
III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Working with combinational logic

 Simplification
 two-level simplification
 exploiting don’t cares
 algorithm for simplification

 Logic realization
 two-level logic and canonical forms realized with NANDs and NORs
 multi-level logic, converting between ANDs and ORs

 Time behavior
 Hardware description languages

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 2

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B

C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 3

A' B' D + A' C + B' C D

B C' D' + A C' + A B D'

LT =

EQ =

GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator
(cont’d)

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0

B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1

B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0

B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A' B' C' D' + A' B C' D + A B C D + A B' C D’

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 4

two alternative
implementations of EQ
with and without XOR

XNOR is implemented with
at least 3 simple gates

A B C D

EQ

EQ

Design example: two-bit comparator
(cont’d)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 5

block diagram
and

truth table

4-variable K-map
for each of the 4
output functions

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

1 1 0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1

Design example: 2x2-bit multiplier

P1
P2
P4
P8

A1
A2
B1
B2

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 6

K-map for P8 K-map for P4

K-map for P2 K-map for P1

Design example: 2x2-bit multiplier
(cont’d)

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

0 1

1 1

A1

B2

0 0

0 1

0 0

1 0
B1

A2

0 1

0 0

1 0

0 0

A1

B2

0 0

0 0

0 0

1 1
B1

A2

0 1

0 1

0 1

1 0

A1

B2

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

1 0

0 0

A1

B2 P8 = A2A1B2B1

 P4 = A2B2B1'
+ A2A1'B2

P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1
+ A2A1'B1

P1 = A1B1

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 7

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

block diagram
and

truth table
4-variable K-map for each of

the 4 output functions

O1
O2
O4
O8

I1
I2
I4
I8

Design example: BCD increment by 1

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 8

O8 = I4 I2 I1 + I8 I1'

O4 = I4 I2' + I4 I1' + I4’ I2 I1

O2 = I8’ I2’ I1 + I2 I1'

O1 = I1'

O8 O4

O2 O1

Design example: BCD increment by 1
(cont’d)

0 0

0 0

X 1

X 0
I1

I8

0 1

0 0

X X

X X

I4

I2

0 0

1 1

X 0

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

0 1

0 1

X 0

X 0
I1

I8

1 0

0 1

X X

X X

I4

I2

1 1

0 0

X 1

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 9

Definition of terms for two-level
simplification
 Implicant

 single element of ON-set or DC-set or any group of these elements that can
be combined to form a subcube

 Prime implicant
 implicant that can't be combined with another to form a larger subcube

 Essential prime implicant
 prime implicant is essential if it alone covers an element of ON-set
 will participate in ALL possible covers of the ON-set
 DC-set used to form prime implicants but not to make implicant essential

 Objective:
 grow implicant into prime implicants

(minimize literals per term)
 cover the ON-set with as few prime implicants as possible

(minimize number of product terms)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 10

0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1

B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0

B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' +
A'B'D

essential

minimum cover: 4 essential implicants

essential

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 11

Algorithm for two-level simplification

 Algorithm: minimum sum-of-products expression from a Karnaugh
map

 Step 1: choose an element of the ON-set
 Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

 consider top/bottom row, left/right column, and corner adjacencies
 this forms prime implicants (number of elements always a power of 2)

 Repeat Steps 1 and 2 to find all prime implicants

 Step 3: revisit the 1s in the K-map
 if covered by single prime implicant, it is essential, and participates in final cover
 1s covered by essential prime implicant do not need to be revisited

 Step 4: if there remain 1s not covered by essential prime implicants
 select the smallest number of prime implicants that cover the remaining 1s

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 12

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

 3 primes around AB'C'D'

Algorithm for two-level simplification
(example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 13

Activity

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

BC BD AB AC’DCD’

BDCD’ AC’D

BDCD’ AC’D

 List all prime implicants for the following K-map:

 Which are essential prime implicants?

