Propositional Logic

Libro di Testo

Universitext
Dirk van Dalen
Logic and Structure
Fifth Edition
<u>∞</u> Springer

opyrighted Material

Lettura aggiuntiva

language of propositional logic

alphabet:

(i) proposition symbols : p_0 , p_1 , p_2 , ..., (ii) connectives : \land , \lor , \rightarrow , \neg , \leftrightarrow , \bot ,

(iii) auxiliary symbols : (,).

 $AT = \{p_0, p_1, p_2, \dots, \} \cup \{\bot\}$

The set PROP of propositions is the smallest set X with the properties (i) $p_i \in X(i \in N), \perp \in X,$ (ii) $\phi, \psi \in X \Rightarrow (\phi \land \psi), (\phi \lor \psi), (\phi \rightarrow \psi), (\phi \leftrightarrow \psi) \in X,$ (iii) $\phi \in X \Rightarrow (\neg \phi) \in X.$

PROP is well defined? (PROP ≠Ø ?)

¬→⊥ ∉ PROP
Suppose $\neg \rightarrow \bot \in PROP$. Y = PROP – { $\neg \rightarrow \bot$ } also satisfies (i), (ii) and (iii).
 ⊥,p _i ∈ Y .
PROP is not the smallest set satisfying (i), (ii) and (iii)!!! impossible

The set PROP of propositions is the smallest set X with the properties (i) $p_i \in X(i \in N), \perp \in X,$ (ii) $\phi, \psi \in X \Rightarrow (\phi \land \psi), (\phi \lor \psi), (\phi \rightarrow \psi),$ $(\phi \leftrightarrow \psi) \in X,$ (iii) $\phi \in X \Rightarrow (\neg \phi) \in X.$ Theorem Let h: $\mathbb{N} \times A \rightarrow A$ and $c \in A$.

There exist one and only one function $f: \mathbb{N} \rightarrow A \text{ t.c.}$:

- 1. f(0)=c
- 2. \forall n∈ℕ, f(n+1)=h(n,f(n))

the proof is difficult

□∈{∧,∨,→}

Theorem 1.1.6 (Definition by Recursion) Let mappings $H_{\Box} : A^2 \to A$ and $H_{\neg} : A \to A$ be given and let H_{at} be a mapping from the set of atoms into A, then there exists exactly one mapping $F : PROP \to A$ such that

 $\begin{cases} F(\varphi) = H_{at}(\varphi) \text{ for } \varphi \text{ atomic,} \\ F((\varphi \Box \psi)) = H_{\Box}(F(\varphi), F(\psi)), \\ F((\neg \varphi)) = H_{\neg}(F(\varphi)). \end{cases}$

$$T(\varphi) = \cdot \varphi \quad \text{for atomic } \varphi$$

$$T((\varphi \Box \psi)) = (\varphi \Box \psi)$$

$$T(\varphi) \quad T(\varphi) \quad T(\psi)$$

$$T((\neg \varphi)) = (\neg \varphi)$$

$$T(\varphi)$$

SEMANTICS

truth table

 $\begin{array}{l} \text{Definition 1}\\ \text{A mapping } v: \text{PROP} \rightarrow \{0, 1\} \text{ is a valuation if}\\ v(\varphi \land \psi) = \min(v(\varphi), v(\psi)),\\ v(\varphi \lor \psi) = \max(v(\varphi), v(\psi)),\\ v(\varphi \rightarrow \psi) = 0 \Leftrightarrow v(\varphi) = 1 \text{ and } v(\psi) = 0,\\ v(\varphi \leftrightarrow \psi) = 1 \Leftrightarrow v(\varphi) = v(\psi),\\ v(\neg \varphi) = 1 - v(\varphi)\\ v(\bot) = 0. \end{array}$

