Speech coding and compression

Corso di Networked Multimedia Systems

Master Universitario di Primo Livello in Progettazione e Gestione di Sistemi di Rete Carlo Drioli

Università degli Studi di Verona Facoltà di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Informatica

Speech coding and compression: OUTLINE

Introduction to voice coding/compression

PCM coding

Speech vocoders based on speech production

LPC based vocoders

Speech over packet networks

Introduction

Approaches to voice coding/compression

- Waveform coders (PCM)
- Voice coders (vocoders)

Quality assessment

- Intelligibility
- Naturalness (involves speaker identity preservation, emotion)
- Subjective assessment: Listening test, Mean Opinion Score (MOS), Diagnostic acceptability measure (DAM), Diagnostic Rhyme Test (DRT)
- Objective assessment: Signal to Noise Ratio (SNR), spectral distance measures, acoustic cues comparison

PCM coding of speech signals

Simplest PCM coding of speech signals involves:

- Anti-aliasing filtering
- Sampling
- Companding
- Quantization

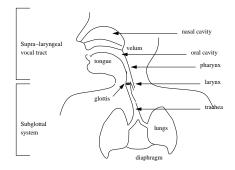
Example: ITU-T G.711 PCM

Bit rate	64 Kbit/s	
Sampling freq.	8 KHz	
Quant bits	8 bits	
Companding	logarithmic a-law and μ -law	

PCM coding of speech signals

DPCM/ADPCM

- Code difference of current sample from previous sample
- May use prediction coding: difference is from estimate of current sample based on past samples
- Difference is quantized through scalar quantization
- Quantization step-size and predictor coefficients can be adaptive (ADPCM)


Example: ITU-T G.726 PCM

Bit rate	32 Kbit/s	
Sampling freq.	8 KHz	
Bits per sample	4 bits	

Speech vocoders based on speech production

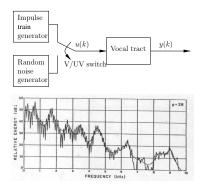
Physiology of the voice production

- Diaphragm, lungs, and trachea
- Larynx, vocal folds, and glottis
- Pharynx
- Oral and nasal cavities

Speech vocoders based on speech production

(Rough) classification of phonation sounds

- Voiced: vocal folds oscillation produces a periodic excitation source which excites the vocal tract resonances; different VT configurations correspond to different vowels
- Unvoiced: airflow is forced through a vocal tract constriction which can occur in several places between glottis and mouth, producing a noise sound with no harmonic structure


Principal acoustic parameters of voiced sounds

- > Pitch: fundamental frequency of excitation source
- Formant frequencies: location of energy emphasys/deemphasys in the spectrum due to vocal tract resonances

LPC based vocoder

LPC Model-based scheme

 Speech production is modelled as a linear filter excited by a switched noise pulse train

LPC based vocoder

LPC analysis

- The signal y(n) can be predicted from its past samples, with a certain error e(n) (prediction error): y(n) = ∑_{i=1}^N a_iy(n − i) + e(n)
- LPC analysis finds the best predictor coefficients a_i
- Prediction error e(n) is interpreted as the voice excitation (i.e., e(n) = G · u(n)). Different models can be used (pulse trains, excitation codebooks, etc.)
- Predictor coefficients are encoded through scalar quantization
- Alternative representations of LPC coefficients are preferred (e.g., reflection coefficients or LSPs) since more robust against quantization and interpolation

LPC based vocoder

Example: LPC-10 standard

- Bitrate: 2.4kbps
- ► The 10 LPC coefficients {a_k}¹⁰_{k=1} are represented as LSP parameters {ω_k}¹⁰_{k=1}
- If frame size is 20 msec (50 frames/sec) → each frame: 48 bits. A possible allocation:

Parameter Name	Notation	bits per frame
LSP	$\{\omega_k\}_{k=1}^{10}$	34
Gain	G ^{°°-1}	7
Voiced/Unvoiced and Period	V/UV, T	7

 Gain and LSP coefficients are encoded through scalar quantization

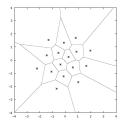
LPC based vocoder

Problems of LPC-based coding schemes

- V/UV classification: gross simplification
- Simplified pulse train excitation: perfectly periodic spectra, innatural speech synthesis

