
Java and Android Concurrency

Building Blocks

fausto.spoto@univr.it

git@bitbucket.org:spoto/java-and-android-concurrency.git

git@bitbucket.org:spoto/java-and-android-concurrency-examples.git

Fausto Spoto Università di Verona, Italy - 1 / 46



Synchronized Collections in java.util.

Vector

Hashtable

Collections.synchronizedCollection(collection)

Collections.synchronizedSet(set)

Collections.synchronizedSortedSet(sortedSet)

Collections.synchronizedList(list)

Collections.synchronizedMap(map)

They encapsulate their state and synchronize every method. They commit
to explicit support for client-side locking through their own intrinsic lock

Fausto Spoto Università di Verona, Italy - 2 / 46



Compound Actions are not Atomic

@NotThreadSafe

public class UnsafeVectorHelpers {
public static <T> T getLast(Vector<T> list) {

int lastIndex = list.size() - 1; // read-modify

return list.get(lastIndex); // write

}

public static <T> void deleteLast(Vector<T> list) {
int lastIndex = list.size() - 1; // read-modify

list.remove(lastIndex); // write

}
}

In a concurrent setting, this might throw an
ArrayIndexOutOfBoundsException

Fausto Spoto Università di Verona, Italy - 3 / 46



Make Compound Actions Atomic with Client-Side Locking

@ThreadSafe

public class SafeVectorHelpers {
public static <T> T getLast(Vector<T> list) {
synchronized (list) {

int lastIndex = list.size() - 1;

return list.get(lastIndex);

}
}

public static <T> void deleteLast(Vector<T> list) {
synchronized (list) {
int lastIndex = list.size() - 1;

list.remove(lastIndex);

}
}

}

Fausto Spoto Università di Verona, Italy - 4 / 46



Hidden Compound Actions in Iteration

In a concurrent setting, the subsequent code might throw an
ArrayIndexOutOfBoundsException:

@NotThreadSafe

for (int i = 0; i < vector.size(); i++) // check

doSomething(vector.get(i)); // then-act

How to fix it:

@ThreadSafe

synchronized (vector) {
for (int i = 0; i < vector.size(); i++)

doSomething(vector.get(i));

}

However, this solution prevents other threads from accessing the vector for
the whole duration of the iteration, which is undesirable

Fausto Spoto Università di Verona, Italy - 5 / 46



ConcurrentModificationException

This exception is thrown by iterators on collections, if the original
collection gets modified before the iteration ends. It occurs in a sequential
setting as well:

for (E element: list)

if (isBad(element))

list.remove(element); // ConcurrentModificationException

In a concurrent setting, the exception might be thrown in much more
surprising situations:

@NotThreadSafe

for (E element: vector) // may throw ConcurrentModificationException

System.out.println(element);

Fausto Spoto Università di Verona, Italy - 6 / 46



Hidden Compound Actions in Iteration

The problem with iteration is that it is a hidden check-then-act operation:

@NotThreadSafe

for (E element: vector) // check

System.out.println(element); // then-act

A way to fix it:

@ThreadSafe

synchronized (vector) {
for (E element: vector)

System.out.println(element);

}

However, this solution prevents other threads from accessing the vector for
the whole duration of the iteration, which is undesirable

Fausto Spoto Università di Verona, Italy - 7 / 46



Beware of Implicit Iteration

@NotThreadSafe

public class HiddenIterator {

@GuardedBy("this")

private final Set<Integer> set = new HashSet<Integer>();

public synchronized void add(Integer i) { set.add(i); }
public synchronized void remove(Integer i) { set.remove(i); }

public void addTenThings() {
Random r = new Random();

for (int i = 0; i < 10; i++)

add(r.nextInt());

// missing synchronization below:

// this may throw a ConcurrentModificationException

System.out.println("DEBUG: added ten elements to " + set);

}
}

Fausto Spoto Università di Verona, Italy - 8 / 46



Other Implicit Uses of Iteration on Collections

hashCode() and equals(), possibly called if a collection is used as
an element of another collection

containsAll(), removeAll(), retainAll()

constructors that take a collection as parameter and build a copy

Always synchronize on the shared mutable collection before such
operations

Fausto Spoto Università di Verona, Italy - 9 / 46



Concurrent Collections

Synchronized collections: Vector, Hashtable, synchronizedXXX

Thread-safety achieved by serializing all access: poor concurrency

Concurrent collections: ConcurrentHashMap, CopyOnWriteArrayList

Multiple threads can concurrently access the collection in a thread-safe way:
high concurrency, slightly increased memory footprint

