Sequential logic

Sequential circuits

0 simple circuits with feedback

2 Jatches

0 edge-triggered flip-flops

Timing methodologies

0 cascading flip-flops for proper operation
9 clock skew

Asynchronous inputs

0 metastability and synchronization
Basic registers

0 shift registers

0 simple counters

Hardware description languages and sequential logic

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

Sequential circuits

Circuits with feedback

0 outputs = f(inputs, past inputs, past outputs)

0 pasis for building "memory" into logic circuits

0 door combination lock is an example of a sequential circuit
state is memory

state is an "output" and an "input" to combinational logic

combination storage elements are also memory
new equal reset

value
Cl| |c2| C|3 - + ! !
multiplexer comb. logic
i control]
comparator statedj« clock
equal open/closed

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

Circuits with feedback

How to control feedback?
0 what stops values from cycling around endlessly

X1 — — 71
X2 — — 72
. switching .
. network .

Xn — — /N

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

Simplest circuits with feedback

Two inverters form a static memory cell
2 will hold value as long as it has power applied

II1II

‘ D [: ‘ "stored value"
IIOII

How to get a new value into the memory cell?
0 selectively break feedback path
2 load new value into cell

"remember"

"load" " "
"data" h stored value

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

Memory with cross-coupled gates

Cross-coupled NOR gates
0 similar to inverter pair, with capability to force output to O

(reset=1) or 1 (set=1)

S I

Rl 0

Cross-coupled NAND gates
0 similar to inverter pair, with capability to force output to O

(reset=0) or 1 (set=0)

SRRy =

-

R'' A

VI - Sequential Logic

S ——

R%
si}c’_ﬁ

R'——

B
B

© Copyright 2004, Gaetano Borriello and Randy

Q

QI

Q

QI

Timing behavior

R "m0
S i)o_._‘ QI
Reset Hold Set Reset Set -9pq Race

LN N
R IR |\\‘
Y

\

Q
\Q

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

State behavior or R-S latch R%Q

Truth table of R-S latch behavior
Q

hold

O 1
1 00
unstable

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 7

R P OOoOlWn
R O~ O|X

Theoretical R-S latch behavior R%Q

State diagram
0 states: possible values

J transitions: changes
based on inputs

possible oscillation
between states 00 and 11

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 8

Observed R-S latch behavior R%Q
S Q'

Very difficult to observe R-S latch in the 1-1 state

9 one of R or S usually changes first

Ambiguously returns to state 0-1 or 1-0

0 a so-called "race condition"

3 or non-deterministic transition
SR=10

SR=00
SR=01

SR=00

SR=00
VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 9

R-S latch analysis

Break feedback path

R

(t)

Q
0
1
0
1
0
1
0
1

P PP RPRPROOIOOW0m
R PO OFkrRrIOO|X

VI - Sequential Logic

i)o—a—qQ Q(Y)
s > > awe

i)o—o—qQ- R

Q(t+4)

> hold S

0 0 0 X 1

reset

0 Qo) 1| o | x| 1

1 set R

§ not allowed characteristic equation

Q(t+A) =S + R’ Q(t)

© Copyright 2004, Gaetano Borriello and Randy 10

‘Activity: R-S latch using NAND gates

B
B

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

11

Gated R-S latch

Control when R and

S inputs matter R' %Q

3 otherwise, the
enable' ' i

slightest glitch on |
R or S while < w—c’

enable is low could

cause
change in value Sot
stored /T
SI | ’¢/ |
RI
enable' 4 ' :
Q | L
Q' | r

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 12

Clocks

Used to keep time

2 wait long enough for inputs (R' and S') to settle
2 then allow to have effect on value stored
Clocks are regular periodic signals

0 period (time between ticks)

9 duty-cycle (time clock is high between ticks - expressed as % of
period)

| duty cycle (in this case, 50%)

S N e IO N B
f—

period

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

13

Clocks (cont’d)

