
CS162
Operating Systems and
Systems Programming

Lecture 1

What is an Operating System?

August 28th, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 1.28/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Who am I?
• Professor John Kubiatowicz (Prof “Kubi”)

– Background in Hardware Design
» Alewife project at MIT
» Designed CMMU, Modified SPAR C processor
» Helped to write operating system

– Background in Operating Systems
» Worked for Project Athena (MIT)
» OS Developer (device drivers, network file systems)
» Worked on Clustered High-Availability systems

(CLAM Associates)
– Peer-to-Peer

» OceanStore project –
Store your data for 1000 years

» Tapestry and Bamboo –
Find you data around globe

– Quantum Computing
» Well, this is just cool, but probably not apropos

Lec 1.38/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• What is an Operating System?
– And – what is it not?

• Examples of Operating Systems design
• Why study Operating Systems?
• Oh, and “How does this class operate?”

Interactive is important!
Ask Questions!

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 1.48/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Rapid Underlying Technology Change

• “Cramming More Components onto Integrated Circuits”
– Gordon Moore, Electronics, 1965

Lec 1.58/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Computing Devices Everywhere

Lec 1.68/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Computer System Organization

• Computer-system operation
– One or more CPUs, device controllers connect
through common bus providing access to shared
memory

– Concurrent execution of CPUs and devices
competing for memory cycles

Lec 1.78/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Functionality comes with great complexity!

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

Pentium IV Chipset

Lec 1.88/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Sample of Computer Architecture Topics

Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, Dynamic Compilation

Addressing,
Protection,
Exception Handling

L1 Cache

L2 Cache

DRAM

Disks, WORM, Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction
Level Parallelism

Network
Communication

O
th

er
 P

ro
ce

ss
or

s

Lec 1.98/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: Some Mars Rover Requirements
• Serious hardware limitations/complexity:

– 20Mhz powerPC processor, 128MB of RAM
– cameras, scientific instruments, batteries,

solar panels, and locomotion equipment
– Many independent processes work together

• Can’t hit reset button very easily!
– Must reboot itself if necessary
– Always able to receive commands from Earth

• Individual Programs must not interfere
– Suppose the MUT (Martian Universal Translator Module)

buggy
– Better not crash antenna positioning software!

• Further, all software may crash occasionally
– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions time critical:
– Need to stop before hitting something
– Must track orbit of Earth for communication

Lec 1.108/27/06 Kubiatowicz CS162 ©UCB Fall 2006

How do we tame complexity?

• Every piece of computer hardware different
– Different CPU

» Pentium, PowerPC, ColdFire, ARM, MIPS
– Different amounts of memory, disk, …
– Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint
readers

– Different networking environment
» Cable, DSL, Wireless, Firewalls,…

• Questions:
– Does the programmer need to write a single program
that performs many independent activities?

– Does every program have to be altered for every
piece of hardware?

– Does a faulty program crash everything?
– Does every program have access to all hardware?

Lec 1.118/27/06 Kubiatowicz CS162 ©UCB Fall 2006

OS Tool: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks ⇒

what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):

– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 1.128/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Interfaces Provide Important Boundaries

• Why do interfaces look the way that they do?
– History, Functionality, Stupidity, Bugs, Management
– CS152 ⇒ Machine interface
– CS160 ⇒ Human interface
– CS169 ⇒ Software engineering/management

• Should responsibilities be pushed across boundaries?
– RISC architectures, Graphical Pipeline Architectures

instruction set

software

hardware

Lec 1.138/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Virtual Machines
• Software emulation of an abstract machine

– Make it look like hardware has features you want
– Programs from one hardware & OS on another one

• Programming simplicity
– Each process thinks it has all memory/CPU time
– Each process thinks it owns all devices
– Different Devices appear to have same interface
– Device Interfaces more powerful than raw hardware

» Bitmapped display ⇒ windowing system
» Ethernet card ⇒ reliable, ordered, networking (TCP/IP)

• Fault Isolation
– Processes unable to directly impact other processes
– Bugs cannot crash whole machine

• Protection and Portability
– Java interface safe and stable across many platforms

Lec 1.148/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Four Components of a Computer System

Definition: An operating system implements a virtual
machine that is (hopefully) easier and safer to
program and use than the raw hardware.

Lec 1.158/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Virtual Machines (con’t): Layers of OSs

• Useful for OS development
– When OS crashes, restricted to one VM
– Can aid testing programs on other OSs

Lec 1.168/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Nachos: Virtual OS Environment

• You will be working with Nachos
– Simulation environment
– Hardware, interrupts, I/O
– Execution of User Programs running on this platform

Lec 1.178/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Course Administration

• Instructor: John Kubiatowicz (kubitron@cs.berkeley.edu)
675 Soda Hall
Office Hours(Tentative): M/W 2:00pm-3:00pm

• TAs: Thomas Kho (cs162-ta@cory)
Subhransu Maji (cs162-tb@cory)

• Labs: Second floor of Soda Hall
• Website: http://inst.eecs.berkeley.edu/~cs162

– Mirror: http://www.cs.berkeley.edu/~kubitron/cs162
• Webcast: http://webcast.berkeley.edu/courses/index.php
• Newsgroup: ucb.class.cs162 (use authnews.berkeley.edu)
• Course Email: cs162@cory.cs.berkeley.edu
• Reader: TBA (Stay tuned!)
• Are you on the waitlist? See Michael-David in 379 Soda

– Fill out blue appeal form

Lec 1.188/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Textbook

• Text: Operating Systems Concepts,
7th Edition Silbershatz, Galvin, Gagne

• Online supplements
– See “Information” link on course website
– Includes Appendices, sample problems, etc

• Question: need 7th edition?
– No, but has new material that we may cover
– Completely reorganized
– Will try to give readings from both the 6th and 7th

editions on the lecture page

Lec 1.198/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Topic Coverage

Textbook: Silberschatz, Galvin, and Gagne,
Operating Systems Concepts, 7th Ed., 2005

• 1 week: Fundamentals (Operating Systems Structures)
• 1.5 weeks: Process Control and Threads
• 2.5 weeks: Synchronization and scheduling
• 2 week: Protection,Address translation, Caching
• 1 week: Demand Paging
• 1 week: File Systems
• 2.5 weeks: Networking and Distributed Systems
• 1 week: Protection and Security
• ??: Advanced topics

Lec 1.208/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Grading

• Rough Grade Breakdown
– Two Midterms: 15% each
One Final: 15%
Four Projects: 50% (i.e. 12.5% each)
Participation: 5%

• Four Projects:
– Phase I: Build a thread system
– Phase II: Implement Multithreading
– Phase III: Caching and Virtual Memory
– Phase IV: Networking andd Distributed Systems

• Late Policy:
– Each group has 5 “slip” days.
– For Projects, slip days deducted from all partners
– 10% off per day after slip days exhausted

Lec 1.218/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Group Project Simulates Industrial Environment

• Project teams have 4 or 5 members in same
discussion section

– Must work in groups in “the real world”
• Communicate with colleagues (team members)

– Communication problems are natural
– What have you done?
– What answers you need from others?
– You must document your work!!!
– Everyone must keep an on-line notebook

• Communicate with supervisor (TAs)
– How is the team’s plan?
– Short progress reports are required:

» What is the team’s game plan?
» What is each member’s responsibility?