Fausto Spoto Università di Verona, Italy - 10 / 46



ConcurrentHashMap implements ConcurrentMap

Synchronized collections synchronize for the full duration of a simple
map.get(key) operation, which might take longer than expected.
ConcurrentHashMap instead uses lock striping:

readers can access the map concurrently

readers and writers can access the map concurrently

a limited number of writers can modify the map concurrently

iterators are not fail-fast: they yield a snapshot of the map at the
time of their creation and never throw a
ConcurrentModificationException

there is no need to synchronize during iteration

there is no support for client-side locking
there are extra atomic check-then-act operations

V putIfAbsent(K key, V value)

boolean remove(K key, V value)

boolean replace(K key, V oldValue, V newValue)

V replace(K key, V newValue)

Fausto Spoto Università di Verona, Italy - 11 / 46



CopyOnWriteArrayList and CopyOnWriteArraySet

They hold a backing collection that is recreated every time the collection
gets modified:

iterators refer to the backing collection at the time of creation, hence
they reflect a snapshot of the collection at their creation time, are not
fail-safe and never throw a ConcurrentModificationException

there is no need to synchronize during iteration

mutative methods are slow

They are the perfect concurrent data structure when modification is rare,
while iteration is the predominant operation

such as for implementing a list of listeners, that must be iterated at
each notification

Fausto Spoto Università di Verona, Italy - 12 / 46



Implementing a List of Listeners

@ThreadSafe

public class VisualComponent {
private final List<KeyListener> keyListeners = new CopyOnWriteArrayList<>();

public void addKeyListener(KeyListener listener) {
keyListeners.add(listener);

}

public void removeKeyListener(KeyListener listener) {
keyListeners.remove(listener);

}

public void fireKeyListeners(KeyEvent event) {
// no need to synchronize here

for (KeyListener listener: keyListeners)

listener.keyPressed(event);

}
}

Fausto Spoto Università di Verona, Italy - 13 / 46



Blocking Queues

Blocking queues implement a FIFO or priority buffer with methods:

put(element) that adds an element to the queue

bounded queues: blocks if full
unbounded queues: never blocks

take() that extracts the first element from the queue

if the queue is empty, it blocks

offer(element) that adds an element to the queue

bounded queues: returns false if full
unbounded queues: equivalent to put

poll() that extracts the first element from the queue

if the queue is empty, yields null

timed versions of offer and poll

Beware of unbounded queues that might fill up the memory

Fausto Spoto Università di Verona, Italy - 14 / 46



Producer/Consumer Pattern

Fausto Spoto Università di Verona, Italy - 15 / 46



Concurrent Queue Classes from the Java Library

Fausto Spoto Università di Verona, Italy - 16 / 46



Example: File Crawling as Consumer/Producer

private static final int BOUND = 10;

private static final int N_CONSUMERS

= Runtime.getRuntime().availableProcessors();

public static void startIndexing(File[] roots) {
BlockingQueue<File> queue = new LinkedBlockingQueue<>(BOUND);

// start producers

for (File root: roots)

new Thread(new FileCrawler(queue, root)).start();

// start consumers

for (int i = 0; i < N_CONSUMERS; i++)

new Thread(new Indexer(queue)).start();

}

Fausto Spoto Università di Verona, Italy - 17 / 46



The Producer

@ThreadSafe

class FileCrawler implements Runnable {
private final BlockingQueue<File> fileQueue;

private final File root;

public FileCrawler(BlockingQueue<File> fileQueue, File root) {
this.fileQueue = fileQueue;

this.root = root;

}
...

public void run() {
crawl(root);

}

private void crawl(File root) {
File[] entries = root.listFiles();

if (entries != null)

for (File entry : entries)

if (entry.isDirectory())

crawl(entry);

else if (!alreadyIndexed(entry))

fileQueue.put(entry);

}
}

Fausto Spoto Università di Verona, Italy - 18 / 46



The Consumer

@ThreadSafe

class Indexer implements Runnable {
private final BlockingQueue<File> queue;

public Indexer(BlockingQueue<File> queue) {
this.queue = queue;

}

public void run() {
while (true)

indexFile(queue.take());

}

public void indexFile(File file) {
// index the file...

