DALab

Networked Enbedéed Systens

Overspecification Analysis

Graziano Pravadelli
Dipartimento di Informatica Universita di Verona

G-

Agenda

Introduction & Motivations
State of the art
Background

Methodology
— Redundancy analysis

Fault model
Experimental results

Introduction

boms{stamt 2

YES if all properties
hold on the DUV
model

Gommlce ?

Formalization
‘k‘ -
DUV F I "'
model = ormaf
' properties -«

|

I A coverage is required to
: measure the property

I quality
I

I

I

I

checking

]}]

_____ Mimiman?

Refinement

@SD‘
Motivations

* Why minimal?
— Property checking is very time-consuming
* Incremental design requires to continuously check
the refined design

* Model checking is reiterated at different abstraction
levels

* |P-cores can be distributed together with properties
for IP-reuse

@@ME Simulation-based approach to reduce @

@so-
State of the Art

« Some papers address property
completeness and vacuity analysis by

— formal methods
— simulation-based techniques

Property minimzron oot yel ivestigated

Geo=
Background

» Arealization o= (M, a) is a couple where
— M is a model
— a is a function which assigns values to M inputs

» Given a realization o and a property g, the
interpretation of @ in ocanbe T or F

* g@isvalid (= ¢)ifitis T in all the interpretations
— Axioms: a set of valid properties

G-

Background

» A set of properties @ is satisfiable if there exists
an interpretation where all properties in ® are T

« g@is alogical consequence of y (y & @) if pis T
in all the interpretations where yis also T

* Modus ponens (MP)
—ifgpand ¢ »yare Tin othen yisTin o
— Modus ponens preserves logical consequence

G-

Background
» A deduction from @ is a finite succession of
properties which are axioms, or are in ® or are
obtained from previous properties by MP

* @ can be deducted from @ (®+) if there is a
deduction from ® where the last property is ¢

» Given a set of properties ® and a property ¢, a
logic is complete if it always happens that
P D@

Methodology
Removing Given a set of properties
redundant ®, p € ® is redundant if
properties dP\p}l= @

= |t identifies redundant
properties by deduction
+ Too time-consuming
+ No automatic

* |t Identifies “essential properties”
— Based on high-level fault simulation
— Automatic & fast

@SD ‘

Redundancy Analysis

e non fundaments) BY tnearem
IO

l

Pick up @ that has
not been marked

dpE®
not marked as

as fundamental undamental? |(I)| =N
Mark g as N prOOfS

fundamental

Y

: 1

N*exptime

<=2 \{¢g}

Redundancy Analysis

Model
perturbation

Property
coverage
computation

|
Covered II
faults

BY mroperiy
coyeage

Ese

Property Coverage

* Is there a relation between fault detection and property
coverage?
— Properties represent the golden model
* They hold on the design implementation

— Implementation is perturbed by using a high-level fault
model

Do all properties hold on the perturbed implementations?

)|

F Properties are not able to distinguish between

faulty and fault-free implementation
The set of properties is INCOMPLETE !

@se

Redundancy Analysis
» Consider
_ M, the model of the DUV } M= &
- o={g, ..., ¢}, the set of properties
— F={f}, ..., f }, the set of detectable faults
— Mp={My, ..., M, }, the set of perturbed models
- F,, ..., F,, the set of faults detected by ¢,, ..., @,

4)
Conjecture 1 v; (d)\{goi}|=qai)=>(Fi gUFj]
e Ea—
Conjecture 2 vi|E C|JF, |=(®\{g}-¢)

Gse=

Proof of Conjecture 1

)

[Conjecture1 Vi (@\{p}- @)=

If ® \{@} k£ ¢ then M= @ \{p} = M g,
ige
Mﬁj’é @, = MﬁJl'é D \{(pL}

uge

If a fault is detected by ¢, then
it is also detected by @ \ {¢,}

Consequence

[VZ(F cZUFJ = (@\{g <)]

i#]

0

If a property covers a fault
that is not covered by any other property then
it is not logical consequence of the others,
thus it is not redundant

G-

Counterexample of Conjecture 2

EConjecture 2 VZ(F CUFJ (@\{@}1- %)}

1#]

00-/00 0--/11
OlO/OO ‘
1_—/0 011/00

1--/00
B G ((r=1) & X((i11=1) & (i2=0))) = XX((01=0) & (02=0)))

= @ G(((r=1) & X((11=0) & (i2=0))) = XX((01=0) & (02=0)))
= They cover the same set of faults, but neither ¢,— ¢, nor g, ¢,

* Fault model flips
one by one the
output of M

Consequences

» Conjecture 1

— The methodology provides a necessary
condition for property minimization

— Faster than theorem proving
» Conjecture 2

— The methodology does not provide a sufficient
condition

— It depends on the adopted fault model

@SD ‘

Fault Model Dependency

@ G (((r=1) & X((11=1) & (i2=0))) > XX((01=0) & (02=0))) !
@y G ((r=1) & X((11=0) & (i2=0))) > XX((01=0) & (02=0)))

« fcannot be modeled by the “flipping fault model” F
* @, Or @, is redundant for F

@, detects fwhile ¢, does not M F U {/} shows that ¢,}= ¢,

Analogously, there exists /"€ F such that F U {/"} w8 ;7 @,

Final Methodology

1. Computing the property coverage
2. Compare the sets of faults detected by
properties (N properties - N comparisons)

3. Mark the set of properties that are surely non
redundant

4. Use a Theorem Prover to analyze remaining
properties

B et el

Qo=

Fault Model
Bt Coverage [Hj Trams{ion Gauit
— Bit failure — Output failure
« a=b m a=f(b) . Iairlf%(b)i;failure, but only

» Each bit can be

stuck-at O or stuck-at 1 _ Transition failure

* |t changes the
— Condition failure destination state of a

« If (a==b)m® if(f(a==b)) transition
» Each condition can be

stuck-at T or stuck-at F — Multiple faults

 Output failure or
transition failure or
output + transition failure

— Single fault

10

Experimental Results

Design | In | Out|#Gates| #FF D #BC #TF | #BC+TF
b01 4 2| 1319 5| 13 201 536 737
b02 3| 1 296 4 9 52 161 213
b03 6 4 629 30| 18 159 81 240
b06 4| 6 179 9| 23 120| 812 932

BC TF __BC+TF J—

Design| ® | NR |[Time(s)| NR Time(s)/NR Time(s) |/ R N
b01 13 7 0.2 0.3 0. 4 9
b02 9 3 0.3 0. 0. 2
b03 18 5| 224 22.5 23. 5/ 13
b06 23 9 8.9 13 9.0 9.2 1 2

@so
Experimental Results
Time (s) Saving (%)~ ™\
Design| ¥ | BC | TF |BC+TF| T.P. BC TF BC+TF\
b01 13| 8.3| 12.6 8.6 20.2
b02 9| 0.5 0.4 0.6 0.8
b03 18| 65.9| 76.1 66.4 98.5
b06 23| 52.0| 44.5| 447 69.7

11

G-

Conclusions

» Simulation-based approach...
— ...to analyze logical consequence of properties
— ...to remove redundant properties

* It provides
— a necessary condition for logical consequence
— > 30% of saving time with respect to TP

* |t does not provide
— sufficient condition, it depends on the fault model

G-

References

» S. Brait, F. Fummi and G. Pravadelli “On
the Use of a High-Level Fault Model to
Analyze Logical Consequence of
Properties”, Proc. of ACM/IEEE
MEMOCODE 2005

12

