Restoration

Outline

Restoration model

- ► What is *restoration*
- ► Typical image *degradations*
- ► A *model* for degradation/restoration
- ► The point spread function (PSF)

Algorithms

- Special case: only noise
- ► Direct inverse filtering
- Wiener deconvolution (linear approach)
- Lucy-Richardson deconvolution (non-linear approach)

What is restoration?

GOAL: improve an image in some predefined sense

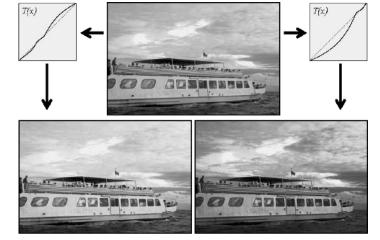
What's the difference with before?

Image enhancement: subjective process

- Modify image to make it look better, e.g. contrast
- ► Heuristic/subjective process: try until pleased

Image restoration: objective process

- An image is degraded by external factors acting on the scene/sensor system
- Remove them by modeling the degradation and applying the inverse process

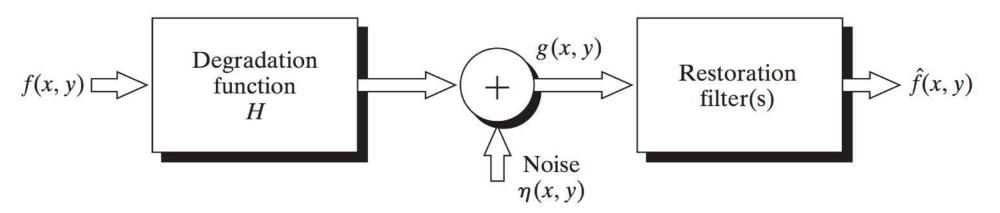


Degradation is modeled as a process H that operates on the *input image* f(x,y) to produce a *degraded image* g(x,y)

$$g(x,y) = H\Big[f(x,y)\Big] + \eta(x,y)$$



Restoration attempts to obtain an estimate f(x,y) of the original image f(x,y) given some prior knowledge on the *degradation process* H and the *additive noise* $\eta(x,y)$



1/4

Typical image degradations

- Noise
- Optical blur
 e.g. imperfect optics
- Motion blur
 e.g. camera motion

original

noise

optical blur

(2/4)

motion blur

Example: restoration in *forensic science*

identify a license plate from *low quality images* e.g. bad camera, far objects, air pollution... identify a license plate from *moving cars*

If *H* is a **linear, position-invariant process**, it can be shown that the degraded image g(x,y) is given in the *spatial domain* by

$$g(x,y) = h(x,y) * f(x,y) + \eta(x,y)$$

- h(x,y) is the *spatial representation* of the degradation process
- ► The symbol "*" represents the **convolution**

From the convolution theorem we know...

$$\mathsf{F}{f \ast g} = \mathsf{F}{f} \cdot \mathsf{F}{g}$$

$$\mathsf{F}{f \cdot g} = \mathsf{F}{f} * \mathsf{F}{g}$$

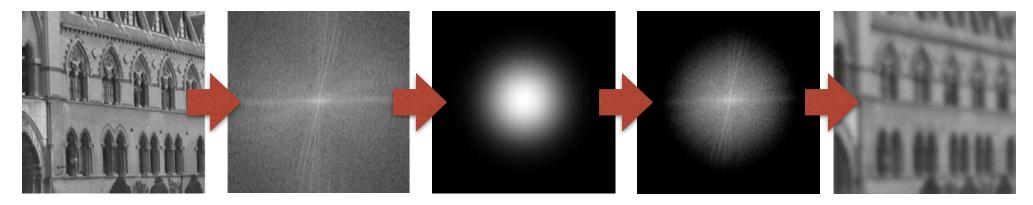
"…convolution in one space = multiplication in the other one…"

The model can be express also in *frequency domain* as:

$$G(u, v) = H(u, v)F(u, v) + N(u, v)$$

Note 1: challenging process, loss of information and noise

- ► Blurring is a *low-pass filter* → removes high frequencies → information is lost
- Noise make the inversion of the process unstable



Note 2: restoration relies on the assumption that H is the same everywhere ("...H is linear, position-invariant...")

