
1

-  Applet java appaiono di frequente nelle pagine
web

-  Come funziona l'interprete contenuto in ogni
browser di un certo livello?

-  Per approfondire il funzionamento della Java
Virtual Machine (JVM):

-  "The Java Virtual Machine Specification" di Tim
Lindholm e Frank Yellin disponibile on line su
http://java.sun.com

2

Funzionamento di Java

•  A differenza degli altri linguaggi di programmazione
per Java lo scopo fondamentale e' funzionare su ogni
tipo di hadware che possegga un’implementazione
della Java Virtual Machine (JVM).

•  Il .class che otteniamo dalla compilazione non e'
codificato per il linguaggio macchina

•  Ad eseguire il .class non sara', quindi, il processore
ma un programma che interpreta i bytecode e
trasmette i comandi corrispondenti al processore.

3

The Java Virtual Machine

“Java Architecture”
•  Java Programming Language

•  Java Virtual Machine (JVM)

•  Java API

4

Reference

The content of this lecture is based on Inside the
Java 2 Virtual Machine by Bill Venners

– Chapter 1 Introduction to Java's Architecture
»  http://www.artima.com/insidejvm/ed2/introarchP.html

– Chapter 5 The Java Virtual Machine
»  http://www.artima.com/insidejvm/ed2/jvmP.html

–  Interactive Illustrations
»  http://www.artima.com/insidejvm/applets/index.html

5

The Java Programming Environment

6

The Java Platform

The byte code generated by the Java front-end
is an intermediate form

•  Compact
•  Platform-independent

7

The Class File

Java class file contains
•  Byte code for data and methods (intermediate form,

platform independent)

•  Symbolic references from one class file to another
– Class names in text strings
– Decompiling/reverse engineering quite easy

•  Field names and descriptors (type info)

•  Method names and descriptors (num args, arg types)

•  Symbolic refs to other class methods/fields, own
methods/fields

8

Bytecode Basics

•  Bytecodes are the machine language of the Java
virtual machine.

•  A method's bytecode stream is a sequence of
instructions for the Java virtual machine. Each
instruction consists of a one-byte opcode followed by
zero or more operands. The opcode indicates the
action to take.

•  Each type of opcode has a mnemonic. In the typical
assembly language style, streams of Java bytecodes
can be represented by their mnemonics followed by
any operand values.

9

Bytecode Basics ctd.

// Bytecode stream:
03 3b 84 00 01 1a 05 68 3b a7 ff f9
// Disassembly:
iconst_0 // 03
istore_0 // 3b
iinc 0, 1 // 84 00 01
iload_0 // 1a
iconst_2 // 05 ...

10

The Role of the Virtual Machine

Local or
Remote

11

Class Loaders

•  Bootstrap (default) loader (in the JVM)
•  User-defined (custom) loaders

12

Dynamic Class Loading

•  You don't have to know at compile-time all the
classes that may ultimately take part in a running
Java application.

User-defined class loaders enable you to
dynamically extend a Java app at run-time

•  As it runs, your app can determine what extra
classes it needs and load them

•  Custom loaders can download classes across a
network (applets), get them out of some kind of
database, or even calculate them on the fly.

13

The Execution Engine

Back-end transformation and execution
•  Simple JVM

–  byte code interpretation

•  Just-in-time compiler
–  Method byte codes are compiled into machine code the first time they

are invoked
–  The machine code is cached for subsequent invocation
–  It requires more memory

•  Adaptive optimization
–  The interpreter monitors the activity of the program, compiling the

heavily used part of the program into machine code
–  It is much faster than simple interpretation, a little more memory
–  The memory requirement is only slightly larger due to the 20%/80%

rule of program execution (In general, 20% of the code is responsible
for 80% of the execution)

14

The Java Virtual Machine

15

Shared Data Areas

Each JVM has one of each:
 Method area: byte code and class (static) data
storage

 Heap: object storage

16

Thread Data Areas

Frame in
Execution

17

Stack Frames

Stack frames have three parts
•  Local variables
•  Operand stack
•  Frame data

18

Stack Frame
Local Variables

class Example3a {

 public static int
runClassMethod(int i, long
l, float f, double d, Object
o, byte b) {

 return 0;

 }

 public int
runInstanceMethod(char c,
double d, short s, boolean
b) {

 return 0;

 }

}

19

Stack Frame
Operand Stack

Adding 2 numbers

iload_0
iload_1
Iadd
istore_2

Compiler can tell how many slots the
op stack will need for a method

20

Stack Frame
Frame Data

The stack frame also supports
– Constant pool resolution

– Normal method return

– Exception dispatch

21

Stack Frame
Frame Allocation in a Heap

class Example3c {

 public static void
addAndPrint() {

 double result =
addTwoTypes(1, 88.88);

System.out.println(result)
;

 }

 public static double
addTwoTypes(int i, double
d) {

 return i + d;

 }

}

22

Stack Frame
Native Method

A simulated stack of the target language (e.g. C)
is created for JNI

23

The Heap

•  Class instances (objects) and arrays are stored
in a single, shared heap

•  Each Java application has its own heap
– Isolation
– But a JVM crash will break this isolation

•  JVM heaps always implement garbage collection
mechanisms

24

Heap
Monolithic Object Representation

25

The Heap
Split Object Representation

26

The Heap
Memory/Speed Tradeoff

27

The Heap
Arrays as Objects

28

Examples

HeapOfFish
–  http://www.artima.com/insidejvm/applets/HeapOfFish.html
–  Object allocation illustration

Eternal Math Example

–  http://www.artima.com/insidejvm/applets/EternalMath.html
–  JVM execution, operand stack, illustration