Definition 2

A mapping v : PROP \rightarrow {0, 1} is a valuation if v($\phi \land \psi$) = 1 \Leftrightarrow v(ϕ)=1 and v(ψ)=1 v($\phi \lor \psi$) =1 \Leftrightarrow v(ϕ)=1 or v(ψ)=1 v($\phi \rightarrow \psi$)=1 \Leftrightarrow v(ϕ)=0 or v(ψ)=1, v($\phi \leftrightarrow \psi$)=1 \Leftrightarrow v(ϕ)=v(ψ), v($\neg \phi$) = 1 \Leftrightarrow v(ϕ)=0 v(\bot) = 0. the two definitions are equivalent

Theorem v: AT \rightarrow {0, 1} s.t. v(\perp) = 0 (assignment for atoms) \Rightarrow there exists a unique valuation [\cdot]_v:PROP \rightarrow {0,1} such that [φ]_v = v(φ) for each $\varphi \in$ AT

Lemma If v, w are two assignments for atoms s.t. for all p_i occurring in φ , $v(p_i) = w(p_i)$, then $[\varphi]_v = [\varphi]_w$.

Definition

- $\Rightarrow \phi$ is a **tautology** if $[\phi]_v = 1$ for all valuations v,
- $\Rightarrow \models \phi$ stands for ' ϕ is a tautology',

 \rightarrow let Γ be a set of propositions,

 $\Gamma \vDash \varphi \text{ iff for all } v : ([\psi]_v = 1 \text{ for all } \psi \in \Gamma) \Rightarrow [\varphi]_v = 1.$

SUBSTITUTION

(

$$\varphi[\psi/p] = \begin{cases} \psi \text{ if } \varphi = p \\ \varphi \text{ if } \varphi = /= p \text{ if } \varphi \text{ atomic} \end{cases}$$

 $\begin{aligned} (\varphi_1 \square \varphi_2)[\psi/p] &= (\varphi_1[\psi/p] \square \varphi_2[\psi/p]) \\ (\neg \varphi)[\psi/p] &= (\neg \varphi[\psi/p]) \end{aligned}$

Substitution Theorem

→ If $\models \varphi_1 \leftrightarrow \varphi_2$, then $\models \psi[\varphi_1/p] \leftrightarrow \psi[\varphi_2/p]$, where p is an atom.

$$\models [\phi_1 \leftrightarrow \phi_2]_{v} \leq [\psi[\phi_1/p] \leftrightarrow \psi[\phi_2/p]]_{v}$$

 $\models (\varphi_1 \leftrightarrow \varphi_2) \rightarrow (\psi[\varphi_1/p] \leftrightarrow \psi[\varphi_2/p])$

De Morgan's law: $[\neg(\phi \lor \psi)] = 1 \Leftrightarrow [\phi \lor \psi] = 0 \Leftrightarrow [\phi] = [\psi] = 0 \Leftrightarrow [\neg \phi] = [\neg \psi] = 1 \Leftrightarrow [\neg \phi \land \neg \psi] = 1.$ So $[\neg(\phi \lor \psi)] = [\neg \phi \land \neg \psi]$ for all valuations, i.e $\models \neg(\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$.

$$\models (\varphi \leftrightarrow \psi) \leftrightarrow (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$$

$$\models (\varphi \rightarrow \psi) \leftrightarrow (\neg \varphi \lor \psi)$$

$$\models \varphi \lor \psi \leftrightarrow (\neg \varphi \rightarrow \psi)$$

$$\models \varphi \lor \psi \leftrightarrow \neg (\neg \varphi \land \neg \psi)$$

$$\models \varphi \land \psi \leftrightarrow \neg (\neg \varphi \lor \neg \psi)$$

$$\models \neg \varphi \leftrightarrow (\varphi \rightarrow \bot),$$

$$\models \bot \leftrightarrow \varphi \land \neg \varphi.$$

≈ ⊆ PROPxPROP : φ ≈ ψ iff $\models φ ↔ ψ$. exercise ≈ is an equivalence relation on PROP