- Cannot be applied on images with *different out-of-focus*
- Cannot be applied if different areas are subject to different types of motion
 - e.g. *Running person*, arms and legs move differently Combination of *motion* and *rotation*

 $\left(\frac{4}{4} \right)$

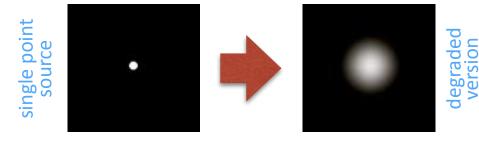
In spatial domain, h(x,y) is called **Point Spread Function** (PSF)

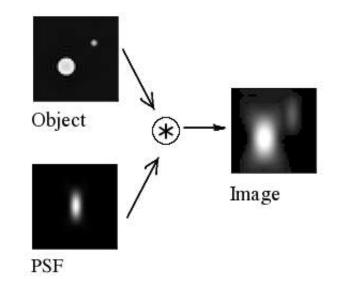
- Represents the spreading that a single bright point in the ideal image would result in the degraded image
- ▶ i.e. effect of degradation on a *single point*

This gives the characteristics/effect of the degradation for any type of input

Convolution vs deconvolution

- Degradation = convolution with h
- Restoration = deconvolution by h (i.e. remove the effect of h)
- Sometimes called *deblurring*



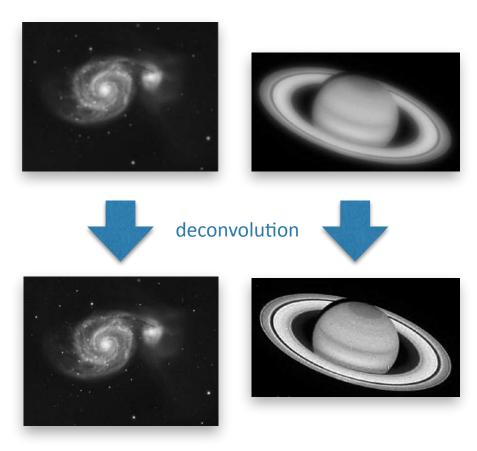


Problem of blurred images arose with Hubble Space telescope

- ► Launched in 1990 with a *flawed mirror*
- ► The resulting images were **out-of-focus**

Deconvolution was initially used to correct images before *corrective optics* installed in 1993

New lenses/mirror solved the problem



The main problem in most situations is to determine the PSF

Most of the times it is unknown

Practical approaches to modeling the PSF

Analytical or empirical estimation

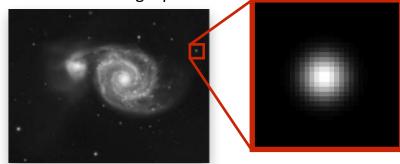
- Example: for Hubble Space telescope, PSF computed from measurements of mirror curvature

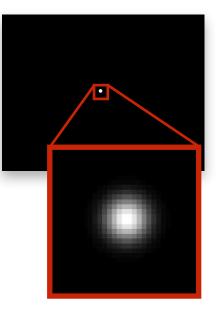
Image acquisition with same optics of single point of light

- Also an object with known shape

Analyzing features of the image

- Example: an isolated star should be a single point



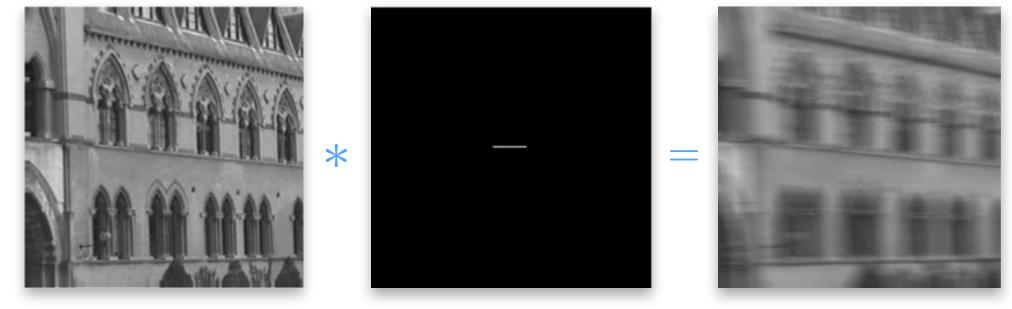


Note: methods exist also in case when PSF is not known

• e.g. *blind deconvolution* (not seen in this course)

How does the PSF of motion blur looks like?

