

Sampling in 1D

Nyquist theorem (1D)

At least 2 sample/period are needed to represent a periodic signal

$$T_s \leq \frac{1}{2} \frac{2\pi}{\omega_{\text{max}}}$$

$$\omega_{s} = \frac{2\pi}{T_{s}} \ge 2\omega_{\text{max}}$$

Delta pulse

1D Dirac pulse

$$\begin{cases} \delta(x) = 1 \text{ if } x=0 \\ \delta(x) = 0 \text{ else} \end{cases}$$

$$\begin{cases} \delta(x,y) = 1 \text{ if } x=0 \text{ and } y=0 \\ \delta(x,y) = 0 \text{ else} \end{cases}$$
 which corresponds to :
$$\delta(x,y) = \delta(x) \ \delta(y)$$

Dirac brush

1D sampling: Dirac comb (or Shah function)

2D sampling : Dirac « brush »

Comb

Extended comb:

$$p_x(x,y) = \sum_{m=-\infty}^{\infty} \delta(x - m\Delta x)$$

· Comb:

Brush

Brush = product of 2 extended combs

$$p_{x}(x,y) = \sum_{m=-\infty}^{\infty} \delta(x - m\Delta x)$$

$$p_{y}(x,y) = \sum_{m=-\infty}^{\infty} \delta(y - n\Delta y)$$

$$b(x,y) = p_{x}(x,y)p_{y}(x,y)$$

$$\delta x$$

Nyquist theorem

Sampling in p-dimensions

$$s_T(\vec{x}) = \sum_{k \in Z^p} \delta(\vec{x} - kT)$$
$$f_T(\vec{x}) = f(\vec{x}) s_T(\vec{x})$$

Nyquist theorem

$$\begin{cases} \omega_{x}^{s} \geq 2\omega_{x \max} \\ \omega_{y}^{s} \geq 2\omega_{y \max} \end{cases} \Rightarrow \begin{cases} T_{x}^{s} \leq 2\pi \frac{1}{2\omega_{x \max}} \\ T_{y}^{s} \leq 2\pi \frac{1}{2\omega_{y \max}} \end{cases}$$

2D spatial domain

2D Fourier domain

Spatial aliasing

Resampling

- Change of the sampling rate
 - Increase of sampling rate: Interpolation or upsampling
 - Blurring, low visual resolution
 - Decrease of sampling rate: Rate reduction or downsampling
 - Aliasing and/or loss of spatial details

Downsampling

Upsampling

nearest neighbor (NN)

Upsampling

bilinear

Upsampling

bicubic

Scalar quantization

- A scalar quantizer Q approximates X by X=Q(X), which takes its values over a finite set.
- The quantization operation can be characterized by the MSE between the original and the quantized signals

$$d = E\{(X - \tilde{X})^2\}.$$

- Suppose that X takes its values in [a, b], which may correspond to the whole real axis. We decompose [a, b] in K intervals $\{(y_{k-1}, y_k]\}_{1 \le k \le K}$ of variable length, with $y_{0=}a$ and $y_{K}=b$.
- A scalar quantizer approximates all $x \in (y_{k-1}, y_k]$ by x_k :

$$\forall x \in (y_{k-1}, y_k], \quad Q(x) = x_k$$

Scalar quantization

- The intervals $(y_{k-1}, y_k]$ are called *quantization bins*.
- Rounding off integers is an example where the quantization bins

$$(y_{k-1}, y_k] = (k-1/2, k+1/2]$$

have size 1 and $x_k = k$ for any $k \in \mathbb{Z}$.

- qui
- High resolution quantization
 - Let p(x) be the probability density of the random source X. The mean-square quantization error is

$$d = E\{(X - \tilde{X})^2\} = \int_{-\infty}^{+\infty} \left(x - Q(x)\right)^2 p(x) \, dx.$$

HRQ

– A quantizer is said to have a *high resolution* if p(x) is approximately constant on each quantization bin. This is the case if the sizes k are sufficiently small relative to the rate of variation of p(x), so that one can neglect these variations in each quantization bin.

Scalar quantization

• Teorem 10.4 (Mallat): For a high-resolution quantizer, the mean-square error d is minimized when $x_k = (y_k + y_{k+1})/2$, which yields

$$d = \frac{1}{12} \sum_{k=1}^{K} p_k \Delta_k^2$$

Proof. The quantization error (10.15) can be rewritten as

$$d = \sum_{k=1}^{K} \int_{y_{k-1}}^{y_k} (x - x_k)^2 p(x) \, dx.$$

Replacing p(x) by its expression (10.16) gives

$$d = \sum_{k=1}^{K} \frac{p_k}{\Delta_k} \int_{y_{k-1}}^{y_k} (x - x_k)^2 dx.$$
 (10.18)

One can verify that each integral is minimum for $x_k = (y_k + y_{k-1})/2$, which yields (10.17).

