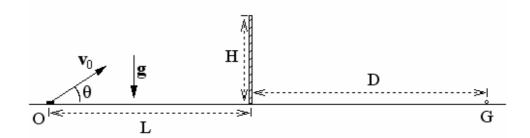
UNIVERSITA' DI VERONA

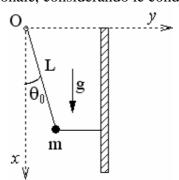
FACOLTA' DI SCIENZE MM. FF. NN.

CORSO DI LAUREA IN INFORMATICA E BIOINFORMATICA


ESAME DI FISICA

PROVA SCRITTA - 23 Settembre 2008

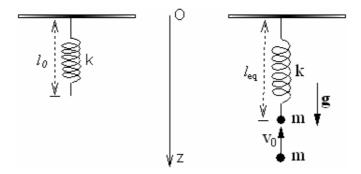
Cognome e Nome (in stampatello): .	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
Numero di matricola:			


Problema n. 1: Un disco di hockey, colpito da un giocatore a livello della pista di ghiaccio, sfiora la sommità di una parete di vetro di altezza H=2.8~m. Il tempo impiegato dal disco per arrivare a quel punto è 0.6 secondi e lo spostamento lungo il piano orizzontale è L=12~m. Calcolare:

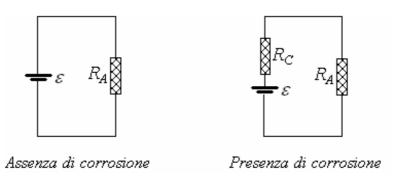
- a) il modulo della velocità iniziale del disco;
- b) l'angolo θ formato dal disco con la pista di ghiaccio al momento del lancio;
- c) la quota massima raggiunta dal disco durante il suo volo;
- d) la distanza D del punto G di caduta al suolo del disco rispetto alla parete.

Problema n. 2: Un corpo puntiforme di massa m=20 kg è attaccato all'estremità di un'asta rigida, sottile, di massa trascurabile e di lunghezza L=0.8 m avente l'altra estremità imperniata nel punto O del piano verticale. Il corpo è mantenuto in equilibrio statico tramite una corda tesa in configurazione orizzontale in modo tale che l'asta formi un angolo $\theta_0=0.1$ rad con la verticale. All'istante t=0 la corda viene tagliata e il corpo inizia a oscillare nel piano verticale attorno al punto O. Trascurando tutti i possibili attriti, determinare:

- a) la tensione T della corda per t < 0;
- b) la reazione \mathbf{R} esercitata dalla cerniera sull'asta nel punto O di sospensione per t < 0;
- c) l'equazione del moto rotazionale del corpo attorno al perno O per t>0;
- d) la legge oraria del moto rotazionale, considerando le condizioni all'istante t =0.


Problema n. 3: Un corpo puntiforme di massa m=1.2 kg scivola nel piano verticale lungo un profilo circolare, per metà scabro (prima parte) e per metà liscio (seconda parte), di raggio R=0.6 m. Il corpo parte da fermo dalla sommità del profilo e arriva al fondo di esso con velocità $v_0=2.5$ m/s. Calcolare:

- a) il lavoro totale delle forze agenti sul corpo tra la posizione iniziale e il fondo del profilo;
- b) il lavoro della forza di attrito tra il punto iniziale e il fondo del profilo;
- c) l'angolo θ formato con la verticale dal raggio congiunente il corpo puntiforme ed il punto O nell'istante di arresto del corpo stesso;
- d) il modulo dell'accelerazione del corpo puntiforme nel punto di arresto.


Problema n. 4: Una particella puntiforme di massa $m_1 = 50$ g è attaccata ad una molla di costante elastica k = 10 N/m e di lunghezza a riposo $l_0 = 0.6$ m. Inizialmente la particella è ferma in equilibrio sotto l'azione della gravità e della molla. Al tempo t = 0 una seconda particella pure di massa $m_2 = 50$ g, in moto in direzione verticale dal basso verso l'alto, urta la prima con velocità $v_0 = 4$ m/s restandovi attaccata. Determinare nel sistema di riferimento cartesiano Oz (vedi figura):

- a) la velocità del sistema delle due particelle subito dopo l'urto ($t = 0_+$);
- b) l'energia dissipata durante l'urto;
- c) la distanza minima dal punto O raggiunta dal sistema nel suo moto dopo l'urto;
- d) l'accelerazione del sistema in tale punto.

Problema n. 5: Una batteria di automobile, assimilabile a un genitore di corrente, è caratterizzata da una forza elettromotrice (f.e.m.) E=12 V e da una resistenza interna trascurabile ($R_i=0$) in assenza di corrosione. I processi di corrosione, che si manifestano principalmente sul polo positivo della batteria, causano la presenza di una resistenza addizionale $R_C=0.1$ Ω al terminale positivo della batteria. Assumendo una resistenza di avviamento $R_A=0.04$ Ω , calcolare:

- a) la corrente *i* e della potenza *P* fornita dalla batteria in assenza di corrosione;
- b) la corrente i^* e la potenza P^* erogate dalla batteria in presenza di corrosione;
- c) la potenza $P_{\rm av}$ effettivamente utilizzata per l'avviamento.

Quesito: Enunciare e dimostrare il teorema di conservazione dell'energia meccanica di un punto materiale, indicando esplicitamente i limiti di validità di tale teorema.