
NES Simulation with SCNSL

Alex Malfatti, Davide Quaglia

A.A. 2014/2015

Outline

• Introduction

• Installation & Setup

– SCNSL

– Examples

• Network scenario creation

• Exercises

221/04/2015

Introduction

21/04/2015 3

Network Simulation

• Network simulation allows to reproduce the

behavior of both computational and

communication aspects of a network, modeling

packet-based networks such as Ethernet, wireless

LAN and field bus.

21/04/2015 4

SystemC Network Simulation Library (SCNSL)

• SCNSL is an extension of SystemC to allow

modeling packet-based networks such as

wireless networks, Ethernet, and fieldbus. As

done by basic SystemC for signals on the bus,

SCNSL provides primitives to model packet

transmission, reception, contention on the

channel and wireless path loss. The use of SCNSL

together with SystemC allows the easy and

complete modeling of distributed applications of

networked embedded systems such as wireless

sensor networks, routers, and distributed plant

controllers.

21/04/2015 5

SCNSL components (1)

21/04/2015 6

SCNSL components (2)
• Task:

– The application interacting with the network, that is the system
functionality which is under development.

– Tasks shall be implemented by designers either at RTL or TLM level.

– From the point of view of the network simulator, a task is just the
producer or consumer of packets and therefore its implementation is
not important.
For the system designer, task implementation is crucial and many
operations are connected to its modeling (i.e., change of abstraction
level, validation, fault injection, HW/SW partitioning, mapping to an
available platform, synthesis and so forth).

• TaskProxy:
– Acts as an intermediate layer between designer’s domain and simulator

domain.

– Each Task instance is connected to one or more TaskProxy instances
and, from the perspective of the network simulation kernel, the
TaskProxy instance is the alter-ego of the task.
Viceversa, from the point of view of the application, each TaskProxy can
represent a sort of socket interface, since it provides the primitives for
network communication.

21/04/2015 7

SCNSL components (3)
• Communicator:

– Element created by SCNSL developers to modify simulation
behavior. For example, it can be used to implement queues and
protocols.

– Their presence is not mandatory.

• Node:
– Abstraction of physical devices.

– Tasks are hosted on Nodes.

– Tasks deployed on different nodes shall communicate by using
the API provided by SCNSL for the network communication,
while tasks deployed on the same node shall communicate by
using standard SystemC communication primitives.

• Channel:
– Models the pysichal transmission channel. For example wired

and wireless are available.

• Environment:
– Models some properties of the surrounding environment, also

providing functions to get informations related to the
transmissions of packets (e.g., delay, error rate, etc.).

21/04/2015 8

Installation & Setup

21/04/2015 9

Requirements

• Linux operating system

• SystemC library, version 2.2 or newer

• TLM library 2.0 or newer

• Cmake

• A C++ compiler and a linker

• Doxygen, for the documentation

• Latex, for the documentation

21/04/2015 10

Install SCNSL (1)

• SCNSL is available to download at:

• If you have the version control system «Bazaar»

(similar to the most well-known «Git»), you can

get the most updated version of the library,

directly from the repository, by using bzr client

as follows:

21/04/2015 11

https://sourceforge.net/projects/scnsl/

bzr checkout bzr://scnsl.bzr.sourceforge.net/bzrroot/scnsl/trunk

Install SCNSL (2)

• In order to be installed, SCNSL requires that the path to

SystemC include and library directories are placed inside

the environment variable PATH.

• First export the root directory of SystemC.

• Then add to PATH its include directory,

• And its library path:

– If you have a 64 bit machine:

– Otherwise:

21/04/2015 12

1$ PATH=$PATH:$SYSTEMC_DIR/include

1$ PATH=$PATH:$SYSTEMC_DIR/lib-linux64

1$ PATH=$PATH:$SYSTEMC_DIR/lib-linux32

1$ export SYSTEMC_DIR=/your-systemc-root

Install SCNSL (3)
• Move inside "trunk" directory, create a temporary

directory (e.g.,"obj"), and move into it.

• Run CMake, and optionally, run ccmake to configure
other parameters.

• Compile scnsl library.

• Compile all the tests.

• Optionally generate the documentation.

21/04/2015 13

1$ cd trunk

2$ mkdir obj

3$ cd obj

1$ cmake ..

2$ ccmake .

1$ make install

1$ make tests

1$ make doc

Install SCNSL (4)

• The previously procedure do not compile the

examples, but only the SCNSL library.

– Output libraries will be placed into the “lib/”

directory.

– Relative headers into “include/” directory.

– Generated documentation will be installed into

the “doc/” directory.

• In order to use the scnsl library, remember to add to

– The LD_LIBRARY_PATH environment variable the

directory into which the SCNSL library is located.

– The PATH environment variable the include directory

of SCNSL.

21/04/2015 14

Install SCNSL in UNIVR

• Download and untar the «scnsl.tar.gz» in your

home directory (or wherever you prefer).

• Create the "obj/" folder.

• From inside "obj/", export SystemC

include and library paths by using the

script inside "scripts/" forlder.