Controlling an R-S latch with a clock
0 can't let R and S change while clock is active (allowing R and S to

pass)
9 only have half of clock period for signal changes to propagate
0 sig alf of clock period

R'" and S’

clock” | |_

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 14

Cascading latches

Connect output of one latch to input of another
How to stop changes from racing through chain?
0 need to be able to control flow of data from one latch to the next

9 move one latch per clock period
9 have to worry about logic between latches (arrows) that is too fast

1
-

1
-

clock

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 15

Master-slave structure

Break flow by alternating clocks (like an air-lock)
2 use positive clock to latch inputs into one R-S latch

2 use negative clock to change outputs with another R-S latch

View pair as one basic unit
2 master-slave flip-flop
< twice as much logic

2 output changes a few gate delays after the falling edge of clock

but does not affect any cascaded flip-flops

R -

S

-

master stage

o—

—

CLK

VI - Sequential Logic

-

R QfF —

slave stage

o—

L

-
e

R

S

© Copyright 2004, Gaetano Borriello and Randy

16

The 1s catching problem

In first R-S stage of master-slave FF
9 0-1-0 glitch on R or S while clock is high is "caught" by master stage
0 |eads to constraints on logic to be hazard-free

1s
Set | Resetl caltchl
S Lrrm—1 M_r
R 1 T
CLK . I 1
P
p’
Q
Q'

VI - Sequential Logic

master _stage slave stage
R R oP—~1)rr of
s s o~ s o
CLK {>°
Master
Outputs
Slave
Outputs

© Copyright 2004, Gaetano Borriello and Randy

17

D flip-flop

Make S and R complements of each other
2 eliminates 1s catching problem

9 can't just hold previous value
(must have new value ready every clock period)

2 value of D just before clock goes low is what is stored in flip-flop
2 can make R-S flip-flop by adding logicto make D=S + R’ Q

master stage slave stage

L

R Qr— Q

-
s g

o

CLK

3
fx
:

10 gates
VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 18

Edge-triggered flip-flops

More efficient solution: only 6 gates

0 sensitive to inputs only near edge of clock signal (not while high)

D’ D
holds D" when
/ clock goes low negative edge-triggered D

0 flip-flop (D-FF)

4-5 gate delays
@O—Q— Q

must respect setup and hold time

T

Clk=1—#% constraints to successfully
i}o—ﬁ Q' capture input
S
0 T
e
\holds D when

clock goes low characteristic equation

Q(t+1) =D

VI - sequenual LOgIC © Lopyrignt 2Zuu4, Gaetano Borriello and Randy 19

Jy

DI

D I

Edge-triggered flip-flops (cont’d)

Step-by-step analysis

Di}':’—D D’
=l

T

%?
y

y

D’

i
i

new D
new D #old D

when clock goes high-to-low when clock is low
VI - Sequentiad@n‘@c's IatCI‘@@opyright 2004, Gaetano Borriello and Ranqqata is held 20

Edge-triggered flip-flops (cont’d)

Positive edge-triggered

9 inputs sampled on rising edge; outputs change after rising edge
Negative edge-triggered flip-flops

0 inputs sampled on falling edge; outputs change after falling edge

100
I I I 1 | I I I I | | | .
D I—] —
CLK —'—‘—'—'—'—I_
\ \ N \

Qpos | — .
Qpos’ [\ , \l positive edge-triggered FF
Qneg L, . i | |
Qneq’ . . I_negatlve edge-triggered FF

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 21

Timing methodologies

Rules for interconnecting components and clocks

0 guarantee proper operation of system when strictly followed
Approach depends on building blocks used for memory
elements

0 we'll focus on systems with edge-triggered flip-flops
found in programmable logic devices

9 many custom integrated circuits focus on level-sensitive latches

Basic rules for correct timing:

9 (1) correct inputs, with respect to time, are provided to the flip-
flops

2 (2) no flip-flop changes state more than once per clocking event

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 22

Timing methodologies (cont’d)