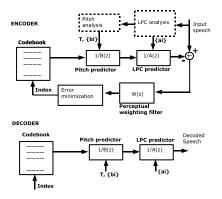
Refined LPC-based coding schemes

- Multi-Pulse Excited (MPE) and Regular-Pulse Excited (RPE) codecs: excitation u(n) is given by a fixed number of non-zero pulses for every speech frame
- MELP: Mixed-excitation linear prediction
- CELP: Code[book]-excited linear prediction uses Vector Quantization (VQ, catalogs of excitation waveforms)


LPC based vocoder

Scalar and Vector Quantization

Scalar quantization


Vector quantization
Example of 2D Vector quantization

LPC based vocoder

CELP vocoder

- Excitation is encoded through Vector Quantization technique
- Analysis-by-synthesis scheme to select code words
- A pitch prediction filter is included
- Uses perceptually weighted distortion measure for optimal code word selection

LPC based vocoder

Example: FS-1016 CELP vocoder

- ▶ Bitrate: 4.8 kbps
- ► The 10 LPC coefficients are represented as LSPs
- ► Frame size is 30 msec (33.3 frames/sec) → each frame: 144 bits.
- Frames are further divided into four 7.5 ms sub-frames
- An adaptive codebook is used to model excitation of the LPC filter
- A fixed codebook containing pseudo-random codes is also searched

Parametric vocoders

Other vocoder schemes used in current Standards

- Sub-band coders (SBC): based on filter bank front-end processing. Subbands are encoded separately.
- Sinusoidal analysis/synthesis coders: speech is modeled as sum of time-varying sinusoids
- Multi-Band Excitation (MBE) codecs: adopts an excitation/vocal tract separation model. The excitation spectrum is divided in voiced and unvoiced bands.
- Prototype Waveform Interpolation (PWI): information is sent about a single pitch cycle every 20-30 ms, and interpolation is used to reproduce a smoothly varying quasi-periodic waveform for voiced speech segments.

Speex: an open-source state-of-art speech codec

Speex characteristics

- Free software/Open-source speech codec
- Targeted at VoIP and file-based compression
- Supports narrowband (8 kHz), wideband (16 kHz), and ultrawideband (32-48 kHz) mode.
- Wide range of bit-rates available (2-44 kbps)
- Dynamic bit-rate switching and Variable Bit-Rate (VBR)
- Voice activity Detection (VAD)
- Variable complexity
- Encoding based on CELP scheme

Speech over packet networks

Overview

- Voice over Internet Protocol (VoIP) aims at providing real-time voice communication over packet-switched networks with the quality of circuit-switched network
- Problems due to packet-switched network unreliability: delays, packet losses, out-of-order packets, jitter, echo.

Speech over packet networks

Components of VolP

Signaling

Create and manage connections between endpoints (SS7, SIP, H.323) $\,$

Encoding

Conversion of voice in digital format

Transport

Transportation of voice packets across available network media (UDP, RTP)

Gateway control

Interoperation with different IP-based schemes or with PSTN

Speech over packet networks

Voice coders

- Transform, compress and organize voice into packets
- Usually there is a trade-off between voice quality and bandwidth used
- Available vocoders have bitrates ranging form 1.2 to 64 kbps
- Available vocoders have processing delay ranging form 5 msec to 20 msec
- In VoIP, total delay is made up of various components delays in the network

Speech over packet networks

A voice coding standard suited for VoIP: ITU G.729

- Based on CELP and CELP variants
- ▶ It offers toll quality speech at a low bit rate of 8Kbps.
- Operates on 10ms frames with short algorithm delays.
- Short-term synthesis filter is a 10th order LP filter.
- Long-term, or pitch synthesis, filter relies on adaptive-code book approach.
- G.729 Annex B provides description of Voice Activity Detection (VAD), Discontinuous Transmission (DTX), and Comfort Noise Generator (CNG) algorithms for transmission rate reduction during silence periods

A. S. Spanias, "Speech Coding: A Tutorial Review."*Proceedings of the IEEE*, 82(10):1541–1581, 1994.

Speech coding and compression