► For simplicity, assume there is only *horizontal motion* e.g. camera pans while image is acquired



f(x,y)

h(x,y)

g(x,y)

Valid also in case of arbitrary direction of motion

- Orientation matches the one of the motion
- Its magnitude (length of "bar") proportional to amount of motion i.e. how many pixels each point was shifted

Restoration when degradation is only noise

When the only degradation is noise, model can be written as

$$g(x,y) = f(x,y) + \eta(x,y)$$

▶ NB: equivalent to say *H* = *identity operator*

Does this ring a bell?

In this special case, **spatial filtering** is the method of choice!

e.g. low-pass filters, median filter etc

Convolution theorem relates convolution and deconvolution

$f(x,y)*h(x,y)\Leftrightarrow F(u,v)H(u,v)$

Simplest approach is to directly invert this equation

$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$
--

direct filtering

Notes

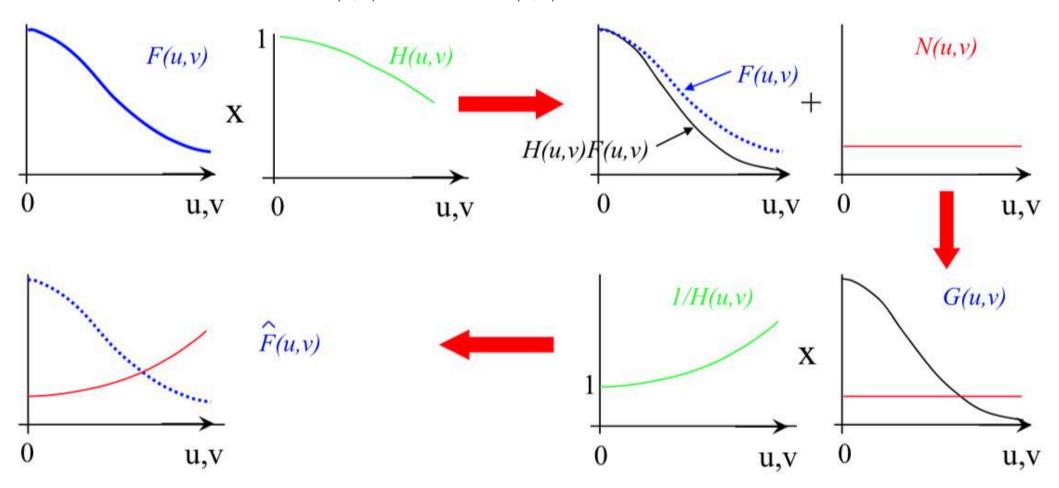
If we consider noise, i.e. G(u,v) = F(u,v)H(u,v)+N(u,v), then

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

- Even if we knew H(u,v) exactly, we could never recover F(u,v)because noise $\eta(x,y)$ is random and its FFT N(u,v) is not known
- Practical issues in division by H(u,v), as it usually contains many zeros (or small values which would create problems)

The problem of noise amplification

• Recall that
$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$$



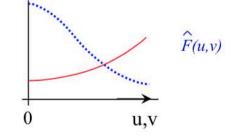
▶ NB: noise at <u>high frequencies</u> tends to be amplified

Direct inverse filtering

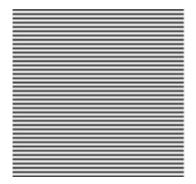
Examples

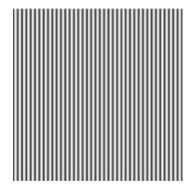
degraded

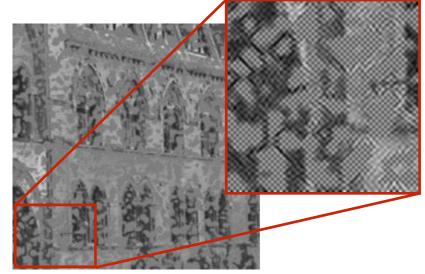
restored



Recall **high frequencies** in 2D images







Linear restoration: Wiener deconvolution

Seeks for an estimated image $\hat{f}(x,y)$ that **minimizes the mean** square error to the *theoretical ideal image* f(x,y) $E\{(f-\hat{f})^2\}$