Definition of terms

0 clock: periodic event, causes state of memory element to change
can be rising edge or falling edge or high level or low level

0 setup time: minimum time before the clocking event by which the
input must be stable (Tsu)

9 hold time: minimum time after the clocking event until which the
input must remain stable (Th)

Tsu Th data_pDQ_p ﬁDQﬁ
input >’< «— —»* S S
clock clock
there is a timing "window" stable changing
around the clocking event data _

during which the input must

remain stable and unchanged cock I [1

in order to be recognized _ ,
VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 23

Comparison of latches and flip-flops

}

CLK

positive
edge-triggered
flip-flop

— D (—
(ﬁQ
CLK

transparent
(level-sensitive)
latch

VI - Sequential Logic

;] }
CLK
Qedge I
Qlatch [[

behavior is the same unless input changes
while the clock is high

© Copyright 2004, Gaetano Borriello and Randy 24

Comparison of latches and flip-flops
(cont’d)

Type L/Vhen inputs are sampIer When output is valid
unclocked lways ropagation delay from input change
latch
level-sensitive clock high ropagation delay from input change
latch Tsu/Th around falling r clock edge (whichever is later)
dge of clock)
master-slave lock high ropagation delay from falling edge
flip-flop Tsu/Th around falling of clock
dge of clock)
negative lock hi-to-lo transition propagation delay from falling edge
edge-triggered [Tsu/Th around falling of clock
flip-flop dge of clock)

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 25

Typical timing specifications

Positive edge-triggered D flip-flop
0 setup and hold times

9 minimum clock width

0 propagation delays (low to high, high to low, max and typical)

| Tsu Th
T T 1.8 | 05
15;3‘ OhS \ ns | ns
D ns |ns | !
; T\
w w
/ 3.3 / 3.3
Clk ns ns
/ Tod
T 3.6 ns
Q 2 gdns 1.1 ns
1.1 ns

all measurements are made from the clocking event (the rising edge of the clock)
VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

Cascading edge-triggered flip-flops

Shift register

9 new value goes into first stage

0 while previous value of first stage goes into second stage
0 consider setup/hold/propagation delays (prop must be > hold)

CLK

QO —Q1
DQ DQ ouT
> >
100
1 I 1 | 1 I 1 1 | 1 I 1 1
IN :
Q0
Q1
CLK 1] I] [] I I | 1

VI - Sequential Logic

T

IR

© Copyright 2004, Gaetano Borriello and Randy 27

Cascading edge-triggered flip-flops

(cont’'d)

Why this works

0 propagation delays exceed hold times
9 clock width constraint exceeds setup time

0 this guarantees following stage will latch current value before it
changes to new value

In

QO

Q1

CLK

o

T

< Su

1.8n

v

<& Su

1.8n

v

1-3.6ns

1-3.6ns

VI - Sequential Logic

»

T,

0.5ns

»

T,

0.5ns

timing constraints
guarantee proper
operation of
cascaded components

assumes infinitely fast
distribution of the clock

© Copyright 2004, Gaetano Borriello and Randy 28

Clock skew

The problem

0 correct behavior assumes next state of all storage elements
determined by all storage elements at the same time

0 this is difficult in high-performance systems because time for clock
to arrive at flip-flop is comparable to delays through logic

0 effect of skew on cascaded flip-flops:

n CLK1 is a delayed

QO ' / version of CLKO
Ql .

