Electronic DALab

Systems
Design

Networked Emdedded Systens

Vacuity Analysis

Graziano Pravadelli — Luigi Di Guglielmo
Dipartimento di Informatica Universita di Verona

G-

Agenda

Motivations
State of the art
e Goal

Methodology

Pros and cons

Conclusions

SD

@

Motivations

Defect free products
Functional Verification

Model Checking -
‘i complete
Formal Properties

High

quality
verification

DUV
behaviors

G
Preliminaries

e \acuous pass:

—i.e., formula that is trivially true;
e e.g.,, AG(req — AX (ack));
e true if “req” never happens;
¢ then the truth value is independent from “ack” value.

— useless for verification purpose;

— leads verification engineers to a false sense of
safety.

@SD

Preliminaries: Affect and Vacuity

e Definition 1 (Affect) [Beer01]

— A sub-formula { of a formula ¢ affects ¢ in model
M if there is a formula |’ such that the truth
values of ¢ and d[Y & Y’] are different in M.

e Definition 2 (Vacuity) [Beer01]

— A formula ¢ passes vacuously in model M if M=¢
and ¢ includes a sub-formula that does not
affect ¢ in M.

¢ |n this case, we say that ¢ is -vacuous in M

@so=

Preliminaries: Affect and Vacuity

e Example
— AG(reqg — AX (ack))

e The formula is true if req never happens independently
from the value of AX(ack)

e AX(ack) does not affect the formula, which then passes
vacuously in a model where req never happens

e Previous definitions capture the intuitive
notion of vacuity independently from the logic

— But they are not practically useful

@SD

Preliminaries: Sub-formulas

e To limit the analysis to a small subset of sub-
formulae
— Definition 3 (Minimal sub-formulas) [Beer01]

¢ Let S be a set of sub-formulas. The minimal sub-
formulas of S is defined as:
min(S)={ P ES | B P’ ES such that P’y }
where ’< means that {’is a sub-formula of
e Assumption:
— each sub-formula is unique

@so=

Preliminaries: Sub-formulas

e Example
- d=AG((a A B) > AX(y V —a))
— Subformulae of ¢
eS={o; ABpayBqi,v. Vo, v, 0,0,
— Minimal sub-formulae

e min(s)={ay, B,y ,0,}

@sn,

Preliminaries: vacuity

e Theorem 1 [Beer01]

— In a logic with polarity, for a formula ¢, and a set S of
sub-formulas of @, for every model M,
@ is S-vacuous in M iff
e there is Y € min(S) such that
* ME@[U<X], where X=false if Mi=@ and s is of positive
polarity, otherwise, X=true.
e minimal sub-formulae are substituted with either

true or false, thus reducing the number of checks
o P[P <&X] is a witness formula

Preliminaries: vacuity

¢ From Theorem 1:
— @ is not Y-vacuous if M ¥ @[& X]
— In this case

e The counterexample is an interesting witness proving
the non vacuity of ¢ with respect to |

1

I

@SD

State of the Art

e Vacuity checking:
— witness formulas obtained by the substitutions of sub-
formulas with true or false according to their polarity;

— witness formulas failure highlight how substituted
sub-formula affects the original formula;

— Theorem 1 allows to focus only on model checking ¢
where the minimal sub-formulas are substituted;

e Limits:
— model checking;
— verification of new set of formulas.

Increasing
verification time

@se

State of the Art

e [Beer97]

— identification of w-ACTL formulas for which vacuity detection can be
done efficiently

e A w-ACTL formula is an ACTL formula in which for all binary operators at least
one of the operand is a propositional formula

e [Vardi9g]

— vacuity detection for CTL* formulas consists of replacing each sub-
formula Y of a formula ¢ by true and false

— vacuity with respect to sub-formulas occurrences
e [Beer01]

— vacuity detection for CTL* formulas consists of replacing only minimal
sub-formulas by either true or false according to their polarity

— vacuity with respect to sub-formulas occurrences

@sn,

State of the art

e [Armoni03]

— vacuity detection with respect to both sub-formulas
and sub-formulas occurrences but

— required manual approach for analyzing vacuity alert

¢ [Gurfinkel07]