}
}

Fausto Spoto Università di Verona, Italy - 19 / 46



Blocking and Interruptible Methods

Cooperative interruption

A thread cannot be stopped. It is only possible to send an interruption
request to a thread by calling its interrupt() method. This will result in

a checked InterruptedException, if the thread is blocked at a
blocking method (such as queue.take())

its interruption flag being set, otherwise. This can be checked
through the isInterrupted() method of the thread

Fausto Spoto Università di Verona, Italy - 20 / 46



Dealing with InterruptedException

The simplified code of two slides ago:

class Indexer implements Runnable {
...

public void run() {
while (true)

indexFile(queue.take());

}
}

The real code:

class Indexer implements Runnable {
...

public void run() {
try {

while (true)

indexFile(queue.take());

}
catch (InterruptedException e) {

// propagate back the interruption to the thread running this Runnable

Thread.currentThread().interrupt();

}
}

}
Fausto Spoto Università di Verona, Italy - 21 / 46



Never Swallow an Interruption

Interruptions should not be eaten

class Indexer implements Runnable {
...

public void run() {
try {
while (true)

indexFile(queue.take());

}
catch (InterruptedException e) {} // don’t do this at home

}
}

This means that the request has been ignored. Instead

either propagate back the exception

or propagate back the interruption request

Interruptions could be swallowed only if you are extending Thread!

Fausto Spoto Università di Verona, Italy - 22 / 46



Synchronizers

A synchronizer is any object that coordinates the control flow of threads
based on its state:

blocking queues

latches

semaphores

barriers

futures

Fausto Spoto Università di Verona, Italy - 23 / 46



Latches

A latch is a synchronizer that can delay the progress of threads until it
reaches its terminal state

Class CountDownLatch allows threads to wait for a set of events to occur.
It is initialized to a positive number, representing the number of events to
wait for

method countDown() decrements the counter

method await() blocks until the counter reaches zero

Fausto Spoto Università di Verona, Italy - 24 / 46



Example: Use Latches to Profile a Runnable
public class TestHarness {

public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
final CountDownLatch startGate = new CountDownLatch(1);

final CountDownLatch endGate = new CountDownLatch(nThreads);

for (int i = 0; i < nThreads; i++)

new Thread() {
public void run() {

try {
startGate.await(); // wait for the GO!

try {
task.run();

} finally {
endGate.countDown(); // finished!

}
} catch (InterruptedException ignored) {}

}
}.start();

long start = System.nanoTime();

startGate.countDown(); // let all thread start now

endGate.await(); // wait for the last thread to finish

return System.nanoTime() - start;

}
}

Fausto Spoto Università di Verona, Italy - 25 / 46



Semaphores

A semaphore is a synchronizer that controls the number of agents that can
access a certain resource

Class Semaphore is initialized to a positive number, representing the
number of available access permits

method acquire() grabs a permit and blocks if no permit is available

method release() pushes back a permit

Fausto Spoto Università di Verona, Italy - 26 / 46



A Bounded Set with Blocking Addition

@ThreadSafe

public class BoundedHashSet<T> {
private final Set<T> set;

private final Semaphore sem;

public BoundedHashSet(int bound) {
this.set = Collections.synchronizedSet(new HashSet<>());

this.sem = new Semaphore(bound);

}

Fausto Spoto Università di Verona, Italy - 27 / 46



A Bounded Set with Blocking Addition

public boolean add(T o) throws InterruptedException {
sem.acquire();

boolean wasAdded = false;

try {
wasAdded = set.add(o);

return wasAdded;

} finally {
if (!wasAdded)

sem.release();

}
}

public boolean remove(Object o) {
boolean wasRemoved = set.remove(o);

if (wasRemoved)

sem.release();

return wasRemoved;

}
}

Fausto Spoto Università di Verona, Italy - 28 / 46



Barriers

A barrier is a synchronizer that blocks a group of threads until they have
all reached a barrier point, then they proceed

Class CyclicalBarrier is initialized to a positive number n, representing
the number of threads that should be awaited at the barrier

method await() blocks until the remaining n − 1 have called
await() as well, at which moment all n threads are allowed to
proceed

Fausto Spoto Università di Verona, Italy - 29 / 46



The Backbone of a Cyclical Game

@ThreadSafe

public class CellularAutomata {
private final Board mainBoard;

private final CyclicBarrier barrier;

private final Worker[] workers;

public CellularAutomata(Board board) {
int count = Runtime.getRuntime().availableProcessors();

this.mainBoard = board;

this.barrier = new CyclicBarrier(count, () -> mainBoard.commitNewValues());

this.workers = new Worker[count];

for (int i = 0; i < count; i++) // split work between workers

workers[i] = new Worker(mainBoard.getSubBoard(count, i));

