Sampling in 2D




Continuous time signal

|

Sampling in 1D

Discrete time signal
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Nyquist theorem (1D)

e

At least 2 sample/period are needed to
represent a periodic signal
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Delta pulse

« 1D Dirac pulse [
o(x) = 1 if x=0 l
o(x) = 0 else

0
« 2D Dirac pulse
¥

' 8(x,y) = 1 if x=0 and y=0
<|x o(X,y) =0 else
which corresponds to :
6(X,y) = 6(x) d(y)




Dirac brush

« 1D sampling: Dirac comb (or Shah function)

B I I I

« 2D sampling : Dirac « brush »




Comb

« Extended comb :

s Z Oz — mAz)

« Comb:

7]

pe(z,y) = 0(y) Zﬁm—méx

m=—0oC




Brush

« Brush = product of 2 extended combs

pe(z,y) = Y 6(z — mAz)

m=—0oC

py(z,9) = ) 6(y—nly)

b2, y) = pal2; yiple,y)




Nyquist theorem

Sampling in p-dimensions

s (X) = > 5(X—KT)

kezP

f (%) = f (R)s; (%)

Nyquist theorem
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Spatial aliasing




Resampling

Change of the sampling rate
— Increase of sampling rate: Interpolation or upsampling
 Blurring, low visual resolution

— Decrease of sampling rate: Rate reduction or downsampling
 Aliasing and/or loss of spatial details
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Downsampling
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Upsampling

nearest neighbor (NN)
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Upsampling

/

bilinear
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Upsampling

bicubic
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Quantization
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Scalar quantization

A scalar quantizer Q approximates X by X"=Q(X), which takes its values
over a finite set.

The quantization operation can be characterized by the MSE between the
original and the quantized signals

d=E{(X —X)?}.

Suppose that X takes its values in [a, b], which may correspond to the
whole real axis. We decompose [a, b] in K intervals {( Y, 1, Vi]}1<k < k Of
variable length, with y,_a and y,=b.

A scalar quantizer approximates all X €(y,_4, Vil by X;:

VXe (Y Y] Q(X)=x,
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Scalar quantization

The intervals (y,_;, Y] are called quantization bins.

Rounding off integers is an example where the quantization bins
(Vi1 Yid=(k-1/2, k+1/2]

have size 1and x,=k for any keZ.

qui

High resolution quantization

— Let p(x) be the probability density of the random source X. The mean-square
quantization error is

+ [v)

ff:J;{(X—jE)z}:f (x—g(.x*))‘_p(.x') dx.
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HRQ

— A quantizer is said to have a high resolution if p(x) is approximately constant
on each quantization bin. This is the case if the sizes k are sufficiently small

relative to the rate of variation of p(x), so that one can neglect these variations
in each quantization bin.

p(x),

px)=— forxe(yp—1, el

De=Pr{X e (Ye—1.)rl}.

v
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Scalar quantization

Teorem 10.4 (Mallat): For a high-resolution quantizer, the mean-square

error d is minimized when x,=(y,+Y,.,)/2, which yields

d—iZK:pA2
124 Tk

Proof. The quantization error (10.15) can be rewritten as

K oy
cIZZf (x —ap) p- x) dx.
=1 Me—1

Replacing p(x) by its expression (10.10) gives

K

2 g..
Z f (x —xp ) dx.
= V-1

(10.18)

One can verify that each integral is minimum for Xz = (Ve +Ve—1)/2, which vields

(10.17).

19




Uniform quantizer

The uniform quantizer is an important special case where all quantization bins have
the same size

Ve —Ve—1=4A for 1=k=K.
For a high-resolution uniform quantizer, the average quadratic distortion (10.17)
becomes
K
A? A2
d=15 2 Pe=15 (10.19)
2 Pe=1

12 &~

It is independent of the probability density p(x) of the source.
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Quantization

A/D conversion = quantization

X=Q{y}

fin L2(R) discrete function
T
—*| Quantizer |—— fin L%Z)
uniform perceptual
4 fq:Q{f} A
Yk Y1 y f

The sensitivity of the eye decreases
increasing the background intensity
(Weber law)
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Quantization

Signal before (blue) and after quantization (red) Q

Equivalent noise: n=f-f

additive noise model: fq=f+n

038
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original

10 levels

Quantization

5 levels

50 levels
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Distortion measure

Distortion measure
tk+1

D =B[(fo— 1 F]=3 [(fo - £ P p(er

k=0 t,

— The distortion is measured as the expectation of the mean square error (MSE) difference
between the original and quantized signals.