— the method is based on a naive algorithm based on
model checking formulas obtained by replacing
atomic sub-formulas with unconstrained Boolean
variables

— the approach detects vacuity as defined in [Beer97],
[Beer01]

Goals

e New vacuity analysis approach:
— without model checking
— without witness formulas definition
— effective as current approaches
— more efficient
— based on fault simulation
e |t requires:
— checker generation
— interesting faults injection
— results analysis

M
1)

Satisfied
Properties

\ Model Checking

ethodology

Interesting
faults
injection

Fault Simulation

G

DEFINE

state_START :=
(state(1..0)=START(1..0));

DEFINE

state_FETCH1 :=
(state(1..0)=FETCH1(1. 0))

vunit checkers_PSL {

inherit subformula-occ CIIELECS M

g‘assert)
AG(state_START ->

AX(AX(state_FETCH1)))

Checkers

8 ARCHITECTURE checker OF checkers_psl IS

16BEGIN
17 state_start <=
_gtate(l DOWNTO 0) = start(1 DOWNTO 0));
1q state_fetchl <=
. (state(1 DOWNTO 0) = fetch1(1 DOWNTO 0)),

0 pl: PROCESS (clock)
21 BEGIN
22IF-{{clock.=.1!)} THEN
23 focs ok <=
i NOT((focs_v_checkers_psl(3)

27

END PROCESS p1;

42 END checker;

@SD

Interesting Faults

e They perturb only one minimal sub-formula in
the checker
— Sub-formulae are grouped by scope of the temporal
operators to address tautology

e Contemporaneous: occurrences of the same subformula that
are in the scope of the same temporal operators

e Opposite: contemporaneous occurrences of the same
subformula whit opposite polarity

e its value is related to sub-formula polarity

e if faults are detected, formula does not pass
vacuously

@so=

Interesting Faults

e Definition 4

— Let
e ¢ a formula in a logic with polarity
¢ Cthe corresponding checker,
e S the set of minimal sub-formulas of ¢, and
¢ A the set of concurrent assignments of C storing the value of

sub-formulas in S during simulation.

— The set of interesting faults for C is defined as follows:

e F={stuck-atXona|a € A}

where X = false if the sub-formula associated to assignment
a has positive polarity, X = true otherwise

@SD

Interesting Faults

e Example:
— considering the property
e AG(state_ START>AX(AX(state_FETCH1)));
— state_START is of negative polarity:

e corresponding interesting fault is stuck-at-1
o AG(true >AX(AX(state_FETCH1)));

— state_ FETCH1 is of positive polarity:
e corresponding interesting fault is stuck-at-0
e AG(state_START - AX(AX(false)));

@so=

Interesting Faults

e Theorem 2 (Detectable faults vs. vacuity)

— Let
e ¢ aformulain a logic with polarity,
e C the corresponding checker,
¢ S the set of minimal sub-formulas of ¢, and
¢ F the set of interesting faults of C associated to S
— The fault f € F, such that f is associated to sub-
formula Y € S as defined in Def. 4, is detectable,
iff d is not Y-vacuous

10

@SD

Interesting Faults

e Previous theorem allows:

— To reason about vacuity by fault simulating interesting
faults in the checker instead of model checking
witness formulae

¢ A checker failure due to the effect of an interesting fault f
corresponds to prove that the sub-formula § perturbed by f
affects the truth value of ¢

e Consequently, the sequence of values generated
by the testbench that causes the checker failure
(i.e., the test sequence of f) is an interesting
witness proving that ¢ is not {-vacuous

Simulation Environment

@ fault activated detected fault

/ AN \\/
Fauit
' Injector

K Fault Simulation

Mutants Report

11

@SD

Pros and Cons

e Testbenches, drawbacks:

— inefficiency of testbenches used during fault
simulation may prevent the detection of
interesting faults

— from practical point of view:

e formula does not pass vacuously if interesting faults are
detected

¢ on the contrary, it is not possible to conclude that a
formula is vacuous

@so=

Pros and Cons

e Testbenches, advantages:
— in ABV testbenches must be as effective as
possible
— from practical point of view:

e it is mandatory refining testbenches that allow a
formula to pass vacuously
— in this context, the proposed approach is
satisfactory