 What is the minimum cover?

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 14

Implementations of two-level logic

 Sum-of-products
 AND gates to form product terms (minterms)
 OR gate to form sum

 Product-of-sums
 OR gates to form sum terms (maxterms)
 AND gates to form product

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Two-level logic using NAND gates

 Replace minterm AND gates with NAND gates
 Place compensating inversion at inputs of OR gate

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Two-level logic using NAND gates
(cont’d)
 OR gate with inverted inputs is a NAND gate

 de Morgan’s: A’ + B’ = (A • B)’
 Two-level NAND-NAND network

 inverted inputs are not counted
 in a typical circuit, inversion is done once and signal distributed

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 17

Two-level logic using NOR gates

 Replace maxterm OR gates with NOR gates
 Place compensating inversion at inputs of AND gate

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Two-level logic using NOR gates
(cont’d)
 AND gate with inverted inputs is a NOR gate

 de Morgan’s: A’ • B’ = (A + B)’
 Two-level NOR-NOR network

 inverted inputs are not counted
 in a typical circuit, inversion is done once and signal distributed

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 19

Two-level logic using NAND and NOR
gates
 NAND-NAND and NOR-NOR networks

 de Morgan’s law: (A + B)’ = A’ • B’ (A • B)’ = A’ + B’
 written differently: A + B = (A’ • B’)’ (A • B) = (A’ + B’)’

 In other words ––
 OR is the same as NAND with complemented inputs
 AND is the same as NOR with complemented inputs
 NAND is the same as OR with complemented inputs
 NOR is the same as AND with complemented inputs

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 20

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Conversion between forms

 Convert from networks of ANDs and ORs to networks of
NANDs and NORs
 introduce appropriate inversions ("bubbles")

 Each introduced "bubble" must be matched by a corresponding
"bubble"
 conservation of inversions
 do not alter logic function

 Example: AND/OR to NAND/NAND

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 21

Z = [(A • B)’ • (C • D)’]’

 = [(A’ + B’) • (C’ + D’)]’

 = [(A’ + B’)’ + (C’ + D’)’]

 = (A • B) + (C • D) ➼

Conversion between forms (cont’d)

 Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 22

Step 2
conserve
"bubbles"

Step 1
conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NORA

B

C

D

Z

Conversion between forms (cont’d)

 Example: map AND/OR network to NOR/NOR network
A

B

C

D

Z

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 23

Z = { [(A’ + B’)’ + (C’ + D’)’]’ }’

 = { (A’ + B’) • (C’ + D’) }’

 = (A’ + B’)’ + (C’ + D’)’

 = (A • B) + (C • D) ➼

Conversion between forms (cont’d)

 Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 24

A
B
C

D
E

F
G

X

Multi-level logic

 x = A D F + A E F + B D F + B E F + C D F + C E F + G
 reduced sum-of-products form – already simplified
 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even

exist!)
 25 wires (19 literals plus 6 internal wires)

 x = (A + B + C) (D + E) F + G
 factored form – not written as two-level S-o-P
 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 10 wires (7 literals plus 3 internal wires)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Level 1 Level 2 Level 3 Level 4

original
AND-OR
network A

C
D

B

B
\C

F

introduction and
conservation of

bubbles A

C
D

B

B
\C

F

redrawn in terms
of conventional

NAND gates A

C
D

\B

B
\C

F

Conversion of multi-level logic to
NAND gates F = A (B + C D) + B C’

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 26

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
\C

Foriginal
AND-OR
network

introduction and
conservation of

bubbles A

C

D
B

B

\C

F

redrawn in terms
of conventional

NOR gates \A

\C
\D

B

\B
C

F

Conversion of multi-level logic to
NORs
 F = A (B + C D) + B C’