}

public void start() {
// start all workers

for (Worker worker: workers)

new Thread(worker).start();

mainBoard.waitForConvergence();

}

Fausto Spoto Università di Verona, Italy - 30 / 46



The Backbone of a Cyclical Game

// inner class

private class Worker implements Runnable {
private final Board board;

public Worker(Board board) { this.board = board; }

public void run() {
while (!board.hasConverged()) {

// compute the next generation of the values

for (int x = 0; x < board.getMaxX(); x++)

for (int y = 0; y < board.getMaxY(); y++)

board.setNewValue(x, y, computeValue(x, y));

try {
// wait until all other workers have finished

barrier.await();

}
catch (InterruptedException | BrokenBarrierException ex) {

return; // nobody can interrupt this

}
}

}
}

Fausto Spoto Università di Verona, Italy - 31 / 46



Latches, Semaphores and Barriers at a Glance

Latch
new CountDownLatch(counter >= 0)

countDown() decrements the counter

await() blocks until the counter reaches 0

Semaphore
new Semaphore(counter >= 0)

acquire() decrements the counter and blocks if it is 0

release() increments the counter

Barrier
new CyclicBarrier(counter >= 0)

await() decrements the counter and blocks if it is not 0.
If it reaches 0, reset the counter to its initial value

and wakes up all blocked threads

Fausto Spoto Università di Verona, Italy - 32 / 46



Back to the Future

Runnable

The specification of a task that does not return any value nor throws any
exception

Callable<V>

The specification of a task that can return a value of type V or throw an
exception

Future<V>

A pointer to the future result of a computation, not necessarily terminated
yet, that eventually will return a value of type V or throw an exception

Fausto Spoto Università di Verona, Italy - 33 / 46



A Pointer to a Future Result

// specify the task to compute a V as a Callable<V> c

FutureTask<V> future = new FutureTask<>(c);

// build and start your worker

Thread thread = new Thread(future);

thread.start();

// do other things here

// and others things as well

// do more things

// eventually, ask for the result, when you need it

V result = future.get();

Fausto Spoto Università di Verona, Italy - 34 / 46



Getting the Result of a FutureTask<V>

The statement V result = future.get() might have many outcomes:

the worker has already terminated and computed value r ⇒ assign r
immediately to variable result and continue

the worker has already terminated by throwing an exception e ⇒
throw immediately a new ExecutionException with cause e

the worker has been cancelled ⇒ throws a new
CancellationException

the worker is still working ⇒ block until:

either the worker terminates by computing a value r ⇒ wake up, assign
r to result and continue
or the worker terminates by throwing an exception e ⇒ wake up and
throw a new ExecutionException with cause e
or the blocked thread gets interrupted ⇒ throw a new
InterruptedException

Fausto Spoto Università di Verona, Italy - 35 / 46



An Example of the Use of FutureTask

public class Preloader {
private final FutureTask<ProductInfo> future =

new FutureTask<>(new Callable<ProductInfo>() {
public ProductInfo call() throws DataLoadException {

return loadProductInfo();

}
});

private final Thread thread = new Thread(future);

public void start() { thread.start(); }

public ProductInfo get() throws DataLoadException, InterruptedException {
try {

return future.get();

} catch (ExecutionException e) {
Throwable cause = e.getCause();

if (cause instanceof DataLoadException)

throw (DataLoadException) cause;

else

throw launderThrowable(cause); // cast cause into unchecked

}
}

}

Fausto Spoto Università di Verona, Italy - 36 / 46



Cast an Exception into an Unchecked Exception

unchecked exceptions: instances of RuntimeException and Error.
No need to declare them with throws

checked exceptions: all other exceptions. Must be declared with
throws

If we know that t is an unchecked exception, the following code will throw
it back as such:

public RuntimeException launderThrowable(Throwable t) {
if (t instanceof RuntimeException)

return (RuntimeException) t;

else if (t instanceof Error)

throw (Error) t;

else

// this should never happen, since t was assumed unchecked

throw new IllegalStateException("Not unchecked!", t);

}

Fausto Spoto Università di Verona, Italy - 37 / 46



Runnable, Callable, Future and FutureTask

Fausto Spoto Università di Verona, Italy - 38 / 46



Example: A Scalable Result Cache

Consider the specification of a function that transforms an A into a V and
that might be arbitrarily expensive:

interface Computable<A, V> {
V compute(A arg) throws InterruptedException;

}

We want to define a decorator that adds a layer of caching to the process:

computable2 = new Memoizer(computable1)