Lec 1.228/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Class Schedule
• Class Time: M/W 4 – 5:30pm, 10 Evans

– Please come to class. Lecture notes do not have everything
in them. The best part of class is the interaction!

• Sections:
– Important information is in the sections
– The sections assigned to you by Telebears are temporary!
– Every member of a project group must be in same section

TBA75 EvansTh 4:00-5:00P105
87 Evans
87 Evans
85 Evans

3111 Etcheverry
Location

TBATh 3:00-4:00P104
TBATh 2:00-3:00P103
TBATh 11:00-12:00P102
TBATh 9:00-10:00P101
TATimeSection

Lec 1.238/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Typical Lecture Format

• 1-Minute Review
• 20-Minute Lecture
• 5- Minute Administrative Matters
• 25-Minute Lecture
• 5-Minute Break (water, stretch)
• 25-Minute Lecture
• Instructor will come to class early & stay after to answer

questions

Attention

Time

20 min. Break “In Conclusion, ...”25 min. Break 25 min.

Lec 1.248/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Lecture Goal

Interactive!!!

Lec 1.258/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Computing Facilities

• Every student who is enrolled should get an
account form at end of lecture

– Gives you an account of form cs162-xx@cory
– This account is required

» Most of your debugging can be done on other EECS
accounts, however…

» All of the final runs must be done on your cs162-xx
account and must run on the x86 Solaris machines

• Make sure to log into your new account this week
and fill out the questions

• Project Information:
– See the “Projects and Nachos” link off the course
home page

• Newsgroup (ucb.class.cs162):
– Read this regularly!

Lec 1.268/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Academic Dishonesty Policy
• Copying all or part of another person's work, or using reference

material not specifically allowed, are forms of cheating and will
not be tolerated. A student involved in an incident of cheating will
be notified by the instructor and the following policy will apply:

http://www.eecs.berkeley.edu/Policies/acad.dis.shtml
• The instructor may take actions such as:

– require repetition of the subject work,
– assign an F grade or a 'zero' grade to the subject work,
– for serious offenses, assign an F grade for the course.

• The instructor must inform the student and the Department Chair
in writing of the incident, the action taken, if any, and the
student's right to appeal to the Chair of the Department
Grievance Committee or to the Director of the Office of Student
Conduct.

• The Office of Student Conduct may choose to conduct a formal
hearing on the incident and to assess a penalty for misconduct.

• The Department will recommend that students involved in a second
incident of cheating be dismissed from the University.

Lec 1.278/27/06 Kubiatowicz CS162 ©UCB Fall 2006

What does an Operating System do?
• Silerschatz and Gavin:

“An OS is Similar to a government”
– Begs the question: does a government do anything useful by

itself?
• Coordinator and Traffic Cop:

– Manages all resources
– Settles conflicting requests for resources
– Prevent errors and improper use of the computer

• Facilitator:
– Provides facilities that everyone needs
– Standard Libraries, Windowing systems
– Make application programming easier, faster, less error-prone

• Some features reflect both tasks:
– E.g. File system is needed by everyone (Facilitator)
– But File system must be Protected (Traffic Cop)

Lec 1.288/27/06 Kubiatowicz CS162 ©UCB Fall 2006

What is an Operating System,… Really?

• Most Likely:
– Memory Management
– I/O Management
– CPU Scheduling
– Communications? (Does Email belong in OS?)
– Multitasking/multiprogramming?

• What about?
– File System?
– Multimedia Support?
– User Interface?
– Internet Browser? ☺

• Is this only interesting to Academics??

Lec 1.298/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Operating System Definition (Cont.)

• No universally accepted definition
• “Everything a vendor ships when you order an

operating system” is good approximation
– But varies wildly

• “The one program running at all times on the
computer” is the kernel.

– Everything else is either a system program (ships
with the operating system) or an application
program

Lec 1.308/27/06 Kubiatowicz CS162 ©UCB Fall 2006

What if we didn’t have an Operating System?

• Source Code⇒Compiler⇒Object Code⇒Hardware
• How do you get object code onto the hardware?
• How do you print out the answer?
• Once upon a time, had to Toggle in program in

binary and read out answer from LED’s!

Altair 8080

Lec 1.318/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple OS: What if only one application?

• Examples:
– Very early computers
– Early PCs
– Embedded controllers (elevators, cars, etc)

• OS becomes just a library of standard services
– Standard device drivers
– Interrupt handlers
– Math libraries

Lec 1.328/27/06 Kubiatowicz CS162 ©UCB Fall 2006

MS-DOS Layer Structure

Lec 1.338/27/06 Kubiatowicz CS162 ©UCB Fall 2006

More thoughts on Simple OS

• What about Cell-phones, Xboxes, etc?
– Is this organization enough?

• Can OS be encoded in ROM/Flash ROM?
• Does OS have to be software?

– Can it be Hardware?
– Custom Chip with predefined behavior
– Are these even OSs?

Lec 1.348/27/06 Kubiatowicz CS162 ©UCB Fall 2006

More complex OS: Multiple Apps

• Full Coordination and Protection
– Manage interactions between different users
– Multiple programs running simultaneously
– Multiplex and protect Hardware Resources

» CPU, Memory, I/O devices like disks, printers, etc
• Facilitator

– Still provides Standard libraries, facilities

• Would this complexity make sense if there were
only one application that you cared about?

Lec 1.358/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: Protecting Processes from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS
– Keep User Programs from Crashing each other
– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:
– Address Translation
– Dual Mode Operation

• Simple Policy:
– Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 1.368/27/06 Kubiatowicz CS162 ©UCB Fall 2006

CPU MMU

Virtual
Addresses

Physical
Addresses

Address Translation
• Address Space

– A group of memory addresses usable by something
– Each program (process) and kernel has potentially
different address spaces.

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

– Mapping often performed in Hardware by Memory
Management Unit (MMU)

Lec 1.378/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 1.388/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Address Translation Details

• For now, assume translation happens with table
(called a Page Table):

• Translation helps protection:
– Control translations, control access
– Should Users be able to change Page Table???

Virtual
Address

Page Table

index
into
page
table

V Access
Rights PA

V page no. offset
10

table located
in physical
memory

P page no. offset
10

Physical
Address

Lec 1.398/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify ⇒ Exception generated
• Transitions from user mode to kernel mode:

– System Calls, Interrupts, Other exceptions

Lec 1.408/27/06 Kubiatowicz CS162 ©UCB Fall 2006

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 1.418/27/06 Kubiatowicz CS162 ©UCB Fall 2006

OS Systems Principles

• OS as illusionist:
– Make hardware limitations go away
– Provide illusion of dedicated machine with infinite
memory and infinite processors

• OS as government:
– Protect users from each other
– Allocate resources efficiently and fairly

• OS as complex system:
– Constant tension between simplicity and
functionality or performance

• OS as history teacher
– Learn from past
– Adapt as hardware tradeoffs change

Lec 1.428/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Why Study Operating Systems?
• Learn how to build complex systems:

– How can you manage complexity for future projects?
• Engineering issues:

– Why is the web so slow sometimes? Can you fix it?
– What features should be in the next mars Rover?
– How do large distributed systems work? (Kazaa, etc)

• Buying and using a personal computer:
– Why different PCs with same CPU behave differently
– How to choose a processor (Opteron, Itanium, Celeron,
Pentium, Hexium)? [Ok, made last one up]

– Should you get Windows XP, 2000, Linux, Mac OS …?
– Why does Microsoft have such a bad name?