• Execute the procedure explained from

slide 13 onwards.

21/04/2015 15

1$ tar –xzvf scnsl.tar.gz

1$ source ../scripts/env-setup.sh

Network scenario creation

21/04/2015 16

Custom scenario (1)

• In general the steps to follow when creating a

network scenario in SCNSL are:

– Instanciate the SCNSL Simulator.

– Instanciate the environment.

– Instanciate nodes.

– Instanciate channels.

– Bind nodes to channels, and set node’s properties.

– Instanciate tasks.

– Instanciate communicators (optional).

– Bind tasks, communicators (optional) and channels.

– Set tracing features.

21/04/2015 17

Custom scenario (2)

• SCNSL Simulator creation:

– It is important, first of all, to create an instance of

SCNSL Simulator; the instance is a singleton and

provides the methods for creating the scenario

components.

• Environment creation:

– This object can be used to model, manage and

get some properties related to the environment.

21/04/2015 18

Scnsl::Setup::Scnsl_t * sim =

Scnsl::Setup::Scnsl_t::get_instance();

Scnsl::Utils::DefaultEnvironment_t::createInstance(

ALPHA_VALUE);

Custom scenario (3)

• Node creation:

• Channel setup and creation:

21/04/2015 19

Scnsl::Core::Node_t * NODE_NAME = sim->createNode();

CoreChannelSetup_t NAME_OF_SETUP;

NAME_OF_SETUP.name = "full_duplex_channel";

NAME_OF_SETUP.extensionId = "core";

NAME_OF_SETUP.channel_type(

CoreChannelSetup_t::FULL_DUPLEX);

NAME_OF_SETUP.capacity = 1000;

NAME_OF_SETUP.capacity2 = 1000;

NAME_OF_SETUP.delay =

sc_core::sc_time(1 , sc_core::SC_MS);

Scnsl::Core::Channel_if_t * CHANNEL_NAME =

sim->createChannel(NAME_OF_SETUP);

Custom scenario (4)

• Node’s properties setup:

• Node to channel binding:

21/04/2015 20

sim->bind(NODE_NAME , CHANNEL_NAME , BIND_SETUP_NAME);

BindSetup_base_t BIND_SETUP_NAME;

BIND_SETUP_NAME.extensionId = "core";

BIND_SETUP_NAME.bindIdentifier = "bind_id";

BIND_SETUP_NAME.destinationNode = DESTINATION_NAME;

BIND_SETUP_NAME.node_binding.bitrate =

Scnsl::Protocols::YOUR_PROTOCOL::BITRATE;

BIND_SETUP_NAME.node_binding.transmission_power = 100;

BIND_SETUP_NAME.node_binding.receiving_threshold = 10;

BIND_SETUP_NAME.node_binding.x = 1;

BIND_SETUP_NAME.node_binding.y = 1;

BIND_SETUP_NAME.node_binding.z = 1;

Custom scenario (5)

• Task creation:

• Communicator creation (optional):

21/04/2015 21

MYTASK_T * TASK_NAME(

"task_name" , TASK_ID , NODE_NAME , PROXIES);

CoreCommunicatorSetup_t COMMUNICATOR_SETUP;

COMMUNICATOR_SETUP.extensionId = "core";

COMMUNICATOR_SETUP.name = "the_communicator_name";

COMMUNICATOR_SETUP.type =

CoreCommunicatorSetup_t::MAC_802_15_4;

COMMUNICATOR_SETUP.node = NODE_OF_THE_COMMUNICATOR;

// Eventually set here other properties...

Scnsl::Core::Communicator_if_t *

REFERENCE_PROTOCOL_COMMUNICATOR =

sim->createCommunicator(COMMUNICATOR_SETUP);

Custom scenario (6)

• Task to channel binding, using a communicator:

– The destination task can be NULL for broadcast

transmission or if the reference task is a receiver

task;

– For each TaskProxy related to a Task, there must

be the corresponding binding

Task/Channel/(Communicator).

21/04/2015 22

sim->bind(REFERENCE_TASK_NAME , DESTINATION_TASK_NAME ,

REFERENCE_CHANNEL_NAME , BIND_SETUP_NAME ,

REFERENCE_COMMUNICATOR_NAME);

Binding mechanism (1)

• First, for each transmission between pairs of

tasks must be defined a unique
bindIdentifier as follows:

– This identifier will be used by the reference task to

set the TaskProxy specific of the destination task.

• Then, each node has to be bound which each

channel to which it is connected.

– The BindSetup object (BIND_SETUP_NAME) is

used to set some node’s properties, in addition to
the bindIdentifier.

21/04/2015 23

BIND_SETUP_NAME.bindIdentifier = "bind_id";

sim->bind(NODE_NAME , CHANNEL_NAME , BIND_SETUP_NAME);

Binding mechanism (2)

• Finally, for each task and for each proxy defined

on its creation …

.