12

@sn,

Pros and Cons

e Checkers, drawbacks:

— it is not possible to conservatively generate
checkers for all kind of temporal formulas

— FoCs is able to generate checkers for formulas
defined according to the Simple Subset of PSL

— restrictions guarantees that formulas can be
simulated

Pros and Cons

e Checkers, advantages:

— proposed methodology is independent from the
tool adopted for checkers generation

— the idea of storing (and perturbing) the values of
sub-formulas in explicit signals driven by
concurrent statements can be exploited whatever
the structure of the generated checker is

13

@SD

Experimental results

e Benchmarks:
— ITC-99 benchmarks;

— control unit of an 8-bit CPU with an instruction set architecture composed of
13 instruction;

e Properties:

— for ITC-99 benchmarks have been taken from the vis-verilog-models-1.0
archive;

— for cpu design have been defined by analyzing its specification;
e Checkers:

— generated by using FoCs;
Interesting faults injection and testbench generation:

— using the features of the Laerte++ automatic test pattern generator;
e Compared with:

— formal vacuity analysis performed according to the approach proposed in
[Beer01] by using VIS to model check witness formulae.

Experimental Results

75 ﬁ‘ -_— 25 I —

| |
15— fF—— i 15 j B | —
0 — J oA
llladd ol
o 48 1'Irll ' 0 50 Tllll

b02 o4 |, LT b02 e

l0$ hoﬁ: b Qvepu b24vt\)l(i)t?qg(s)ge§1p dk B UWF

Verification Time

Time Comparison Saved Time

,_
]
|
|

|
|
|

1%
|
|
|
|
|
|

[22]

=
N
o

2 J | N 76%
avera e
o & . - J . 0 2
b02h041,9 b02
u S'mUBg%hlo “Mpdel Checking bo‘;ol?) %Bﬁ?pm&m\al time saved

@so=

Tautologies: Problem

* Not marked as vacuous formulas when two
separate occurrences of the same sub-formula
are considered to be different sub-formulas

—eg,(aV -a):
(false V = a)=(-a)
(aV -true) =(a)

e marked as vacuous by considering sub-formulas
instead of occurrences
—eg,(aV -a):

(true V =true) =(a V -a)
(false V = false) = (a V - a)

@sn,

Tautologies: Problem

e But if we use sub-formulae instead of
occurrences for
—aNJA(G(-BV a)
e false A (G (- B V false)) is false
e oA (G(-true V a))is a A (G a) which can be falsified

— is marked as non-vacuous, even if it is vacuous
when 3 never occurs

Tautologies: Solution

e Modify the formula to remove temporal
overlapping among operators

e Opposite (contemporaneous) formulae are
substituted simultaneously

e Non opposite (contemporaneous) formulae
are substituted individually

16

@SD

Tautologies

e Example
-G(-a V F(a))
e |s equivalent to
e G(-a V aV X(F(a))
— Sub-formulae S = {~a,, oy, a,, 013}
- Min(S) = {a,;, a,, o5}
* a,, O, are opposite

* 0, has a different temporal scope

@so=

Tautologies

e, =aV -a
— Min(S)={a, a,}
— o, 0., are opposite, = simultaneous substitution

e false V - false = true = vacuous
e true V - true = true = vacuous

17

@SD

Tautologies

¢« g,=an(G(-pV a)
— Let us consider that 3 never occurs
— Min(S)={a,, a.,, B,} are not opposite
- @,[a, € false] = false
- ,[pf, € true] =a A G (o)
* Possibly false
- @,[a, €< false] =a A G (- B)

e Since B never occurs and @, is satisfied by the model,
@,[a, € false] = a = true = vacuous

35

G

Conclusions

New vacuity analysis approach

l
Testbenches
quality

. : Innovative approach
Dinamic ABV for ABV

Effective

as formal
approaches

18

@SD%

References

e L. Di Guglielmo, F. Fummi and G. Pravadelli
“Vacuity Analysis by Fault Simulation”, Proc.
of ACM/IEEE MEMOCODE 2008

e L. Di Guglielmo, F. Fummi and G. Pravadelli
“Vacuity Analysis for Property Qualification by
Mutation of Checkers”, Proc. of ACM/IEEE
DATE 2010

19