• Business issues:
– Should your division buy thin-clients vs PC?

• Security, viruses, and worms
– What exposure do you have to worry about?

Lec 1.438/27/06 Kubiatowicz CS162 ©UCB Fall 2006

“In conclusion…”

• Operating systems provide a virtual machine
abstraction to handle diverse hardware

• Operating systems coordinate resources and
protect users from each other

• Operating systems simplify application
development by providing standard services

• Operating systems can provide an array of fault
containment, fault tolerance, and fault recovery

• CS162 combines things from many other areas of
computer science –

– Languages, data structures, hardware, and
algorithms

CS162
Operating Systems and
Systems Programming

Lecture 2

History of the World Parts 1—5
Operating Systems Structures

August 30th, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 2.28/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Review: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks ⇒

what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):

– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 2.38/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Review: Protecting Processes from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS
– Keep User Programs from Crashing each other
– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:
– Address Translation
– Dual Mode Operation

• Simple Policy:
– Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 2.48/30/06 Kubiatowicz CS162 ©UCB Spring 2006

CPU MMU

Virtual
Addresses

Physical
Addresses

Review: Address Translation
• Address Space

– A group of memory addresses usable by something
– Each program (process) and kernel has potentially
different address spaces.

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

– Mapping often performed in Hardware by Memory
Management Unit (MMU)

Lec 2.58/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Review: Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 2.68/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Review: Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify ⇒ Exception generated
• Transitions from user mode to kernel mode:

– System Calls, Interrupts, Other exceptions

Lec 2.78/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Goals for Today

• History of Operating Systems
– Really a history of resource-driven choices

• Operating Systems Structures
• Operating Systems Organizations

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 2.88/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Moore’s Law Change Drives OS Change

Typical academic computer 1981 vs 2006

0.2$4,000$25,000

≤ 0.1≤ 110s

23216

110,0001 Gb/s9600 b/s

100,0001TB10MB

32,7684GB128KB

1,280
6—40

3200x4
0.25—0.5

10
3—10

Factor20061981

Price

#users/machine

addr bits

Net bandwidth

Disk capacity

DRAM capacity

CPU MHz,
Cycles/inst

Lec 2.98/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Moore’s law effects

• Nothing like this in any other area of business
• Transportation in over 200 years:

– 2 orders of magnitude from horseback @10mph to
Concorde @1000mph

– Computers do this every decade!
• What does this mean for us?

– Techniques have to vary over time to adapt to
changing tradeoffs

• I place a lot more emphasis on principles
– The key concepts underlying computer systems
– Less emphasis on facts that are likely to change
over the next few years…

• Let’s examine the way changes in $/MIP has
radically changed how OS’s work

Lec 2.108/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Dawn of time
ENIAC: (1945—1955)

• “The machine designed by Drs. Eckert and Mauchly
was a monstrosity. When it was finished, the
ENIAC filled an entire room, weighed thirty tons,
and consumed two hundred kilowatts of power.”

• http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

Lec 2.118/30/06 Kubiatowicz CS162 ©UCB Spring 2006

History Phase 1 (1948—1970)
Hardware Expensive, Humans Cheap

• When computers cost millions of $’s, optimize for
more efficient use of the hardware!

– Lack of interaction between user and computer

• User at console: one user at a time
• Batch monitor: load program, run, print

• Optimize to better use hardware
– When user thinking at console, computer idle⇒BAD!
– Feed computer batches and make users wait
– Autograder for this course is similar

• No protection: what if batch program has bug?

Lec 2.128/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Core Memories (1950s & 60s)

• Core Memory stored data as magnetization in iron rings
– Iron “cores” woven into a 2-dimensional mesh of wires
– Origin of the term “Dump Core”
– Rumor that IBM consulted Life Saver company

• See: http://www.columbia.edu/acis/history/core.html

The first magnetic core
memory, from the IBM 405
Alphabetical Accounting
Machine.

Lec 2.138/30/06 Kubiatowicz CS162 ©UCB Spring 2006

History Phase 1½ (late 60s/early 70s)
• Data channels, Interrupts: overlap I/O and compute

– DMA – Direct Memory Access for I/O devices
– I/O can be completed asynchronously

• Multiprogramming: several programs run simultaneously
– Small jobs not delayed by large jobs
– More overlap between I/O and CPU
– Need memory protection between programs and/or OS

• Complexity gets out of hand:
– Multics: announced in 1963, ran in 1969

» 1777 people “contributed to Multics” (30-40 core dev)
» Turing award lecture from Fernando Corbató (key

researcher): “On building systems that will fail”
– OS 360: released with 1000 known bugs (APARs)

» “Anomalous Program Activity Report”
• OS finally becomes an important science:

– How to deal with complexity???
– UNIX based on Multics, but vastly simplified

Lec 2.148/30/06 Kubiatowicz CS162 ©UCB Spring 2006

A Multics System (Circa 1976)

• The 6180 at MIT IPC, skin doors open, circa 1976:
– “We usually ran the machine with doors open so the
operators could see the AQ register display, which
gave you an idea of the machine load, and for
convenient access to the EXECUTE button, which the
operator would push to enter BOS if the machine
crashed.”

• http://www.multicians.org/multics-stories.html

Lec 2.158/30/06 Kubiatowicz CS162 ©UCB Spring 2006

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2,300 MBytes

source: New York Times, 2/23/98, page C3,
“Makers of disk drives crowd even more data into even smaller spaces”

Early Disk History

Lec 2.168/30/06 Kubiatowicz CS162 ©UCB Spring 2006

History Phase 2 (1970 – 1985)
Hardware Cheaper, Humans Expensive

• Computers available for tens of thousands of dollars
instead of millions

• OS Technology maturing/stabilizing
• Interactive timesharing:

– Use cheap terminals (~$1000) to let multiple users
interact with the system at the same time

– Sacrifice CPU time to get better response time
– Users do debugging, editing, and email online

• Problem: Thrashing
– Performance very non-linear

response with load
– Thrashing caused by many

factors including
» Swapping, queueing

Users

Response
tim

e

Lec 2.178/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Administriva: Almost Time for Project Signup
• Section time change

– Section 104 (3-4pm) will change to earlier time
– Still a bit up in the air

• Project Signup: Watch “Group/Section Assignment Link”
– 4-5 members to a group
– Only submit once per group!
– Everyone in group must have logged into their cs162-xx

accounts once before you register the group
– Make sure that you select at least 2 potential sections
– Due date: Thursday 9/7 by 11:59pm

TBA75 EvansTh 4:00-5:00P105
87 Evans
87 Evans
85 Evans

3111 Etcheverry
Location

TBATh 3:00-4:00P104
TBATh 2:00-3:00P103
TBATh 11:00-12:00P102
TBATh 9:00-10:00P101
TATimeSection

Lec 2.188/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Administrivia (2)

• Cs162-xx accounts:
– Make sure you got an account form
– If you haven’t logged in yet, you need to do so

• Nachos readers:
– TBA
– Will include lectures and printouts of all of the code

• Web cast archives available off lectures page
– Just click on the title of a lecture for webcast
– Only works for lectures that I have already given!