… the task must be bound with:

– Destination task, if it is a sender task in a one to

one transmission; otherwise NULL;

– Channel hosting the transmission;

– BindSetup object;

– Communicator object (optional)

21/04/2015 24

sim->bind(REFERENCE_TASK_NAME , DESTINATION_TASK_NAME ,

REFERENCE_CHANNEL_NAME , BIND_SETUP_NAME ,

REFERENCE_COMMUNICATOR_NAME);

MYTASK_T * TASK_NAME(

"task_name" , TASK_ID , NODE_NAME , PROXIES);

Binding mechanism (3)

21/04/2015 25

Ch

t0

n0

t1

n1

MyTask * t0("t0" , 0 , n0 , 1);

MyTask * t1("t1" , 1 , n1 , 1);

...

bsb0.bindIdentifier = "t0_t1";

bsb1.bindIdentifier = "t1_t0";

...

sim->bind(n0 , Ch , bsb0);

sim->bind(n1 , Ch , bsb1);

...

sim->bind(& t0 , & t1 , Ch , bsb0 , NULL);

sim->bind(& t1 , NULL , Ch , bsb1 , NULL);

Exercises

21/04/2015 26

Setup Exercises

• In order to compile the exercises, go to the

“trunk/exercises_nesLab2” directory.

• Create the " obj/" folder and move inside it.

• From inside "obj/", export SystemC include and library

paths by using the script inside the parent forlder (if

necessary modify it with your own SCNSL paths).

• Execute cmake by passing the scnsl library itself.

21/04/2015 27

1$ cd ../trunk/exercises_nesLab2

1$ mkdir obj

2$ cd obj

1$ source ../env-setup.sh

1$ cmake -DLIB_SCNSL=$SCNSL_LIB/libscnsl.so ..

PLR Computation

• Execute the exercise and redirect its output to a

text file.

• A script to calculate the Packet Loss Rate (PLR) is

provided (“calculatePLR.sh”).

– The script takes as only parameter a text file

containing the simulation traces.

21/04/2015 28

1$./my-exercise> sim-traces.txt

1$./calculatePLR.sh sim-traces.txt

Exercise 1: Two Nodes

1. Calculate the minimum transmitting power of the
sensor node n0, mantaining unchanged the distance
between nodes.

Hint: if the transmitting power is lower than the minimum transmitting
power, no packets will arrive to the receiver, i.e., Packet Loss Rate
(PLR)=100%.

21/04/2015 29

Ch

n0

Sensor

n1

Collector

Exercise 2: Three Nodes with Router (2)

21/04/2015 30

Ch

n0

Sensor

n1

Router

n2

Collector

1. Calculate the delay:
– Sensor-to-Router

– Router-to-Collector

– Sensor-to-Collector

2. Calculate the Packet Loss Rate (PLR).

3. Calculate the minimum transmitting power, both for sensor node
n0 and router node n1, mantaining unchanged the distances
between nodes.

Hint: help you with Exercise 1

to calculate the delay.

21/04/2015 31

Exercise 3: Temperature monitoring

for Building Automation (1)

• N floors

• N rooms for
each floor

• 1 controller for
each floor

• 1 sensor for
each room (>0)

• Each sensor
sends the
detected
temperature to
the controller in
its floor

TEMPERATURESTHERMOSTAT

Floor N-1

Floor N-2

Floor 0

Floor 1

Room 0 Room 1 Room N-1Room 2

21/04/2015 32

Exercise 3: Temperature monitoring

for Building Automation (2)

Floor 0

Room 0 Room 1 Room N-1Room 2

• For this exercise we consider the first floor.

• The idea is that the network scenario can be
seen as a 1xN matrix:
– Node in the first column (Room 0) works as a collector

node (RX only)

– Nodes in the other columns (Room 0 – Room N-1)
work as sensor nodes (TX only)

21/04/2015 33

Exercise 3: Temperature monitoring

for Building Automation (3)

n0 n1 nN-1>n2

• In each sensor node (ni , 1≤i≤N-1) the

corresponding sensor task (si , 0≤i≤N-2) sends

data to the controller task (c) through a separate

point-to-point channel (chi , 0≤i≤N-2).

ch0
ch1

chN-2>

C S0 S1 SN-2

21/04/2015 34

Exercise 3: Temperature monitoring

for Building Automation (4)

1. Set the number of rooms (i.e., the number of nodes) to 5 and
calculate the Packet Loss Rate (PLR).

– How can a communication like this be realized in a real scenario,
for instance, in a Wireless Sensor Network?

2. Increase the number of rooms (i.e., the number of nodes).
– How is the new PLR in respect to the node's distance?

3. Change the controller data collection from sensors, from the
current point-to-point transmission to a shared one.

n0 n1 nN-1>n2

C S0 S1 SN-2

ch

21/04/2015 35

Exercise 3: Temperature monitoring

for Building Automation (5)

4. Set the number of rooms (i.e., the number of
nodes) to 5 and calculate the Packet Loss Rate
(PLR).

– What can you say about the new PLR compared to
the one of the point-to-point transmission?

– Is the minimum transmitting power affected by the
change to a shared communication?

5. Increase the number of rooms (i.e., the number
of nodes).

– How is the new PLR?

– Does the increasing of sensor nodes affects the PLR?