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 27

Conversion between forms

 Example

A

X
B
C

D

F

original circuit

A

X
B
C

D

F

add double bubbles to
invert all inputs of OR gate

\D

A

B
C

F

\D

A

X

B
C

F
\X

insert inverters to eliminate
double bubbles on a wire

add double bubbles to
invert output of AND gate

X

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 28

&

&
+

2x2 AOI gate
symbol

&

&
+

3x2 AOI gate
symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-invert gates

 AOI function: three stages of logic — AND, OR, Invert
 multiple gates "packaged" as a single circuit block

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 29

&

&
+

A’

B’
A

B

F

Conversion to AOI forms

 General procedure to place in AOI form
 compute the complement of the function in sum-of-products form
 by grouping the 0s in the Karnaugh map

 Example: XOR implementation
 A xor B = A’ B + A B’
 AOI form:

 F = (A’ B’ + A B)’

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 30

each implemented in a single 2x2 AOI gate

Examples of using AOI gates

 Example:
 F = A B + A C’ + B C’
 F = (A’ B’ + A’ C + B’ C)’
 Implemented by 2-input 3-stack AOI gate

 F = (A + B) (A + C’) (B + C’)
 F = [(A’ + B’) (A’ + C) (B’ + C)]’
 Implemented by 2-input 3-stack OAI gate

 Example: 4-bit equality function
 Z = (A0 B0 + A0’ B0’)(A1 B1 + A1’ B1’)(A2 B2 + A2’ B2’)(A3 B3 + A3’ B3’)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 31

high if A0 ≠ B0
low if A0 = B0

if all inputs are low
 then Ai = Bi, i=0,...,3
output Z is high

conservation of bubbles

A0
B0

A1
B1

A2
B2

A3
B3

&

&
+

&

&
+

&

&
+

&

&
+

NOR Z

Examples of using AOI gates (cont’d)

 Example: AOI implementation of 4-bit equality function

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 32

Summary for multi-level logic

 Advantages
 circuits may be smaller
 gates have smaller fan-in
 circuits may be faster

 Disadvantages
 more difficult to design
 tools for optimization are not as good as for two-level
 analysis is more complex

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Time behavior of combinational
networks
 Waveforms

 visualization of values carried on signal wires over time
 useful in explaining sequences of events (changes in value)

 Simulation tools are used to create these waveforms
 input to the simulator includes gates and their connections
 input stimulus, that is, input signal waveforms

 Some terms
 gate delay — time for change at input to cause change at output

 min delay – typical/nominal delay – max delay
 careful designers design for the worst case

 rise time — time for output to transition from low to high voltage
 fall time — time for output to transition from high to low voltage
 pulse width — time that an output stays high or stays low between changes

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 34

F is not always 0
pulse 3 gate-delays wide

D remains high for
three gate delays after

A changes from low to high

F
A B C D

Momentary changes in outputs

 Can be useful — pulse shaping circuits
 Can be a problem — incorrect circuit operation

(glitches/hazards)
 Example: pulse shaping circuit

 A’ • A = 0
 delays matter

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 35

initially
undefined

close switch

open switch

+

open
switch

resistor
A B

C
D

Oscillatory behavior

 Another pulse shaping circuit

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 36

Hardware description languages

 Describe hardware at varying levels of abstraction
 Structural description

 textual replacement for schematic
 hierarchical composition of modules from primitives

 Behavioral/functional description
 describe what module does, not how
 synthesis generates circuit for module

 Simulation semantics

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 37

HDLs

 Abel (circa 1983) - developed by Data-I/O
 targeted to programmable logic devices
 not good for much more than state machines

 ISP (circa 1977) - research project at CMU
 simulation, but no synthesis

 Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
 similar to Pascal and C
 delays is only interaction with simulator
 fairly efficient and easy to write
 IEEE standard

 VHDL (circa 1987) - DoD sponsored standard
 similar to Ada (emphasis on re-use and maintainability)
 simulation semantics visible
 very general but verbose
 IEEE standard