• No slip days on first design document for each phase
– Need to get design reviews in on time

• Don’t know Java well?
– Talk CS 9G self-paced Java course

Lec 2.198/30/06 Kubiatowicz CS162 ©UCB Spring 2006

History Phase 3 (1981—)
Hardware Very Cheap, Humans Very Expensive

• Computer costs $1K, Programmer costs $100K/year
– If you can make someone 1% more efficient by giving
them a computer, it’s worth it!

– Use computers to make people more efficient
• Personal computing:

– Computers cheap, so give everyone a PC
• Limited Hardware Resources Initially:

– OS becomes a subroutine library
– One application at a time (MSDOS, CP/M, …)

• Eventually PCs become powerful:
– OS regains all the complexity of a “big” OS
– multiprogramming, memory protection, etc (NT,OS/2)

• Question: As hardware gets cheaper does need for
OS go away?

Lec 2.208/30/06 Kubiatowicz CS162 ©UCB Spring 2006

History Phase 3 (con’t)
Graphical User Interfaces

• CS160 ⇒ All about GUIs
• Xerox Star: 1981

– Originally a research
project (Alto)

– First “mice”, “windows”
• Apple Lisa/Machintosh: 1984

– “Look and Feel” suit 1988
• Microsoft Windows:

– Win 1.0 (1985)
– Win 3.1 (1990)
– Win 95 (1995)
– Win NT (1993)
– Win 2000 (2000)
– Win XP (2001)

X
erox Star

W
indows 3.1

Single
Level

HAL/Protection
No HAL/
Full Prot

Lec 2.218/30/06 Kubiatowicz CS162 ©UCB Spring 2006

History Phase 4 (1989—): Distributed Systems

• Networking (Local Area Networking)
– Different machines share resources
– Printers, File Servers, Web Servers
– Client – Server Model

• Services
– Computing
– File Storage

Lec 2.228/30/06 Kubiatowicz CS162 ©UCB Spring 2006

History Phase 5 (1995—): Mobile Systems

• Ubiquitous Mobile Devices
– Laptops, PDAs, phones
– Small, portable, and inexpensive

» Recently twice as many smart phones as PDAs
» Many computers/person!

– Limited capabilities (memory, CPU, power, etc…)
• Wireless/Wide Area Networking

– Leveraging the infrastructure
– Huge distributed pool of resources extend devices
– Traditional computers split into pieces. Wireless
keyboards/mice, CPU distributed, storage remote

• Peer-to-peer systems
– Many devices with equal responsibilities work together
– Components of “Operating System” spread across globe

Lec 2.238/30/06 Kubiatowicz CS162 ©UCB Spring 2006

CITRIS’s Model:
A Societal Scale Information System

• Center for Information
Technology Research in the
Interest of Society

• The Network is the OS
– Functionality spread
throughout network

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Clusters

Massive Cluster

Gigabit Ethernet

Mobile, Ubiquitous Systems

Lec 2.248/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Moore’s Law Reprise: Modern Laptop

$2500$4,000$25,000

≤ ¼≤ 110s

323216

1 Gb/s (wired)
54 Mb/s (wireless)
2 Mb/s (wide-area)

1 Gb/s9600 b/s

100GB1TB10MB

2GB4GB128KB

1830
0.25—0.5

3200x4
0.25—0.5

10
3—10

2006 Ultralight
Laptop20051981

Price

#users/machine

addr bits

Net bandwidth

Disk capacity

DRAM capacity

CPU MHz,
Cycles/inst

Lec 2.258/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Migration of Operating-System Concepts and Features

Lec 2.268/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Compare: Performance Trends (from CS152)

Microprocessors

Minicomputers
Mainframes

Supercomputers

1995
Year

19901970 1975 1980 1985

Lo
g

of
 P

er
fo

rm
an

ce

Lec 2.278/30/06 Kubiatowicz CS162 ©UCB Spring 2006

History of OS: Summary
• Change is continuous and OSs should adapt

– Not: look how stupid batch processing was
– But: Made sense at the time

• Situation today is much like the late 60s [poll]
– Small OS: 100K lines
– Large OS: 10M lines (5M for the browser!)

» 100-1000 people-years
• Complexity still reigns

– NT under development from early 90’s to late 90’s
» Never worked very well

– Jury still out on Windows 2000/XP
– Windows Vista (aka “Longhorn”) delayed many times

» Latest release date of 2005, 2006, 2007+
» Promised by removing some of the intended technology

• CS162: understand OSs to simplify them
Lec 2.288/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Now for a quick tour of OS Structures

Lec 2.298/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Operating Systems Components
(What are the pieces of the OS)

• Process Management
• Main-Memory Management
• I/O System management
• File Management
• Networking
• User Interfaces

Lec 2.308/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Operating System Services
(What things does the OS do?)

• Services that (more-or-less) map onto components
– Program execution

» How do you execute concurrent sequences of instructions?
– I/O operations

» Standardized interfaces to extremely diverse devices
– File system manipulation

» How do you read/write/preserve files?
» Looming concern: How do you even find files???

– Communications
» Networking protocols/Interface with CyberSpace?

• Cross-cutting capabilities
– Error detection & recovery
– Resource allocation
– Accounting
– Protection

Lec 2.318/30/06 Kubiatowicz CS162 ©UCB Spring 2006

System Calls (What is the API)

• See Chapter 2 of 7th edition or Chapter 3 of 6th

Lec 2.328/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Operating Systems Structure
(What is the organizational Principle?)

• Simple
– Only one or two levels of code

• Layered
– Lower levels independent of upper levels

• Microkernel
– OS built from many user-level processes

• Modular
– Core kernel with Dynamically loadable modules

Lec 2.338/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Simple Structure

• MS-DOS – written to provide the most functionality
in the least space

– Not divided into modules
– Interfaces and levels of functionality not well
separated

Lec 2.348/30/06 Kubiatowicz CS162 ©UCB Spring 2006

UNIX: Also “Simple” Structure

• UNIX – limited by hardware functionality
• Original UNIX operating system consists of two

separable parts:
– Systems programs
– The kernel

» Consists of everything below the system-call
interface and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system
functions;

» Many interacting functions for one level

Lec 2.358/30/06 Kubiatowicz CS162 ©UCB Spring 2006

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 2.368/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Layered Structure

• Operating system is divided many layers (levels)
– Each built on top of lower layers
– Bottom layer (layer 0) is hardware
– Highest layer (layer N) is the user interface

• Each layer uses functions (operations) and services of
only lower-level layers

– Advantage: modularity ⇒ Easier debugging/Maintenance
– Not always possible: Does process scheduler lie above or
below virtual memory layer?

» Need to reschedule processor while waiting for paging
» May need to page in information about tasks

• Important: Machine-dependent vs independent layers
– Easier migration between platforms
– Easier evolution of hardware platform
– Good idea for you as well!

Lec 2.378/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Layered Operating System

Lec 2.388/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Microkernel Structure

• Moves as much from the kernel into “user” space
– Small core OS running at kernel level
– OS Services built from many independent user-level
processes

• Communication between modules with message passing
• Benefits:

– Easier to extend a microkernel
– Easier to port OS to new architectures
– More reliable (less code is running in kernel mode)
– Fault Isolation (parts of kernel protected from other
parts)

– More secure
• Detriments:

– Performance overhead severe for naïve implementation

Lec 2.398/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Modules-based Structure

• Most modern operating systems implement modules
– Uses object-oriented approach
– Each core component is separate
– Each talks to the others over known interfaces
– Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

Lec 2.408/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Operating System Design Goals
(What is this OS trying to achieve?)