255

R AT A,

i=1l j=1

255
PSNR =20log,, —— =20lo
10 MSE 910

Lack of correlation with perceived image quality

— Even though this is a very natural way for the quantification of the quantization artifacts,
it is not representative of the visual annoyance due to the majority of common artifacts.

Visual models are used to define perception-based image quality assessment
metrics
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Example

The PSNR does not allow to distinguish among different types of
distortions leading to the same RMS error between images

The MSE between images (b) and (c) is the same, so it is the PSNR.
However, the visual annoyance of the artifacts is different
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Convolution
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Convolution

fte) git-1) ‘
glt-7) fir)
- oo romtner S
eln]= f[n]+gln]= 3 f[klglkn] ]
k=—c0 !

_____________________
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2D Convolution

400 +00

c(xy) = fy)®g(xy)= | [ fz.v)g(x-7,y-v)drdv

—00 —00

+0o0 ~+00

cli,k]= Y > f[n,mlgli—n,k-m]

N=—c0 M=—c0

filter impulse response

\ rotated by 180 deg
Associativity \

Commutativity [n,m]

Distributivity

 »
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2D Convolution
cli,k]= D> >, fln,mlgli-nk-m]

N=—00 M=—00

4 f(n,m) 4+ g(n,m)
m '\ m
n : /I&V
1. fold about origin 3. compute integral
2. displace by " and ‘K’ of the box
g(i_nvk_m)

f(n,m) g(i-n,k-m)

Tricky part: borders
* (zero padding, mirror...)
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Convolution
Filtering with filter h(x,y)

fo(z,y) = /_m /_m fi(s,Oh(z — s,y — t)dsdl

Convolution with a 2D Dirac pulse

£,(x,y) =f(x,y) sampling property of the delta function
Convolution a Dirac pulse shifted by (x,.y,)

(X, y)=1(X=-X%,y-Y,)

Fourier transform...

F.(u, v) = F,(u, v) H(u, v)

... and vice versa
glx,y) = f,(x, y) f,(x, y) then G(u,v) = F (u, v) * F,(u, v)
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Convolution

Convolution is a neighborhood operation in which each output pixel is the
weighted sum of neighboring input pixels. The matrix of weights is called
the convolution kernel, also known as the filter.

— A convolution kernel is a correlation kernel that has been rotated 180 degrees.

Recipe
1. Rotate the convolution kernel 180 degrees about its center element.

2. Slide the center element of the convolution kernel so that it lies on top of the
(I,k) element of f.

3. Multiply each weight in the rotated convolution kernel by the pixel of f
underneath. Sum the individual products from step 3

— zero-padding is generally used at borders but other border conditions are
possible
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f=[17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9]

Example

kernel

h=[8 1 6 h=[2 9 4
3 57 7 5 3
4 9 2] 6 1 8]

1-2+48-9+15-4+7-7+14-5+16-3+13-6+20-1+22-8 =575

Volues of rototed convolution kernel

| a| | 8
Imoge pixel volues 73 5 7’ I"’H'rj‘\' 153
\./ra——t— Center of kernel

4 6 13| 20 | 72

10 12 191 7 3

11 18 25 2 9

Computing the {2,4) Output of Convolution
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Correlation

The operation called correlation is closely related to convolution. In
correlation, the value of an output pixel is also computed as a weighted
sum of neighboring pixels.

The difference is that the matrix of weights, in this case called the
correlation kernel, is not rotated during the computation.

Recipe

1. Slide the center element of the correlation kernel so that lies on top of the
(2,4) element of f.

2. Multiply each weight in the correlation kernel by the pixel of A underneath.
3. Sum the individual products from step 2.
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f=[17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9]

Example

kernel

h=[8 1 6
3 57
4 9 2]

1-8+8-1+15-6+7-3+14-5+16-7+13-4+20-9+22.2 =585

Volues of orrelution kernel

17 fa 1 g |15

Imuge pixel volues 73 5 7' 4] 16
\._/la——— Center of kermel

10 12 917 3

11 18 75 2 9

Computing the {2,4) Output of Correlation
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