CLKO (\\ —
CLK1 —

original state: IN=0,Q0=1,Q1 =1
due to skew, next state becomes: Q0 =0,Q1 =0,andnotQ0=0,Q1 =1

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 29

Summary of latches and flip-flops

Development of D-FF

0 level-sensitive used in custom integrated circuits
can be made with 4 switches

0 edge-triggered used in programmable logic devices

0 good choice for data storage register

Historically J-K FF was popular but now never used

0 similar to R-S but with 1-1 being used to toggle output (complement state)
4J good in days of TTL/SSI (more complex input function: D=J Q' + K' Q

9 not a good choice for PALS/PLAS as it requires 2 inputs

0 can always be implemented using D-FF

Preset and clear inputs are highly desirable on flip-flops
O used at start-up or to reset system to a known state

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 30

Metastability and asynchronous
inputs

Clocked synchronous circuits

0 inputs, state, and outputs sampled or changed in relation to a
common reference signal (called the clock)

0 e.g., master/slave, edge-triggered
Asynchronous circuits

0 inputs, state, and outputs sampled or changed independently of a
common reference signal (glitches/hazards a major concern)

J e.g., R-Slatch

Asynchronous inputs to synchronous circuits

9 inputs can change at any time, will not meet setup/hold times
0 dangerous, synchronous inputs are greatly preferred

J cannot be avoided (e.g., reset signal, memory wait, user input)

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 31

Synchronization failure

Occurs when FF input changes close to clock edge

2 the FF may enter a metastable state — neither a logic O nor 1 —
0 it may stay in this state an indefinite amount of time

0 this is not likely in practice but has some probability

Q 'Iogié 1]

T
4 ‘*\\
O @ . S|
logic O logic 1 logic 0 e
Time —
small, but non-zero probability oscilloscope traces demonstrating
that the FF output will get stuck synchronizer failure and eventual

VI - Seqmlﬁﬂl iﬂ)'gt?cetweenéE%Fﬁright 2004, Gaetano Borriello Q%q@ﬁcﬁp Steady state 32

Dealing with synchronization failure

Probability of failure can never be reduced to O, but it can be reduced

2 (1) slow down the system clock
this gives the synchronizer more time to decay into a steady state;
synchronizer failure becomes a big problem for very high speed systems

J (2) use fastest possible logic technology in the synchronizer
this makes for a very sharp "peak" upon which to balance

0 (3) cascade two synchronizers
this effectively synchronizes twice (both would have to fail)

» Synchronized

asynchronous D o—D
Q input

input
inpu A A

Clk

synchronous system

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 33

Handling asynchronous inputs

Never allow asynchronous inputs to fan-out to more than one flip-flop
9 synchronize as soon as possible and then treat as synchronous signal

Clocked Synchronizer

Synchronous
~ System L
Async D Q Qo0
/L\ Clock
—1b Q Q1
/|\ Clock

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 34

Handling asynchronous inputs
(cont’'d)

What can go wrong?

0 input changes too close to clock edge (violating setup time
constraint)

In .
N In is asynchronous and
fans out to DO and D1
Q0 _ |
ne FF catches the

signal, one does not

Q1 A . .
Inconsistent state may

be reached!
CLK

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

35

Flip-flop features

Reset (set state to 0) — R

9 synchronous: Dnew = R' ¢ Dold (when next clock edge arrives)
4 asynchronous: doesn't wait for clock, quick but dangerous
Preset or set (set state to 1) — S (or sometimes P)

0 synchronous: Dnew = Dold + S (when next clock edge arrives)
0 asynchronous: doesn't wait for clock, quick but dangerous
Both reset and preset

9 Dnew=R'eDold+S (set-dominant)

0 Dnew =R'eDold + R'S (reset-dominant)

Selective input capability (input enable or load) — LD or EN
0 multiplexor at input: Dnew = LD'+» Q + LD « Dold

0 load may or may not override reset/set (usually R/S have priority)

Complementary outputs — Q and Q'

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

Registers

Collections of flip-flops with similar controls and logic

0 stored values somehow related (for example, form binary value)

4 share clock, reset, and set lines
0 similar logic at each stage
Examples

0 shift registers

4 counters OuUT1 OouT?2 OuT3 ouT4

IIOII [J [J [J [

RS RS RS RS

—-|ID Q DQF —-|ID Q- D Q

‘ JAN r AN ‘ JAN r AN

CLK [[[I

| | | |

IN1 IN2 IN3 IN4

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

37

Shift register

Holds samples of input
0 store last 4 input values in sequence

0 4-bit shift register:

IN —

D Q

OUT1

n—>

D Q

ouT2

D Q

OouT3

D Q

-

CLK

VI - Sequential Logic

© Copyright 2004, Gaetano Borriello and Randy

ouT4

Universal shift reqgister

Holds 4 values

0 serial or parallel inputs

0 serial or parallel outputs

0 permits shift left or right

0 shift in new values from left or right

output
I I I I clear sets the register contents
and output to 0
Ieft_in > —bright_out
left_ou , right_in s1 and sO determine the shift function
Clesa — «— clock
> sO s1| function
T T T T O O | hold state
0 1 | shiftright
input 1 0 ° shiftleft
1 1 load new input

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 39

Design of universal shift register

Consider one of the four flip-flops —<1€ars0_51_ aew value
9 new value at next clock cycle: 0O 0 0 |output
0 0 1 output value of FF to left (shift rig|
0 1 0 output value of FF to right (shift le
0 1 1 input
Nth cell
N T - T R T - T _/T//’_to N']?th | to NV—|—]_th
- . . . L cell _>Q cell
D
<_J CLK,
< CLEAR
5 a5S0andsl
+ % % % control myx
Q[N-1] Q[N+1]
(left) InpUt[N] (right)

VI - Sequential Logic © Copyright 2004, Gaetano Borrielfo and Randy 40

Shift register application

Parallel-to-serial conversion for serial transmission

parallel outputs

IR i1

RARRALL \ T TIT

serial transmission

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

Pattern recognizer

Combinational function of input samples
0 in this case, recognizing the pattern 1001 on the single input

signal

OuT1

n—>

D Q

OUT?2

D Q

— e

OuT3

D Q

. —our

ouT4

VI - Sequential Logic

© Copyright 2004, Gaetano Borriello and Randy

42

Counters

Sequences through a fixed set of patterns

9 in this case,

0 if one of the patterns is its initial state (by loading or set/reset)

1000, 0100, 0010, 0001

‘OUTl ‘OUTZ

‘OUTB

D Q * D Q * D Q

JAN AN JAN
l L I

D Q
AN

VI - Sequential Logic

© Copyright 2004, Gaetano Borriello and Randy

ouT4

43

Activity

How does this counter work?

VI - Sequential Logic

‘OUTl ‘OUTZ ‘OUTB

— IN DQr——DQ——"DQr——DQ
A A A A

CLK : : l '

© Copyright 2004, Gaetano Borriello and Randy

ouT4

Binary counter

Logic between registers (not just multiplexer)
0 XOR decides when bit should be toggled

0 always for low-order bit,
only when first bit is true for second bit,
and so on

OuT1 OUT?2 OuT3

(BT B (BT B

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

ouT4

45

Four-bit binary synchronous up-
counter

Standard component with many applications
positive edge-triggered FFs w/ synchronous load and clear inputs

Q

a
a
a

parallel load data from D, C, B, A

enable inputs: must be asserted to enable counting

RCO: ripple-carry out used for cascading counters
high when counter is in its highest state 1111
implemented using an AND gate

100 (2) RCO goes high

Count
RCO

F M OO =T M M o T

(3) High order 4-bits
/are incremented

= (1) Low order 4-bits = 1111
—

 Borriello and Randy

EN
D
c RCO—
5 Qo
A QC_
SLOAD QB—
ck A
CLR
46

Offset counters

Starting offset counters — use of synchronous load
2 e.g., 0110, 0111, 1000, 1001,

1010, 1011, 1100, 1101, 1111, 0110, .. /

Ending offset counter — comparator for ending value

2 e.g., 0000, 0001, OO10, ..., 1100, 1101, 0000

T

Combinations of the above (start and stop value)