• $2000 price point?
• Fault tolerance/Fast failover/High Availability?
• High Performance?
• Real Time Capable?

Lec 2.418/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Implementation Issues
(How is the OS implemented?)

• Policy vs. Mechanism
– Policy: What do you want to do?
– Mechanism: How are you going to do it?
– Should be separated, since both change

• Algorithms used
– Linear, Tree-based, Log Structured, etc…

• Event models used
– threads vs event loops

• Backward compatability issues
– Very important for Windows 2000/XP

• System generation/configuration
– How to make generic OS fit on specific hardware

Lec 2.428/30/06 Kubiatowicz CS162 ©UCB Spring 2006

Conclusion
• Rapid Change in Hardware Leads to changing OS

– Batch ⇒ Multiprogramming ⇒ Timeshare ⇒
Graphical UI ⇒ Ubiquitous Devices ⇒
Cyberspace/Metaverse/??

• OS features migrated from mainframes ⇒ PCs
• Standard Components and Services

– Process Control
– Main Memory
– I/O
– File System
– UI

• Policy vs Mechanism
– Crucial division: not always properly separated!

• Complexity is always out of control
– However, “Resistance is NOT Useless!”

CS162
Operating Systems and
Systems Programming

Lecture 3

Concurrency:
Processes, Threads, and Address Spaces

September 6, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 3.29/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: History of OS

• Why Study?
– To understand how user needs and hardware constraints
influenced (and will influence) operating systems

• Several Distinct Phases:
– Hardware Expensive, Humans Cheap

» Eniac, … Multics
– Hardware Cheaper, Humans Expensive

» PCs, Workstations, Rise of GUIs
– Hardware Really Cheap, Humans Really Expensive

» Ubiquitous devices, Widespread networking
• Rapid Change in Hardware Leads to changing OS

– Batch ⇒ Multiprogramming ⇒ Timeshare ⇒ Graphical UI
⇒ Ubiquitous Devices ⇒ Cyberspace/Metaverse/??

– Gradual Migration of Features into Smaller Machines
• Situation today is much like the late 60s

– Small OS: 100K lines/Large: 10M lines (5M browser!)
– 100-1000 people-years

Lec 3.39/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Migration of OS Concepts and Features

Lec 3.49/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Implementation Issues
(How is the OS implemented?)

• Policy vs. Mechanism
– Policy: What do you want to do?
– Mechanism: How are you going to do it?
– Should be separated, since policies change

• Algorithms used
– Linear, Tree-based, Log Structured, etc…

• Event models used
– threads vs event loops

• Backward compatability issues
– Very important for Windows 2000/XP/Vista/…
– POSIX tries to help here

• System generation/configuration
– How to make generic OS fit on specific hardware

Lec 3.59/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• How do we provide multiprogramming?
• What are Processes?
• How are they related to Threads and Address

Spaces?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 3.69/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Concurrency

• “Thread” of execution
– Independent Fetch/Decode/Execute loop
– Operating in some Address space

• Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, Batch processing
– Easier for operating system builder
– Get rid concurrency by defining it away
– Does this make sense for personal computers?

• Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP,
Mac OS X

– Often called “multitasking”, but multitasking has
other meanings (talk about this later)

Lec 3.79/6/06 Kubiatowicz CS162 ©UCB Fall 2006

The Basic Problem of Concurrency

• The basic problem of concurrency involves resources:
– Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: users think they have exclusive
access to machine

• OS Has to coordinate all activity
– Multiple users, I/O interrupts, …
– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Decompose hard problem into simpler ones
– Abstract the notion of an executing program
– Then, worry about multiplexing these abstract machines

• Dijkstra did this for the “The system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Lec 3.89/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during execution?

• Execution sequence:
– Fetch Instruction at PC
– Decode
– Execute (possibly using registers)
– Write results to registers/mem
– PC = Next Instruction(PC)
– Repeat

PC
PC
PC
PC

Lec 3.99/6/06 Kubiatowicz CS162 ©UCB Fall 2006

How can we give the illusion of multiple processors?

CPU3CPU2CPU1

Shared Memory

• How do we provide the illusion of multiple processors?
– Multiplex in time!

• Each virtual “CPU” needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

CPU1 CPU2 CPU3 CPU1 CPU2

Time

Lec 3.109/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources
– I/O devices the same
– Memory the same

• Consequence of sharing:
– Each thread can access the data of every other
thread (good for sharing, bad for protection)

– Threads can share instructions
(good for sharing, bad for protection)

– Can threads overwrite OS functions?
• This (unprotected) model common in:

– Embedded applications
– Windows 3.1/Machintosh (switch only with yield)
– Windows 95—ME? (switch with both yield and timer)

Lec 3.119/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Modern Technique: SMT/Hyperthreading
• Hardware technique

– Exploit natural properties
of superscalar processors
to provide illusion of
multiple processors

– Higher utilization of
processor resources

• Can schedule each thread
as if were separate CPU

– However, not linear
speedup!

– If have multiprocessor,
should schedule each
processor first

• Original technique called “Simultaneous Multithreading”
– See http://www.cs.washington.edu/research/smt/
– Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5

Lec 3.129/6/06 Kubiatowicz CS162 ©UCB Fall 2006

How to protect threads from one another?

• Need three important things:
1. Protection of memory

» Every task does not have access to all memory
2. Protection of I/O devices

» Every task does not have access to every device
3. Preemptive switching from task to task

» Use of timer
» Must not be possible to disable timer from

usercode

Lec 3.139/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Program
 A

ddress Space

Recall: Program’s Address Space

• Address space ⇒ the set of
accessible addresses + state
associated with them:

– For a 32-bit processor there are
232 = 4 billion addresses

• What happens when you read or
write to an address?

– Perhaps Nothing
– Perhaps acts like regular memory
– Perhaps ignores writes
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Perhaps causes exception (fault)

Lec 3.149/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Lec 3.159/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Administriva: Time for Project Signup

Lec 3.169/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia (2)

Lec 3.179/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Traditional UNIX Process

• Process: Operating system abstraction to
represent what is needed to run a single program

– Often called a “HeavyWeight Process”
– Formally: a single, sequential stream of execution
in its own address space

• Two parts:
– Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

» Includes State of CPU registers
– Protected Resources:

» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Important: There is no concurrency in a
heavyweight process

Lec 3.189/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Process
Control
Block

How do we multiplex processes?
• The current state of process held in a

process control block (PCB):
– This is a “snapshot” of the execution and
protection environment

– Only one PCB active at a time
• Give out CPU time to different

processes (Scheduling):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):

– Controlled access to non-CPU resources
– Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary
multiplexing of I/O through system calls

Lec 3.199/6/06 Kubiatowicz CS162 ©UCB Fall 2006

CPU Switch From Process to Process

• This is also called a “context switch”
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time
– Less overhead with SMT/hyperthreading, but…
contention for resources instead

Lec 3.209/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Diagram of Process State

• As a process executes, it changes state
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

Lec 3.219/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are
Scheduling decisions

– Many algorithms possible (few weeks from now)

Lec 3.229/6/06 Kubiatowicz CS162 ©UCB Fall 2006

What does it take to create a process?