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 38

Verilog

 Supports structural and behavioral descriptions
 Structural

 explicit structure of the circuit
 e.g., each logic gate instantiated and connected to others

 Behavioral
 program describes input/output behavior of circuit
 many structural implementations could have same behavior
 e.g., different implementation of one Boolean function

 We’ll mostly be using behavioral Verilog in Aldec ActiveHDL
 rely on schematic when we want structural descriptions

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 39

module xor_gate (out, a, b);
 input a, b;
 output out;
 wire abar, bbar, t1, t2;

 inverter invA (abar, a);
 inverter invB (bbar, b);
 and_gate and1 (t1, a, bbar);
 and_gate and2 (t2, b, abar);
 or_gate or1 (out, t1, t2);

endmodule

Structural model

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 40

module xor_gate (out, a, b);
 input a, b;
 output out;
 reg out;

 assign #6 out = a ^ b;

endmodule

Simple behavioral model

 Continuous assignment

delay from input change
to output change

simulation register
- keeps track of
value of signal

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 41

module xor_gate (out, a, b);
 input a, b;
 output out;
 reg out;

 always @(a or b) begin
 #6 out = a ^ b;
 end

endmodule

Simple behavioral model

 always block

specifies when block is executed
ie. triggered by which signals

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 42

module testbench (x, y);
 output x, y;
 reg [1:0] cnt;

 initial begin
 cnt = 0;
 repeat (4) begin
 #10 cnt = cnt + 1;
 $display ("@ time=%d, x=%b, y=%b, cnt=%b",
 $time, x, y, cnt); end
 #10 $finish;
 end

 assign x = cnt[1];
assign y = cnt[0];

endmodule

Driving a simulation through a
“testbench”

2-bit vector

initial block executed
only once at start
of simulation

directive to stop
simulation

print to a console

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 43

Complete simulation

 Instantiate stimulus component and device to test in a
schematic

a

b

z
test-bench

x
y

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 44

module Compare1 (Equal, Alarger, Blarger, A, B);
 input A, B;
 output Equal, Alarger, Blarger;

 assign #5 Equal = (A & B) | (~A & ~B);
 assign #3 Alarger = (A & ~B);
 assign #3 Blarger = (~A & B);
endmodule

Comparator example

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 45

module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
 input n0, n1, n2, n3, n4, n5, n6, n7, self;
 output out;
 reg out;
 reg [7:0] neighbors;
 reg [3:0] count;
 reg [3:0] i;

 assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};

 always @(neighbors or self) begin
 count = 0;
 for (i = 0; i < 8; i = i+1) count = count + neighbors[i];
 out = (count == 3);
 out = out | ((self == 1) & (count == 2));
 end

endmodule

More complex behavioral model

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 46

Hardware description languages vs.
programming languages
 Program structure

 instantiation of multiple components of the same type
 specify interconnections between modules via schematic
 hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)

 Assignment
 continuous assignment (logic always computes)
 propagation delay (computation takes time)
 timing of signals is important (when does computation have its effect)

 Data structures
 size explicitly spelled out - no dynamic structures
 no pointers

 Parallelism
 hardware is naturally parallel (must support multiple threads)
 assignments can occur in parallel (not just sequentially)

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 47

Hardware description languages and
combinational logic
 Modules - specification of inputs, outputs, bidirectional, and

internal signals
 Continuous assignment - a gate’s output is a function of its

inputs at all times (doesn’t need to wait to be "called")
 Propagation delay- concept of time and delay in input affecting

gate output
 Composition - connecting modules together with wires
 Hierarchy - modules encapsulate functional blocks

III - Working with Combinational Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 48

Working with combinational logic
summary
 Design problems

 filling in truth tables
 incompletely specified functions
 simplifying two-level logic

 Realizing two-level logic
 NAND and NOR networks
 networks of Boolean functions and their time behavior

 Time behavior
 Hardware description languages
 Later

 combinational logic technologies
 more design case studies