The function computable2 is equivalent to computable1, but caches
repeated applications

Fausto Spoto Università di Verona, Italy - 39 / 46



Attempt #1: Synchronize on a Hash Map

@ThreadSafe

public class Memoizer1<A, V> implements Computable<A, V> {
@GuardedBy("this") private final Map<A, V> cache = new HashMap<>();

private final Computable<A, V> c;

public Memoizer1(Computable<A, V> c) {
this.c = c;

}

public synchronized V compute(A arg) throws InterruptedException {
V result = cache.get(arg);

if (result == null) {
result = c.compute(arg);

cache.put(arg, result);

}
return result;

}
}

Only a computation can run at a time, in sequence!

Fausto Spoto Università di Verona, Italy - 40 / 46



Attempt #2: Use a Concurrent Map

@ThreadSafe

public class Memoizer2<A, V> implements Computable<A, V> {
private final Map<A, V> cache = new ConcurrentHashMap<>();

private final Computable<A, V> c;

public Memoizer2(Computable<A, V> c) {
this.c = c;

}

public V compute(A arg) throws InterruptedException {
V result = cache.get(arg);

if (result == null) {
result = c.compute(arg);

cache.put(arg, result);

}
return result;

}
}

The same computation might be executed more times!

Fausto Spoto Università di Verona, Italy - 41 / 46



Attempt #3: Use a Concurrent Map and FutureTask

@ThreadSafe

public class Memoizer3<A, V> implements Computable<A, V> {
private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();

private final Computable<A, V> c;

public Memoizer3(Computable<A, V> c) { this.c = c; }

public V compute(A arg) throws InterruptedException {
Future<V> f = cache.get(arg);

if (f == null) {
FutureTask<V> ft = new FutureTask<>(() -> c.compute(arg));

cache.put(arg, f = ft);

ft.run(); // call to c.compute happens here

}
try {

return f.get();

}
catch (ExecutionException e) {

throw launderThrowable(e.getCause());

}
}

}

Very rarely, the same computation might be executed more times!
Fausto Spoto Università di Verona, Italy - 42 / 46



Attempt #4: Exploit putIfAbsent of Concurrent Maps
@ThreadSafe

public class Memoizer<A, V> implements Computable<A, V> {
private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();

private final Computable<A, V> c;

public Memoizer(Computable<A, V> c) { this.c = c; }

public V compute(A arg) throws InterruptedException {
while (true) {

Future<V> f = cache.get(arg);

if (f == null) {
FutureTask<V> ft = new FutureTask<>(() -> c.compute(arg));

f = cache.putIfAbsent(arg, ft);

if (f == null) {
f = ft; ft.run();

}
}
try {

return f.get();

} catch (CancellationException e) {
cache.remove(arg, f); // cache eviction, while (true) will retry

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}
}

}
} Fausto Spoto Università di Verona, Italy - 43 / 46



Use the Concurrent Cache in the Factorization Servlet

@ThreadSafe

@WebServlet("/Factorizer")

public class Factorizer extends StatelessFactorizer {
private static final long serialVersionUID = 1L;

private final Computable<BigInteger, BigInteger[]> cache

= new Memoizer<>(arg -> factor(arg));

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws IOException {

BigInteger number = extractFromRequest(request);

try {
encodeIntoResponse(response, cache.compute(number));

}
catch (InterruptedException e) {

encodeErrorIntoResponse(response, "factorization interrupted");

}
}

}

Fausto Spoto Università di Verona, Italy - 44 / 46



Exercise 1

Consider class MD5s, that implements a producer/consumer algorithm for
generating the MD5 digests of files in some directories

1 complete method index of the Indexer, in order to store in memory
and print on standard output the MD5 digest of each file. The digest
can be computed through the auxiliary md5 method

2 complete methods alreadyIndexed and getMD5sOf

3 complete method stop in order to interrupt all Indexers. Pending
work should be processed, hence implement the handler for
InterruptedException inside the run method of the Indexer

If everything works, it should be possible to invoke MD5s from the
command line and print the MD5s of the specified directories:

java -classpath examples/bin it.univr.concurrency.MD5s examples servlets

The execution should terminate at the end of the computation of the
digests, always with the same printout (but typically in different orders)

Fausto Spoto Università di Verona, Italy - 45 / 46



Exercise 2

Implement a board for the CellularAutomata example, in order to
implement the Game of Life. How do you implement the blocking
waitForConvergence() method?

Fausto Spoto Università di Verona, Italy - 46 / 46