• Must construct new PCB
– Inexpensive

• Must set up new page tables for address space
– More expensive

• Copy data from parent process? (Unix fork())
– Semantics of Unix fork() are that the child
process gets a complete copy of the parent
memory and I/O state

– Originally very expensive
– Much less expensive with “copy on write”

• Copy I/O state (file handles, etc)
– Medium expense

Lec 3.239/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Process =? Program

• More to a process than just a program:
– Program is just part of the process state
– I run emacs on lectures.txt, you run it on
homework.java – Same program, different processes

• Less to a process than a program:
– A program can invoke more than one process
– cc starts up cpp, cc1, cc2, as, and ld

main ()
{

…;
}
A() {

…
}

main ()
{

…;
}
A() {

…
}

Heap

Stack

A
main

Program Process

Lec 3.249/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Multiple Processes Collaborate on a Task

• High Creation/memory Overhead
• (Relatively) High Context-Switch Overhead
• Need Communication mechanism:

– Separate Address Spaces Isolates Processes
– Shared-Memory Mapping

» Accomplished by mapping addresses to common DRAM
» Read and Write through memory

– Message Passing
» send() and receive() messages
» Works across network

Proc 1 Proc 2 Proc 3

Lec 3.259/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Shared Memory Communication

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Data 2
Stack 1
Heap 1
Code 1
Stack 2
Data 1
Heap 2
Code 2
Shared

• Communication occurs by “simply” reading/writing
to shared address page

– Really low overhead communication
– Introduces complex synchronization problems

Code
Data
Heap
Stack
Shared

Code
Data
Heap
Stack
Shared

Lec 3.269/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Inter-process Communication (IPC)

• Mechanism for processes to communicate and to
synchronize their actions

• Message system – processes communicate with
each other without resorting to shared variables

• IPC facility provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus,
systcall/trap)

– logical (e.g., logical properties)

Lec 3.279/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Modern “Lightweight” Process with Threads

• Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)

– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a
number of different concurrent activities

– Sometimes called multitasking, as in Ada…
• Why separate the concept of a thread from that of

a process?
– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (Protection)
– Heavyweight Process ≡ Process with one thread

Lec 3.289/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

Lec 3.299/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Examples of multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with
concurrent requests by multiple users

– But no protection needed within kernel
• Database Servers

– Access to shared data by many concurrent users
– Also background utility processing must be done

Lec 3.309/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Examples of multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent operations
– File server, Web server, and airline reservation
systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program
at a time

Lec 3.319/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Thread State

• State shared by all threads in process/addr space
– Contents of memory (global variables, heap)
– I/O state (file system, network connections, etc)

• State “private” to each thread
– Kept in TCB ≡ Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, Temporary variables
– return PCs are kept while called procedures are
executing

Lec 3.329/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {
if (tmp<2)
B();

printf(tmp);
}
B() {
C();

}
C() {
A(2);

}
A(1);

A: tmp=2
ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=b+1

Lec 3.339/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f
ad

dr
sp

ac
es

:

Lec 3.349/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Java APPS

OS

Hardware

Java OS
Structure

Example: Implementation Java OS
• Many threads, one Address Space
• Why another OS?

– Recommended Minimum memory sizes:
» UNIX + X Windows: 32MB
» Windows 98: 16-32MB
» Windows NT: 32-64MB
» Windows 2000/XP: 64-128MB

– What if we want a cheap network
point-of-sale computer?

» Say need 1000 terminals
» Want < 8MB

• What language to write this OS in?
– C/C++/ASM? Not terribly high-level.
Hard to debug.

– Java/Lisp? Not quite sufficient – need
direct access to HW/memory management

Lec 3.359/6/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Processes have two parts

– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(),
I/O operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Book talks about processes
– When this concerns concurrency, really talking about
thread portion of a process

– When this concerns protection, talking about address
space portion of a process

CS162
Operating Systems and
Systems Programming

Lecture 4

Thread Dispatching

September 11, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 4.29/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Recall: Modern Process with Multiple Threads

• Process: Operating system abstraction to represent
what is needed to run a single, multithreaded
program

• Two parts:
– Multiple Threads

» Each thread is a single, sequential stream of execution
– Protected Resources:

» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Why separate the concept of a thread from that of
a process?

– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (Protection)
– Heavyweight Process ≡ Process with one thread

Lec 4.39/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process

Lec 4.49/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Recall: Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux,
Win 95?, Mac OS X,

Win NT to XP,
Solaris, HP-UX

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f
ad

dr
sp

ac
es

:

Lec 4.59/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Further Understanding Threads
• Thread Dispatching
• Beginnings of Thread Scheduling

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 4.69/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Recall: Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {
if (tmp<2)
B();

printf(tmp);
}
B() {
C();

}
C() {
A(2);

}
A(1);

A: tmp=2
ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=b+1

Lec 4.79/11/06 Kubiatowicz CS162 ©UCB Fall 2006

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (callee must save)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

MIPS: Software conventions for Registers

• Before calling procedure:
– Save caller-saves regs
– Save v0, v1
– Save ra

• After return, assume
– Callee-saves reg OK
– gp,sp,fp OK (restored!)
– Other things trashed

Lec 4.89/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Single-Threaded Example

• Imagine the following C program:

main() {
ComputePI(“pi.txt”);
PrintClassList(“clist.text”);

}

• What is the behavior here?
– Program would never print out class list
– Why? ComputePI would never finish

Lec 4.99/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of Threads
• Version of program with Threads:

main() {
CreateThread(ComputePI(“pi.txt”));
CreateThread(PrintClassList(“clist.text”));

}

• What does “CreateThread” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time
CPU1 CPU2

Lec 4.109/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Memory Footprint of Two-Thread Example

• If we stopped this program and examined it with a
debugger, we would see

– Two sets of CPU registers
– Two sets of Stacks

• Questions:
– How do we position stacks relative to
each other?

– What maximum size should we choose
for the stacks?

– What happens if threads violate this?
– How might you catch violations?

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

Lec 4.119/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Per Thread State

• Each Thread has a Thread Control Block (TCB)
– Execution State: CPU registers, program counter,
pointer to stack

– Scheduling info: State (more later), priority, CPU time
– Accounting Info
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process? (PCB)?
– Etc (add stuff as you find a need)

• In Nachos: “Thread” is a class that includes the TCB
• OS Keeps track of TCBs in protected memory

– In Array, or Linked List, or …

Lec 4.129/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Lifecycle of a Thread (or Process)

• As a thread executes, it changes state:
– new: The thread is being created
– ready: The thread is waiting to run
– running: Instructions are being executed
– waiting: Thread waiting for some event to occur
– terminated: The thread has finished execution

• “Active” threads are represented by their TCBs
– TCBs organized into queues based on their state

Lec 4.139/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Ready Queue And Various I/O Device Queues

• Thread not running ⇒ TCB is in some scheduler queue
– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Other
State
TCB8

Link
Registers

Other
State
TCB2

Link
Registers

Other
State
TCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

Tape
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

Lec 4.149/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 4.159/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 4.169/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Dispatch Loop

• Conceptually, the dispatching loop of the operating system
looks as follows:

Loop {
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

• Should we ever exit this loop???
– When would that be?

Lec 4.179/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Running a thread

Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

Lec 4.189/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}

Lec 4.199/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* next Lecture */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI Stack growthrun_new_thread

kernel_yield
Trap to OS

switch

Lec 4.209/11/06 Kubiatowicz CS162 ©UCB Fall 2006

What do the stacks look like?

