Università degli studi di Verona Corsi di laurea in Matematica Applicata, Informatica e Informatica Multimediale

Prova scritta di Matematica di Base — 20 ottobre 2006

matricola				nome				. с	cognome		
Co	rso di lau	ırea: Ma	itematica	a Applica	ata	Informa	ıtica	Inform	atica Mu	ıltimediale	
Scrivere subtrascritte so facendo chia	lo su qu	ıesti fog				-					zioni vanno tro dei fogli,
	1	2	3	4	5	6	7	8	9	Tot	
1) 0'				1111		pito A					
1) Si cons	ideri la s	seguente	relazion	ie sull'ir	isieme Z	dei nur	neri inte	rı			
			$R = \{$	$(a,b) \mid a$	$a,b\in \mathbf{Z},$	a^2-b^2	è multip	lo di 5 }			
Dimostrare o				•		are le se	eguenti c	lassi d'e	quivaler	za: $[0]_R$ e	$[5]_R$. Quante

• Pr. Riflessiva.

 $a \in \mathbf{Z}$, $a^2 - a^2 = 0$, che è multiplo di zero.

• Pr. Simmetrica.

Sia $(a, b) \in R$, allora esiste $w \in \mathbb{Z}$ tale che a2-b2 = 5 w. Ora, $a^2 - b^2 = -(b^2 - a^2) = -5 w$, e quindi $(b, a) \in R$.

• Pr. Transitiva.

Siano $(a,b), (b,c) \in R$. Esistono, quindi, $u, v \in \mathbb{Z}$, tali che $a^2 - b^2 = 5u$ e $b^2 - c^2 = 5v$. Ora, $a^-c^2 = () + () = 5(v+u)$, e quindi $(a,c) \in R$.

 $[0]_R = [5]_R = \{b \in \mathbf{Z} | b \text{ è multiplo di 5}\}.$

Le classi di equivalenza di R sono tre, $[0]_R$, $[1]_R$ e $[2]_R$.

2) Mostrare che $R = \{(a,b), (a,c), (a,d), (a,e), (a,f), (a,g), (b,c), (b,d), (b,e), (b,f), (b,g), (c,e), (c,f), (c,g), (d,f), (d,g), (e,f), (e,g)\}$ è una relazione d'ordine stretto sull'insieme $\{a,b,c,d,e,f,g\}$. Determinare gli elementi massimali, minimali, eventuali massimo, minimo, maggioranti, minoranti, estremo superiore e estremo inferiore del sottoinsieme $\{c,d,e\}$.

La relazione R è di ordine stretto, infatti è anti-riflessiva, dal momento che nel grafo non ci sono dei lacci (non ci sono coiè, coppie del tipo (x,x)); è transitiva, ad esempio vi sono le coppie (a,b) e (b,c) e c'è anche la coppia (a,c).

$$\begin{array}{ll} \text{massimali} = \{e,d\} & \text{minimali} = \{c,d\} \\ \text{maggioranti} = \{f,g\} & \text{minoranti} = \{a,b\} \\ \text{sup} = \emptyset & \text{inf} = \{b\} \\ \text{max} = \emptyset & \text{min} = \emptyset \end{array}$$

3) Dimostrare per induzione che, per $n \ge 1$,

$$\sum_{k=1}^{n} \frac{1}{5^k} = \frac{5^n - 1}{4 \cdot 5^n}$$

- **Passo base.** n = 1, $\sum_{k=1}^{1} \frac{1}{5^k} = \frac{1}{5} = \frac{5-1}{4.5} = \frac{1}{5}$.
- **Passo induttivo** $\sum_{k=1}^{n+1} \frac{1}{5^k} = \sum_{k=1}^{n} \frac{1}{5^k} + \frac{1}{5^{n+1}} = \frac{5^n-1}{4 \cdot 5^n} + \frac{1}{5^{n+1}} = \frac{5^{n+1}-1}{4 \cdot 5^{n+1}}.$

- 4) Si consideri la funzione $f: A \longrightarrow B$.
 - (1) Dire quando f è invertibile.
 - (2) Si assuma che f sia invertibile. Si dimostri che se f è suriettiva allora f^{-1} è totale.
 - $f: A \longrightarrow B$ è invertibile se è **iniettiva**.
 - Sia f invertibile e suriettiva. Allora $Im(f) = Def(f^{-1})$ per l'invertibilità e B = Im(f) per la suriettività. Quindi f^{-1} è totale, poiché $B = Im(f) = Def(f^{-1})$.

5) Si consideri la struttura $\mathfrak{N} = (\mathbf{N}, \{ \equiv, \prec \}, \{ \oplus, \otimes \}, \{ 0, I \})$, dove \mathbf{N} denota l'insieme dei numeri naturali, \equiv la relazione binaria di essere lo stesso numero, \prec , \oplus e \otimes rispettivamente l'ordine, l'addizione e la moltiplicazione tra numeri naturali, 0 e I i numeri zero e uno.

Sia \mathcal{L} un linguaggio adatto alla struttura i cui simboli propri siano i predicati =, <; i simboli per funzione +, × e s; i simboli per costante 0 e 1.

