculus to be used. 
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Banach and Hilbert spaces
• Banach space



21

Banach and Hilbert spaces
• Hilbert space
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Bases of Hilbert spaces
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Bases of Hilbert space
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Riesz basis

Link to the discrete domain: the existance of a Riesz bases provides a discretization theorem

Definition: A family of vectors is a Riesz basis of a space H if

1. it is linearly independent

2. there exist A,B>0 such that

The existance of a Riesz basis for V0 provides a discretization theorem
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Riesz basis

• Proposition 7.1 A family                            is a Riesz basis of the space V0 it generates if 
and only if there are A>0 and B>0 such that

• Proof

•
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Hints

• Applying the definition of norm
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to split the integral into sums of integrals 
over the intervals of width 2π. 
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Hints

• Using Planchrel formula and the fact that a(ω) is periodic (see Mallat version 2009 page 
67)

• Since, by hypothesis
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since a(ω) is periodic, taking the integral over 
subsequent intervals amounts only to “shifting”
the second function. The first, a(ω), remains the 
same so it can be taken out of the integral.
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Hints

• Similarly

• Thus

• In summary, if θ(t-n) satisfies (7.11 Mallat 99) then (7.15) is satisfied. Then, θ(t-n) is a 
Riesz basis for V0 and every function in V0 can be expressed as in (7.12)
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Scaling function

• The scaling function is obtained by the orthogonalization of the Riesz basis

Theorem 7.1

Let Vj be a multiresolution approximation and φ be the scaling function whose FT is

Let us denote 

The family {φj,n}n in Z is an orthonormal basis of Vj for all j in Z 
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Proof

Thus here we apply the 
same idea as in the previous 
proof: relying on Plancherel
formula and explicitating
the fact that the function is 
periodic in the Fourier 
domain. Thus, replacing the 
result in (1) we get the 
orthogonalization formula.

(1)
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Approximation

• The orthogonal projection of f onto Vj is obtained as an expansion in the scaling orthogonal 
basis

• The inner products aj[n] are the projection coefficients at scale 2j

– As proved in what above, the normalization factor at the denominator ensures that 

,
1 2[ ] , ( ) (2 )

22
1( )

22

j
j

j j n jjj

j jj

t na n f f t f n

tt

ϕ ϕ ϕ

ϕ ϕ

+∞

−∞

⎛ ⎞−
= = = ∗⎜ ⎟

⎝ ⎠
⎛ ⎞= −⎜ ⎟
⎝ ⎠

∫

nj
n

njV ffP
j ,,, ϕϕ∑

+∞

−∞=
=

( ) 2ˆ 2 1
k

kϕ ω π
∞

=−∞

+ =∑ partition of unity



32

Approximation

– The energy of φj is mostly concentrated in [-π/2j,π/2j] which corresponds to low pass filtering

• The signal approximationsignal approximation is obtained by convolving f with a lowlow--pass filterpass filter and 
downsampling by 2 -> any scaling function corresponds to a conjugate mirror filterconjugate mirror filter

• A multiresolution is completely characterizedcompletely characterized by the scaling function
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Wavelet representation

• Summarizing
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Wavelets and multiresolution representations
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Scaling equation

• A multiresolution approximation is completely characterized by the function φ that 
generates the orthonormal bases for each Vj

→ We study the properties of φ which guarantee that all the spaces Vj satisfy all conditions of 
a multiresolution approximation.

→ It is proved that any scaling function corresponds to a discrete filter called conjugate 
mirror filter

• Procedure
1. Link φ to the corresponding discrete filter h[n]
2. Determine the properties of h[n] such that φ is a scaling function
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Scaling equation

• From multiresolution conditions follows
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Scaling equation

• Taking the F-trasform of (1)

– where

• Next step is thus the expression of ^ϕ(ω) as a product of dilations of ^h(ω).
– For any p≥0, (2) implies
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Scaling equation
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Conjugate Mirror Filters
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Teorem 7.2 (Mallat&Meyer)

Let φ in L2(R) be an integrable scaling function. The F-series of h[n] satisfies

Conversely, if h^(ω) is 2π periodic and continuously differentiable in a neighborhood of ω=0, if it 
satisfies (2) and if  

Then,                                                is the F-transform of a scaling function.

ω∀
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CMF property

The solid line gives |ˆh(ω)|2 on [-π,π] for a cubic spline multiresolution. The dotted line
corresponds to |ˆg(ω)|2.
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Conjugate mirror filters
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What about wavelets? qui

• Orthonormal wavelets carry the details needed to increase the resolution of a signal 
approximation.

• The approximations of f at scales 2j and 2(j+1) are respectively equal to its orthogonal 
projections in Vj and Vj+1

• We know that Vj+1 is included in Vj

• Let Wj+1 be the orthogonal complement of Vj+1 in Vj

• The orthogonal projection of f on Vj can be decomposed as follows

• The complement PWj+1f provides the details that appear at scale j but disappear at the next 
coarser scale.