• Consider the following
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:

– Threads S and T

Thread S

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch

Lec 4.219/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Saving/Restoring state (often called “Context Switch)
Switch(tCur,tNew) {

/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

…
TCB[tCur].regs.r0 = CPU.r0;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew].regs.r7;

…
CPU.r0 = TCB[tNew].regs.r0;
CPU.sp = TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

}
Lec 4.229/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Switch Details

• How many registers need to be saved/restored?
– MIPS 4k: 32 Int(32b), 32 Float(32b)
– Pentium: 14 Int(32b), 8 Float(80b), 8 SSE(128b),…
– Sparc(v7): 8 Regs(32b), 16 Int regs (32b) * 8 windows =

136 (32b)+32 Float (32b)
– Itanium: 128 Int (64b), 128 Float (82b), 19 Other(64b)

• retpc is where the return should jump to.
– In reality, this is implemented as a jump

• There is a real implementation of switch in Nachos.
– See switch.s

» Normally, switch is implemented as assembly!
– Of course, it’s magical!
– But you should be able to follow it!

Lec 4.239/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 4
– Get intermittent failures depending on when context switch
occurred and whether new thread uses register 4

– System will give wrong result without warning
• Can you devise an exhaustive test to test switch code?

– No! Too many combinations and inter-leavings
• Cautionary tail:

– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented!

» Only works As long as kernel size < 1MB
– What happened?

» Time passed, People forgot
» Later, they added features to kernel (no one removes

features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity
Lec 4.249/11/06 Kubiatowicz CS162 ©UCB Fall 2006

What happens when thread blocks on I/O?

• What happens when a thread requests a block of
data from the file system?

– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

Stack growth

Lec 4.259/11/06 Kubiatowicz CS162 ©UCB Fall 2006

External Events

• What happens if thread never does any I/O,
never waits, and never yields control?

– Could the ComputePI program grab all resources
and never release the processor?

» What if it didn’t print to console?
– Must find way that dispatcher can regain control!

• Answer: Utilize External Events
– Interrupts: signals from hardware or software
that stop the running code and jump to kernel

– Timer: like an alarm clock that goes off every
some many milliseconds

• If we make sure that external events occur
frequently enough, can ensure dispatcher runs

Lec 4.269/11/06 Kubiatowicz CS162 ©UCB Fall 2006

…
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

PC
 sa

ve
d

Di
sa
ble

 A
ll I

nts

Su
pe
rvi

so
r M

od
e

Restore PC

User Mode

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

…

Transfer Network
Packet from hardware
to Kernel Buffers

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

er
ru

pt
 H

an
dl
er

”

Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

…

Ex
te

rn
al
 I

nt
er

ru
pt

Pipeline Flush

Lec 4.279/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of Timer Interrupt to Return Control

• Solution to our dispatcher problem
– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
TimerInterrupt() {

DoPeriodicHouseKeeping();
run_new_thread();

}
• I/O interrupt: same as timer interrupt except that
DoHousekeeping() replaced by ServiceIO().

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack growth

Lec 4.289/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Choosing a Thread to Run
• How does Dispatcher decide what to run?

– Zero ready threads – dispatcher loops
» Alternative is to create an “idle thread”
» Can put machine into low-power mode

– Exactly one ready thread – easy
– More than one ready thread: use scheduling priorities

• Possible priorities:
– LIFO (last in, first out):

» put ready threads on front of list, remove from front
– Pick one at random
– FIFO (first in, first out):

» Put ready threads on back of list, pull them from front
» This is fair and is what Nachos does

– Priority queue:
» keep ready list sorted by TCB priority field

Lec 4.299/11/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary

• The state of a thread is contained in the TCB
– Registers, PC, stack pointer
– States: New, Ready, Running, Waiting, or Terminated

• Multithreading provides simple illusion of multiple CPUs
– Switch registers and stack to dispatch new thread
– Provide mechanism to ensure dispatcher regains control

• Switch routine
– Can be very expensive if many registers
– Must be very carefully constructed!

• Many scheduling options
– Decision of which thread to run complex enough for
complete lecture

CS162
Operating Systems and
Systems Programming

Lecture 5

Cooperating Threads

September 13, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 5.29/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Per Thread State
• Each Thread has a Thread Control Block (TCB)

– Execution State: CPU registers, program counter,
pointer to stack

– Scheduling info: State (more later), priority, CPU time
– Accounting Info
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process? (PCB)?
– Etc (add stuff as you find a need)

• OS Keeps track of TCBs in protected memory
– In Arrays, or Linked Lists, or …

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Head
Tail

Ready
Queue

Lec 5.39/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Yielding through Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}

– Note that yield() must be called by programmer
frequently enough!

Lec 5.49/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Later in lecture */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI Stack growthrun_new_thread

kernel_yield
Trap to OS

switch

Lec 5.59/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Two Thread Yield Example

• Consider the following
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:

– Threads S and T

Thread S

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch

Lec 5.69/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• More on Interrupts
• Thread Creation/Destruction
• Cooperating Threads

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 5.79/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

Lec 5.89/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: Network Interrupt

• Disable/Enable All Ints ⇒ Internal CPU disable bit
– RTI reenables interrupts, returns to user mode

• Raise/lower priority: change interrupt mask
• Software interrupts can be provided entirely in

software at priority switching boundaries

…
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

PC
 sa

ved

Dis
ab

le
All

 In
ts

Su
per

vis
or

Mode

Restore PC

User Mode

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

…
Transfer Network

Packet from hardware
to Kernel Buffers

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

er
ru

pt
 H

an
dl
er

”

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

…

Ex
te

rn
al
 I

nt
er

ru
pt

Pipeline Flush

Lec 5.99/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Preemptive Multithreading

• Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
TimerInterrupt() {

DoPeriodicHouseKeeping();
run_new_thread();

}
• This is often called preemptive multithreading, since

threads are prempted for better scheduling
– Solves problem of user who doesn’t insert yield();

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack growth

Lec 5.109/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Lifecycle of a Thread (or Process)

• As a thread executes, it changes state:
– new: The thread is being created
– ready: The thread is waiting to run
– running: Instructions are being executed
– waiting: Thread waiting for some event to occur
– terminated: The thread has finished execution

• “Active” threads are represented by their TCBs
– TCBs organized into queues based on their state

Lec 5.119/13/06 Kubiatowicz CS162 ©UCB Fall 2006

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue

– We called this CreateThread() earlier
• Arguments to ThreadFork()

– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity Check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable).

Lec 5.129/13/06 Kubiatowicz CS162 ©UCB Fall 2006

How do we initialize TCB and Stack?