Nel linguaggio \mathcal{L} si scriva una formula $\varphi(v_0, v_1)$ con le sole variabili libere indicate tale che $\mathfrak{N} \models \varphi(v_0, v_1)[a, b]$ se e solo se a - 3b > 0, a è pari e b è dispari.

$$\wedge \wedge < \times v_1 + +111v_0 \exists v_2 = v_0 \times v_2 + 11 \exists v_3 = v_1 + 1 \times v_3 + 11$$

6) Dire che cosa significa che una formula γ è valida. Dire cosa significa che la formula γ è conseguenza logica di un insieme di formule Φ . Dimostrare che, per ogni scelta delle formule α e β ,

$$\{\neg \alpha\} \models \rightarrow \lor \alpha \beta \beta$$

Per il teorema di deduzione semantica $\{\neg\alpha\} \models \neg \lor \alpha\beta\beta$ se e solo se $\{\neg\alpha, \lor \alpha\beta\} \models \beta$. Sia σ una realizzazione tale che $(\neg\alpha)^{\sigma} = V$, cioè $\alpha^{\sigma} = F$, e $(\lor \alpha\beta)^{\sigma} = V$. Essendo $\alpha^{\sigma} = F$, da $(\lor \alpha\beta)^{\sigma} = V$ si conclude necessariamente che $(\beta)^{\sigma} = V$.

7) In un linguaggio in cui c'è un simbolo di relazione binaria P e un simbolo di funzione unaria f, dire quali delle seguenti successioni di simboli sono formule (F), quali termini (T) e quali nulla (N); in quest'ultimo caso scrivere nell'ultima colonna una breve giustificazione.

	F	Т	N	
fffv ₃		×		
$\neg Pffv_1v_2$	×			
$\wedge \forall v_0 f v_1 P v_0 v_1$			×	fv_1 è un termine
$\rightarrow \wedge P v_0 f v_1 \forall v_1 P v_1 v_2$			×	manca una fomula
fv_1fv_0			×	2 termini accostati
$\neg \lor \forall v_0 P v_0 f v_1 P v_0 v_1$	×			
$Pv_1Pv_0v_1$			×	dopo il primo simbolo di relazione ci sono un termine e una formula
$\wedge \wedge \forall P v_0 f v_1 \neg P v_0 v_1 P f v_1 f v_2$			×	manca la variabile dopo il quantificatore ∀
$\wedge \to \neg \forall v_1 P v_0 v_1 P f v_0 f v_1 \neg P v_3 f v_4$	×			

8) Siano $f,g: \mathbf{R} \to \mathbf{R}$ definite da

$$f(x) = x - \sqrt{1 - x^2} \qquad g(x) = \ln x$$

- (1) Trovare l'insieme di definizione di f e l'insieme di definizione di g.
- (2) Determinare le funzioni composte $f \circ g$ e $g \circ f$, specificandone gli insiemi di definizione.

•
$$Def(f) = [-1, 1], Def(g) = (0, +\infty).$$

$$\begin{split} \bullet & (f \circ g)(x) = \ln x - \sqrt{1 - (\ln x)^2}. \\ & Def(f \circ g) = \{x \mid x > 0 \text{ e } 1 - (\ln x)^2 \geq 0\} \\ & \text{quindi } x \in \left[\frac{1}{e}, e\right]. \end{split}$$

$$(g \circ f)(x) = \ln(x - \sqrt{1 - x^2}).$$

 $Def(g \circ f) = \{x \mid x - \sqrt{1 - x^2} > 0\}, \text{ quindi}$

$$\begin{cases} x \ge 0 \\ -1 \le x \le 1 \\ x^2 > 1 - x^2 \end{cases}$$

da cui $x \in \left(\frac{\sqrt{2}}{2}, 1\right]$.

$$f(x) = \begin{cases} 1 - x^2 & x \le 0 \\ \lambda x + 1 & x \ge 0 \end{cases}$$

in cui λ è un parametro reale.

Dire se f è una funzione da \mathbf{R} in \mathbf{R} e, in caso positivo, dire per quali valori del parametro reale λf è:

- (i) totale;
- (ii) iniettiva;
- (iii) suriettiva.

Per i valori del parametro λ per cui f è invertibile, determinare la funzione inversa di f.

f è una funzione, indipendentemente da λ . L'unico problema è in x=0, ma:

$$f(0) = \begin{cases} 1 \\ 1 \end{cases}$$

- (i) $Def(f) = \mathbf{R}$, indipendentemente da λ , quindi f è totale, per ogni $\lambda \in \mathbf{R}$.
- (ii) se $\lambda = 0$, f non è iniettiva, infatti $f^{\leftarrow}(1) = \{x \in \mathbf{R}_+\}$.
 - se $\lambda < 0$, f non è iniettiva, infatti $f^{\leftarrow}(0) = \{-1, -\frac{1}{\lambda}\}$.
 - se $\lambda > 0$, f è iniettiva, infatti
 - siano $x_1, x_2 > 0$, $\lambda x + 1$ è iniettiva;
 - siano $x_1, x_2 < 0, 1 x^2$ è iniettiva;
 - siano, $x_1 > 0$ e $x_2 < 0$. Supponiamo, per assurdo, che $1 x_2^2 = \lambda x_1 + 1$, da cui $x_2 = \sqrt{-\lambda x_1}$, che non ha significato.
- (iii) Se $\lambda \le 0$ f non è suriettiva.

Se $\lambda > 0$, invertiamo la funzione f.

$$f^{-1}(x) = \begin{cases} -\sqrt{1-x}, & x \ge 1\\ \frac{x-1}{\lambda}, & x \le 1 \end{cases}$$