• Next theorem will show that basis for Wj can be constructed by scaling and translating a 
wavelet ψ

1j j jPV f PV f PW f− = +

1j j jV V W− = ⊕
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Corresponding orthogonal wavelet family

• Theorem 7.3 [Mallat&Meyer]
Let φ be a scaling function and h the corresponding CMF. Let Ψ be such that

with

Let us denote

For any scale, {Ψ j,n}j in Z is an orthonormal basis for Wj. 
For all j,               is an orthonormal basis for L2.
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Corresponding orthogonal wavelet family

– Lemma 7.1. The family {ψj,n} n∈Z is an orthonormal basis for Wj iif

– Furthermore

The orthogonal wavelets carry the details lost going from scale j to scale j+1
Wavelets are the basis functions for Wj

The details at scale j are obtained by projecting the signal onto the wavelet family ψj,n
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Summary

• Approximation function at scale 2j:

• Details (“residual” functions) at scale 2j: 

• Wavelet representation:

• If the basis is orthogonal, the scaling function characterizes the multi-resolution completely

Scaling function Scaling function φφ --> > h[nh[n] ] --> > g[ng[n] ] --> wavelet > wavelet ψψ
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Example

• Battle-Lemarié cubic spline wavelet and its spectrum
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Example

• Property: for any ψ that can generate an orthonormal family, one can verify that
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Example of wavelet analysis
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Warning

• Each CMF generates a wavelet orthonormal bases

• Does any wavelet orthonormal bases correspond to a multiresolution approximation and 
CMF? It depends on the support:

– If ψ has compact support than it corresponds to a multiresolution approximation [Lemarié]
– However, there exists “pathological” wavelets that decay as |t|-1 that cannot be derived from any 

multiresolution approximation
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Classes of wavelet bases

• Wavelets are interesting for applications for their ability to represent signals with few non 
zero coefficients

• The best basis for an application is the one that maximizes the number of zero or close to 
zero coefficients. This depends on

– The regularity of f
– The number of vanishing moments of the wavelet
– The size of its support

• The constraints on the wavelet translate to design rules for the filter g[n], thus h[n]
– Thus, we need conditions on ^h(ω)
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Wavelet properties

• Vanishing moments
– The wavelet has p vanishing moments if

– The number of vanishing moments is equal to the multiplicity of zeros of h^(ω) in π or, 
equivalently, the number of vanishing derivatives of ^ψ in zero

• Theorem 7.4: Vanishing moments

Let ϕ and ψ be a scaling function and a wavelet that generate an orthonormal basis. Suppose 
that |ψ(t)|=O((1+t2)-p/2-1) and |ϕ(t)|=O((1+t2)-p/2-1). The four following statements are 
equivalent

1. The wavelet ψ has p vanishing moments
2. and its first p-1 derivatives are zero at ω=0
3. ^h(ω) and its first p-1 derivatives are zero at ω=π
4. for any 0≤k<p

( ) 0       for     0kt t dt k pψ
+∞

−∞

= ≤ <∫

( )ψ̂ ω

( ) ( ) is a polynomial of degree k
kq t n t n kϕ

+∞

= −∑

(3)

n=−∞
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hints of the proof qui

• Point 1. The decay of |ϕ(t)| and |ψ(t)| imply that |^ϕ(ω)| and |^ψ(ω)| are p-times 
differentiable

• Point 2. The  k-th order derivative of is the F-transform of
thus 

(4) is equivalent to (3), which proves  2.

• Point 3. 

since by differentiating this expression we prove that 2. is equivalent to 3.

• Finally, it is proved that 4. is equivalent to 1. and viceversa.                   

( )( )ˆ kψ ω ( ) ( )kit tψ−

(4)

⎟
⎠
⎞

⎜
⎝
⎛Φ⎟

⎠
⎞

⎜
⎝
⎛=Ψ

2
ˆ

2
ˆ

2
1)(ˆ ωωω g )(ˆ)(ˆ * πωω ω += − heg j

thus

( ) ( ) ( ) ( )1 ˆˆ ˆ ˆ(2 ) ˆ
2

ig e hωω ω ω ω π ω− ∗Ψ = Φ = + Φ

( )ˆ 0 0Φ ≠
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hints of the proof

A wavelet with p vanishing moments kills polynomials up to degree p
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Wavelet properties

• Support
– The larger the support, the more the singularities will spread along scales: it should be as short 

as possible
BUT a wavelet with p vanishing moments will have a support at least 2p-1 -> tradetrade--offoff