• $\hat{f} \neq f$, but **it is the best approximation** that has minimum differences from *ideal image* f(x,y) in the least-squares sense

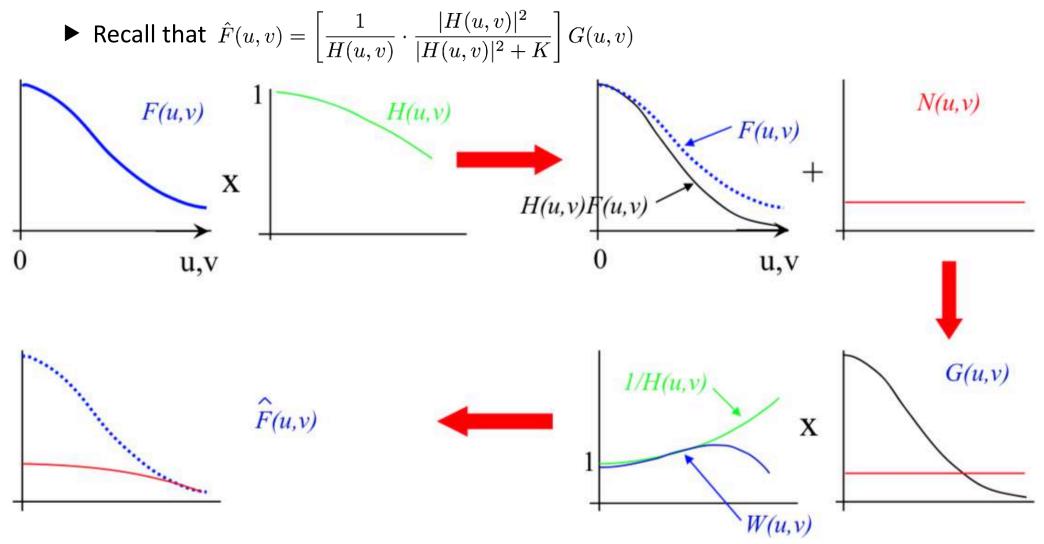
The solution to this expression is (in the frequency domain):

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \cdot \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}\right] G(u,v)$$

- ▶ $|H(u,v)|^2 = H^*(u,v)H(u,v)$, with $H^*(u,v)$ complex conjugate of H(u,v)
- Scalar *K* is added to **limit the effect of noise** and numerical *overflow*
- The value of K depends on the amount of noise in the image
 - This is almost *never known* \rightarrow *K* is usually determined *empirically*
- ► NB: if K=0 → direct inverse filtering

Linear restoration: Wiener deconvolution

Basic idea: selective filtering of frequencies



NB: when K >> |H(u,v)| for large $u, v \rightarrow \underline{high frequencies}$ are attenuated

(2/3)

Empirically

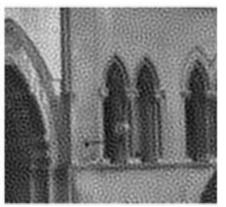
- If K is **too small** \rightarrow *noise* will dominate
- If K is **too large** \rightarrow *blur* mostly remains

degraded

K too small

good K

 $K \operatorname{too} \operatorname{big}$



(3/3)

Non-linear restoration: LR deconvolution

Wiener deconvolution is an important tool in image processing

- lt's simple: once H(u,v) is specified, g(x,y) obtained via one filter application
- ► This is very **efficient** and **easy to implement**

Lucy and Richardson proposed a non-linear iterative algorithm that often yields superior results than linear techniques

- Arises from a maximum-likelihood formulation
- ► The solution is **updated iteratively** (*k* is the iteration number):

$$\hat{f}_{k+1}(x,y) = \hat{f}_k(x,y) \left[h(-x,-y) * \frac{g(x,y)}{h(x,y) * \hat{f}_k(x,y)} \right]$$

Notes

- Non-linear because division by $\hat{f}_k(x, y)$
- ▶ Main problem: when to stop the iterations? Usually, when results are acceptable

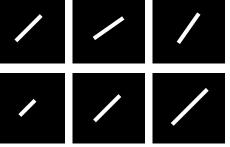
Application: reading license plates

The plate is out-of-focus because car is moving

• The actual h(x,y) is **unknow**

Try different orientations and shifts until you can read it

h(x,y)



apply deconvolution