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

ll1ll

29399

ll1ll — EN
RCO ——
IIOII :D QD :
ll1ll _C QC |
"1" _B QB __
llnll A QA
—[]LOAD
"0" —|CLK
CLR
—EN
RCO—
D QD[-
"I QCC TS }
—B QB T
_IA QA
—ROAD
rCLK
[CIR
47

Hardware Description Languages and
Sequential Logic

“ Flip-flops
0 representation of clocks - timing of state changes
0 asynchronous vs. synchronous

= Shift registers
“ Simple counters

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 48

Flip-flop in Verilog

Use always block's sensitivity list to wait for clock edge

module dff (clk, d, q);

input clk, d;
output q;
reg q,

always @(posedge clk)
q =d;

endmodule

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

49

More Flip-flops

Synchronous/asynchronous reset/set
0 single thread that waits for the clock
0 three parallel threads — only one of which waits for the clock

Asynchronous
module dff (clk, s, r, d, q); module dff (clk, s, r, d, q);
input «clk, s, r, d; input «clk, s, r, d;
output q; output q;
reg q; reg q;
always @(posedge clk) always @(posedge r)
if (r) g = 1'bO; q = 1'bo;
else if (s) q = 1'b1; always @(posedge s)
else q = d, qg = 1'b1;
always @(posedge clk)
endmodule q = d;
endmodule

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

Incorrect Flip-flop in Verilog

Use always block's sensitivity list to wait for clock to change

module dff (clk, d, q);

input clk, d;

output q, Not correct! Q will
change whenever the

reg q, / clock changes, not
just on an edge.
always @(clk)
q = d;

endmodule

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

51

Blocking and Non-Blocking
Assignments

Blocking assignments (X=A)
0 completes the assignment before continuing on to next statement
Non-blocking assignments (X<=A)

0 completes in zero time and doesn’t change the value of the
target until a blocking point (delay/wait) is encountered

Example: swap

always @(posedge CLK) always @(posedge CLK)
begin begin
temp = B; A <= B;
B = A; B <= A;
A = temp; end
end

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 52

Register-transfer-level (RTL)

Assignment

Non-blocking assignment is also known as an RTL assignment
0 if used in an always block triggered by a clock edge

0 all flip-flops change together

// B,C,D all get the value of A
always @(posedge clk)

begin
B = A,
C = B;
D =¢C;
end

// implements a shift register too
always @(posedge clk)
begin
B <= A;
C <= B;
D <= C;
end

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

53

Mobius Counter in Verilog

initial
begin
A = 1'bo0;
B =1"b0;
C = 1'b0;
D = 1'b0;
end

always @(posedge clk)

begin
A <= ~D;
B <= A;
C <= B;
D <= C;
end

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy

54

Binary Counter in Verilog

module binary_counter (clk, c¢8, c4, c2, cl1);

input clk; module binary_counter (clk, c8, c4, c2, c1, rco);
output c8, c4, c2, c1i,
input clk;

reg [3:0] count; output c8, c4, c2, c1, rco;
initial begin reg [3:0] count;

count = 0; reg rco;
end

. initial begin . . . end
always @(posedge clk) begin
= + 4’ ; ;

:ount count + 4°b0001; always @(posedge clk) begin . . . end

en
_ assign c8 = count[3];
assign c8 = count[3]; assign c4 = count[2];
assignh c4 = count[2]; assign c2 = count[1];
assign ci f count[g]f assign c1 = count[0];
assign cl = count[0]; assign rco = (count == 4b’1111);
endmodule endmodule

VI - Sequential Logic © Copyright 2004, Gaetano Blorriello and Randy 55

Sequential logic summary

Fundamental building block of circuits with state

0 latch and flip-flop

J R-S latch, R-S master/slave, D master/slave, edge-triggered D flip-flop
Timing methodologies

0 use of clocks

0 cascaded FFs work because propagation delays exceed hold times
2 beware of clock skew

Asynchronous inputs and their dangers

9 synchronizer failure: what it is and how to minimize its impact
Basic registers

0 shift registers

0 counters

Hardware description languages and sequential logic

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy 56