• Theorem 7.5: Compact Support. The scaling function has a compact support if and only if 
h has a compact support and their supports are equal. If the support of h and ϕ is [N1,N2], 
then the support of ψ is [(N1-N2+1)/2, (N1-N2+1)/2].
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Properties

• Support
– To minimize the size of the support of the wavelet, we must synthesize conjugate mirror filters 

with as few nonzero coefficients as possible
– However, the constraints imposed on orthogonal wavelets imply that if the wavelet has p 

vanishing moments, then its support is at least of size 2p-1 → trade off
– Daubechies wavelets are optimal in the sense that they have a minimum size support for a given 

number of vanishing moments 
If f has few isolated singularities and is very regular between singularities, we must choose a wavelet 
with many vanishing moments to produce a large number of small wavelet coefficients  <f , ψj,n>. If the 
density of singularities increases, it might be better to decrease the size of its support at the cost of 
reducing the number of vanishing moments. Indeed, wavelets that overlap the singularities create high-
amplitude coefficients.

• Regularity
– The regularity or smoothness has mostly a cosmetic influence on the error introduced by 

quantizing or thresholding the coefficients. Such operation introduces a noise which is less 
visible if it is smooth. Better quality is reached with smoother wavelets

The Haar wavelet is not a good choice
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Popular wavelet families

• Shannon, Meyer, Haar, and Battle-Lemarié Wavelets
– Starting point

⎟
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⎞

⎜
⎝
⎛Φ⎟

⎠
⎞

⎜
⎝
⎛=Ψ

2
ˆ

2
ˆ

2
1)(ˆ ωωω g )(ˆ)(ˆ * πωω ω += − heg j

( ) ( ) ( ) ( )1 ˆˆ ˆ ˆ(2 ) ˆ
2

ig e hωω ω ω ω π ω− ∗Ψ = Φ = + Φ

(7.82)
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Shannon wavelets
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Shannon wavelets

Shannon scaling function (continuous) and wavelet (dashed) lines.
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Meyer wavelets
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Meyer wavelets
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Meyer wavelet: example
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Haar wavelets

reminder:
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Haar wavelets
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Haar wavelets
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Battle-Lemarié wavelets
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Battle-Lemarié wavelets
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Battle-Lemarié: example
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Daubechies compactly supported wavelets
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Daubechies compactly supported wavelets

• Theorem 7.7: Daubechies. A real conjugate mirror filter h, such that ˆh(ω) has p zeroes at 
π, has at least 2p nonzero coefficients. Daubechies filters have 2p nonzero coefficients.

• Theorem 7.9: Daubechies. If ψ is a wavelet with p vanishing moments that generates an 
orthonormal basis of L2(R), then it has a support of size larger than or equal to 2p+1. 

A Daubechies wavelet has a minimum-size support equal to [-p+1, p]. The support of the 
corresponding scaling function is [0, 2p-1].
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Daubechies wavelets: example
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Symlets
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Dubechies versus Symlets
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Coiflets

p=1
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Coiflets
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Coiflets
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Coiflets
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An approximation tour

• Linear approximation
– Projects the signal f over M vectors of the 

ortho-normal basis B which are chosen aa--prioripriori
among the basis B, say the first M

– Approximation error

choosing the first M vectors amounts to 
reconstruct f at a given resolution. The 
convergence properties similar as in the Fourier 
domain

• Non-linear approximations
– The M vectors are chosen a posterioria posteriori

Approximation error

The error can be minimized by choosing the vectors 
corresponding to the highest

In wavelet basis this amounts to an adaptiveadaptive
approximation grid whose resolution is locally resolution is locally 
increased where the signal is irregular!increased where the signal is irregular!

Approximation theory Signal processingWaveletsWavelets
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Adaptive basis choice

• Instead of choosing the basis a-priori, one could choose the best basis, depending on the 
signal

• The basis is chosen to minimize the non linear approximation error of f

• Same problem as the choice of the optimal basis for stimulus representation in visual 
perception

• The optimal basis could be chosen for classes of signals, considered as random processes
– Gaussian processes → Karunen Loeve transform (KLT)

Diagonalization of the covariance matrix which removes the inter-dependencies among the samples and 
results in a set of independent coefficients (i.e. redundancy has been removed)

– Other kind of processes → no golden rule
Images are not Gaussian and not stationary
In some cases wavelets do better
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Adaptive basis

• Wavelet packets
– The subband tree is progressively split according to the optimization of a cost function (i.e. 

rate/distortion)

• Matching pursuit
– Vectors are progressively selected from a dictionary, while optimizing the signal approximation 

at each step

•• Key issueKey issue: a good basis should be able to provide a good description (approximation 
properties) of the signal while being concise (sparseness properties)

– Classical approaches: approximation theory, information theory, estimation in noise...
– Perception based approaches: bring humans into the loop
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Wavelet Packets
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