Uniform quantizer

The uniform quantizer is an important special case where all quantization bins have the same size

$$y_k - y_{k-1} = \Delta$$
 for $1 \le k \le K$.

For a high-resolution uniform quantizer, the average quadratic distortion (10.17) becomes

$$d = \frac{\Delta^2}{12} \sum_{k=1}^{K} p_k = \frac{\Delta^2}{12}.$$
 (10.19)

It is independent of the probability density p(x) of the source.

Quantization

A/D conversion ⇒ quantization

Quantization

Signal before (blue) and after quantization (red) Q

Equivalent noise: $n=f_q-f$ additive noise model: $f_q=f+n$

Quantization

original

5 levels

50 levels

Distortion measure

Distortion measure

$$D = E[(f_Q - f)^2] = \sum_{k=0}^{K} \int_{t_k}^{t_{k+1}} (f_Q - f)^2 p(f) df$$

 The distortion is measured as the expectation of the mean square error (MSE) difference between the original and quantized signals.

$$PSNR = 20\log_{10} \frac{255}{MSE} = 20\log_{10} \frac{255}{\frac{1}{N \times M} \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{M} \left(I_{1}[i,j] - I_{2}[i,j]\right)^{2}}}$$

- Lack of correlation with perceived image quality
 - Even though this is a very natural way for the quantification of the quantization artifacts,
 it is not representative of the visual annoyance due to the majority of common artifacts.
- Visual models are used to define perception-based image quality assessment metrics

Example

- The PSNR does not allow to distinguish among different types of distortions leading to the same RMS error between images
- The MSE between images (b) and (c) is the same, so it is the PSNR.
 However, the visual annoyance of the artifacts is different

Convolution

$$c(t) = f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau$$

$$c[n] = f[n] * g[n] = \sum_{k=-\infty}^{+\infty} f[k]g[k-n]$$

2D Convolution

$$c(x,y) = f(x,y) \otimes g(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\tau,v)g(x-\tau,y-v)d\tau dv$$

$$c[i,k] = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} f[n,m]g[i-n,k-m]$$

- Associativity
- Commutativity
- Distributivity

2D Convolution

$$c[i,k] = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} f[n,m]g[i-n,k-m]$$

- 1. fold about origin
- 2. displace by 'i' and 'k'

3. compute integral of the box

Tricky part: borders

• (zero padding, mirror...)

Convolution

Filtering with filter h(x,y)

$$f_2(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(s,t)h(x-s,y-t)dsdt$$

- Convolution with a 2D Dirac pulse
 f₂(x, y) = f₁(x, y) sampling property of the delta function
- Convolution a Dirac pulse shifted by (x₀,y₀)
 f₂(x, y) = f₁(x x₀, y y₀)
- Fourier transform...
 F₂(u, v) = F₁(u, v) H(u, v)
- ... and vice versa $g(x,y) = f_1(x, y) f_2(x, y)$ then $G(u,v) = F_1(u, v) * F_2(u, v)$

Convolution

- Convolution is a neighborhood operation in which each output pixel is the weighted sum of neighboring input pixels. The matrix of weights is called the convolution kernel, also known as the filter.
 - A convolution kernel is a correlation kernel that has been rotated 180 degrees.
- Recipe
 - 1. Rotate the convolution kernel 180 degrees about its center element.
 - 2. Slide the center element of the convolution kernel so that it lies on top of the (I,k) element of f.
 - 3. Multiply each weight in the rotated convolution kernel by the pixel of f underneath. Sum the individual products from step 3
 - zero-padding is generally used at borders but other border conditions are possible

Example

kernel

$$1 \cdot 2 + 8 \cdot 9 + 15 \cdot 4 + 7 \cdot 7 + 14 \cdot 5 + 16 \cdot 3 + 13 \cdot 6 + 20 \cdot 1 + 22 \cdot 8 = 575$$

Computing the (2,4) Output of Convolution

Correlation

- The operation called correlation is closely related to convolution. In correlation, the value of an output pixel is also computed as a weighted sum of neighboring pixels.
- The difference is that the matrix of weights, in this case called the correlation kernel, is not rotated during the computation.
- Recipe
 - 1. Slide the center element of the correlation kernel so that lies on top of the (2,4) element of f.
 - 2. Multiply each weight in the correlation kernel by the pixel of A underneath.
 - 3. Sum the individual products from step 2.

Example

kernel

$$1 \cdot 8 + 8 \cdot 1 + 15 \cdot 6 + 7 \cdot 3 + 14 \cdot 5 + 16 \cdot 7 + 13 \cdot 4 + 20 \cdot 9 + 22 \cdot 2 = 585$$

Computing the (2,4) Output of Correlation