
1

Sampling in 2D
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Sampling in 1D
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Nyquist theorem (1D)

At least 2 sample/period are needed to 
represent a periodic signal
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Delta pulse
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Dirac brush
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Comb



7

Brush
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Nyquist theorem

• Sampling in p-dimensions

• Nyquist theorem
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Spatial aliasing
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Resampling

• Change of the sampling rate
– Increase of sampling rate: Interpolation or upsampling

• Blurring, low visual resolution
– Decrease of sampling rate: Rate reduction or downsampling

• Aliasing and/or loss of spatial details
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Downsampling
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Upsampling

nearest neighbor (NN) 
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Upsampling

bilinear 
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Upsampling

bicubic
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Quantization
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Scalar quantization

• A scalar quantizer Q approximates X by X˜=Q(X), which takes its values 
over a finite set. 

• The quantization operation can be characterized by the MSE between the
original and the quantized signals

• Suppose that X takes its values in [a, b], which may correspond to the
whole real axis. We decompose [a, b] in K intervals {( yk-1, yk]}1≤k ≤ K of
variable length, with y0=a and yK=b. 

• A scalar quantizer approximates all x ∈( yk-1, yk] by xk:
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Scalar quantization

• The intervals (yk-1, yk] are called quantization bins. 

• Rounding off integers is an example where the quantization bins 

(yk-1, yk]=(k-1/2, k+1/2] 

have size 1and xk=k for any k∈Z.

• qui

• High resolution quantization
– Let p(x) be the probability density of the random source X. The mean-square 

quantization error is
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HRQ

– A quantizer is said to have a high resolution if p(x) is approximately constant
on each quantization bin. This is the case if the sizes k are sufficiently small 
relative to the rate of variation of p(x), so that one can neglect these variations 
in each quantization bin.
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HRQ: Δp(x)→0



19

Scalar quantization

• Teorem 10.4 (Mallat): For a high-resolution quantizer, the mean-square 
error d is minimized when xk=(yk+yk+1)/2, which yields
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Uniform quantizer



21

Quantization

• A/D conversion quantization

Quantizer

f in L2(R) discrete function
f in L2(Z)

X=Q{y}

yyk yk+1

uniform perceptual

rk

fq=Q{f}

f
The sensitivity of the eye decreases 
increasing the background intensity 
(Weber law)
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Quantization

Signal before (blue) and after quantization (red) Q

Equivalent noise: n=fq- f

additive noise model: fq=f+n
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Quantization

original 5 levels

10 levels 50 levels
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Distortion measure
• Distortion measure

– The distortion is measured as the expectation of the mean square error (MSE) difference 
between the original and quantized signals. 

• Lack of correlation with perceived image quality
– Even though this is a very natural way for the quantification of the quantization artifacts, 

it is not representative of the visual annoyance due to the majority of common artifacts.

• Visual models are used to define perception-based image quality assessment 
metrics
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Example

• The PSNR does not allow to distinguish among different types of 
distortions leading to the same RMS error between images

• The MSE between images (b) and (c) is the same, so it is the PSNR. 
However, the visual annoyance of the artifacts is different 
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Convolution
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Convolution
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[n,m]

filter impulse response 
rotated by 180 deg

2D Convolution

• Associativity

• Commutativity

• Distributivity
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g(n,m)

f(n,m) g(i-n,k-m)

1. fold about origin
2. displace by ‘i’ and ‘k’

f(n,m)

m

n

g(i-n,k-m)

i

k

Tricky part: borders
• (zero padding, mirror...)

3. compute integral
of the box

2D Convolution
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Convolution
Filtering with filter h(x,y)

sampling property of the delta function
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Convolution

• Convolution is a neighborhood operation in which each output pixel is the 
weighted sum of neighboring input pixels. The matrix of weights is called 
the convolution kernel, also known as the filter. 
– A convolution kernel is a correlation kernel that has been rotated 180 degrees. 

• Recipe
1. Rotate the convolution kernel 180 degrees about its center element. 
2. Slide the center element of the convolution kernel so that it lies on top of the 

(I,k) element of f. 
3. Multiply each weight in the rotated convolution kernel by the pixel of f 

underneath. Sum the individual products from step 3

– zero-padding is generally used at borders but other border conditions are 
possible
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Example
f = [17  24   1   8  15

23   5   7  14  16
4   6  13  20  22

10  12  19  21   3
11  18  25   2   9]

h = [8   1   6
3   5   7
4   9   2]

h’= [2   9   4
7   5   3
6   1   8]

kernel
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Correlation

• The operation called correlation is closely related to convolution. In 
correlation, the value of an output pixel is also computed as a weighted 
sum of neighboring pixels. 

• The difference is that the matrix of weights, in this case called the 
correlation kernel, is not rotated during the computation.

• Recipe 
1. Slide the center element of the correlation kernel so that lies on top of the 

(2,4) element of f. 
2. Multiply each weight in the correlation kernel by the pixel of A underneath. 
3. Sum the individual products from step 2. 
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Example
f = [17  24   1   8  15

23   5   7  14  16
4   6  13  20  22

10  12  19  21   3
11  18  25   2   9]

h = [8   1   6
3   5   7
4   9   2]

kernel