• Initialize Register fields of TCB
– Stack pointer made to point at stack
– PC return address ⇒ OS (asm) routine ThreadRoot()
– Two arg registers initialized to fcnPtr and fcnArgPtr

• Initialize stack data?
– No. Important part of stack frame is in registers (ra)
– Think of stack frame as just before body of
ThreadRoot() really gets started

ThreadRoot stub

Initial Stack

Stack growth

Lec 5.139/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 5.149/13/06 Kubiatowicz CS162 ©UCB Fall 2006

How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 5.159/13/06 Kubiatowicz CS162 ©UCB Fall 2006

What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording
start time of thread

– Other Statistics
• Stack will grow and shrink

with execution of thread
• Final return from thread returns into ThreadRoot()

which calls ThreadFinish()
– ThreadFinish() will start at user-level

ThreadRoot

Running Stack

Stack growth
Thread Code

Lec 5.169/13/06 Kubiatowicz CS162 ©UCB Fall 2006

What does ThreadFinish() do?
• Needs to re-enter kernel mode (system call)
• “Wake up” (place on ready queue) threads waiting

for this thread
– Threads (like the parent) may be on a wait queue
waiting for this thread to finish

• Can’t deallocate thread yet
– We are still running on its stack!
– Instead, record thread as “waitingToBeDestroyed”

• Call run_new_thread() to run another thread:
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping();

}
– ThreadHouseKeeping() notices waitingToBeDestroyed
and deallocates the finished thread’s TCB and stack

Lec 5.179/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Additional Detail

• Thread Fork is not the same thing as UNIX fork
– UNIX fork creates a new process so it has to
create a new address space

– For now, don’t worry about how to create and
switch between address spaces

• Thread fork is very much like an asynchronous
procedure call

– Runs procedure in separate thread
– Calling thread doesn’t wait for finish

• What if thread wants to exit early?
– ThreadFinish() and exit() are essentially the
same procedure entered at user level

Lec 5.189/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Parent-Child relationship

• Every thread (and/or Process) has a parentage
– A “parent” is a thread that creates another thread
– A child of a parent was created by that parent

Typical process tree
for Solaris system

Lec 5.199/13/06 Kubiatowicz CS162 ©UCB Fall 2006

ThreadJoin() system call
• One thread can wait for another to finish with the
ThreadJoin(tid) call

– Calling thread will be taken off run queue and placed on
waiting queue for thread tid

• Where is a logical place to store this wait queue?
– On queue inside the TCB

• Similar to wait() system call in UNIX
– Lets parents wait for child processes

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Head
Tail

Termination
Wait queue

TCBtid

Lec 5.209/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of Join for Traditional Procedure Call
• A traditional procedure call is logically equivalent to

doing a ThreadFork followed by ThreadJoin
• Consider the following normal procedure call of B()

by A():
A() { B(); }
B() { Do interesting, complex stuff }

• The procedure A() is equivalent to A’():
A’() {

tid = ThreadFork(B,null);
ThreadJoin(tid);

}
• Why not do this for every procedure?

– Context Switch Overhead
– Memory Overhead for Stacks

Lec 5.219/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Kernel versus User-Mode threads
• We have been talking about Kernel threads

– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on
different things

• Downside of kernel threads: a bit expensive
– Need to make a crossing into kernel mode to schedule

• Even lighter weight option: User Threads
– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative
to each other (only switch on yield())

– Cheap
• Downside of user threads:

– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads

Lec 5.229/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Threading models mentioned by book

Simple One-to-One
Threading Model

Many-to-One Many-to-Many

Lec 5.239/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing ≡ Multiple CPUs
– Multiprogramming ≡ Multiple Jobs or Processes
– Multithreading ≡ Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 5.249/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way,

programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic ⇒ Input state determines results
– Reproducible ⇒ Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent

– Sometimes called “Heisenbugs”

Lec 5.259/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:

– Example: Evil C compiler
» Modifies files behind your back by inserting errors into C

program unless you insert debugging code
– Example: Debugging statements can overrun stack

• Non-deterministic errors are really difficult to find
– Example: Memory layout of kernel+user programs

» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 5.269/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate

– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 5.279/13/06 Kubiatowicz CS162 ©UCB Fall 2006

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?

Lec 5.289/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Threaded Web Server

• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?

– When one request blocks on disk, all block…
• What about Denial of Service attacks or digg /

Slash-dot effects?

Lec 5.299/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads,

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue

Lec 5.309/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Interrupts: hardware mechanism for returning control

to operating system
– Used for important/high-priority events
– Can force dispatcher to schedule a different thread
(premptive multithreading)

• New Threads Created with ThreadFork()
– Create initial TCB and stack to point at ThreadRoot()
– ThreadRoot() calls thread code, then ThreadFinish()
– ThreadFinish() wakes up waiting threads then
prepares TCB/stack for distruction

• Threads can wait for other threads using ThreadJoin()
• Threads may be at user-level or kernel level
• Cooperating threads have many potential advantages

– But: introduces non-reproducibility and non-determinism
– Need to have Atomic operations

CS162
Operating Systems and
Systems Programming

Lecture 6

Synchronization

September 18, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 6.29/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity Check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable).

Lec 6.39/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 6.49/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording
start time of thread

– Other Statistics
• Stack will grow and shrink

with execution of thread
• Final return from thread returns into ThreadRoot()

which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack growth

Thread Code

Lec 6.59/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• More concurrency examples
• Need for synchronization
• Examples of valid synchronization

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 6.69/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Threaded Web Server

• Multithreaded version:
serverLoop() {

connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Advantages of threaded version:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• What if too many requests come in at once?

Lec 6.79/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of threads,

representing the maximum level of multiprogramming

master() {
allocThreads(slave,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

slave(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue

Lec 6.89/18/06 Kubiatowicz CS162 ©UCB Fall 2006

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

Lec 6.99/18/06 Kubiatowicz CS162 ©UCB Fall 2006

ATM bank server example
• Suppose we wanted to implement a server process to

handle requests from an ATM network:
BankServer() {while (TRUE) {ReceiveRequest(&op, &acctId, &amount);ProcessRequest(op, acctId, amount);}}
ProcessRequest(op, acctId, amount) {if (op == deposit) Deposit(acctId, amount);else if …}
Deposit(acctId, amount) {acct = GetAccount(acctId); /* may use disk I/O */acct->balance += amount;StoreAccount(acct); /* Involves disk I/O */}

• How could we speed this up?
– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

Lec 6.109/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-
driven style

• Example
BankServer() {while(TRUE) {event = WaitForNextEvent();if (event == ATMRequest)StartOnRequest();else if (event == AcctAvail)ContinueRequest();else if (event == AcctStored)FinishRequest();}}

– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces
which could be blocking?

– This technique is used for graphical programming

Lec 6.119/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without

“deconstructing” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

Lec 6.129/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Multiprocessing vs Multiprogramming
• What does it mean to run two threads “concurrently”?

– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

• Also recall: Hyperthreading
– Possible to interleave threads on a per-instruction basis
– Keep this in mind for our examples (like multiprocessing)

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 6.139/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Problem is at the lowest level
• Most of the time, threads are working on separate

data, so scheduling doesn’t matter:
Thread A Thread B
x = 1; y = 2;

• However, What about (Initially, y = 12):
Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;
– What are the possible values of x?

• Or, what are the possible values of x below?
Thread A Thread B
x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010.
» Scheduling order ABABABBA yields 3!

Lec 6.149/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Atomic Operations
• To understand a concurrent program, we need to know

what the underlying indivisible operations are!
• Atomic Operation: an operation that always runs to

completion or not at all
– It is indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

– Fundamental building block – if no atomic operations, then
have no way for threads to work together

• On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic

• Many instructions are not atomic
– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole
array

Lec 6.159/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia
• Sections in this class are mandatory

– Make sure that you go to the section that you have
been assigned

– Some of the things presented in section will not show
up in class!

• Should be working on first project
– Make sure to be reading Nachos code
– First design document due next Monday! (One week)
– Set up regular meeting times with your group
– Let’s try to get group interaction problems figured
out early

• If you need to know more about synchronization
primitives before I get to them use book!

– Chapter 6 (in 7th edition) and Chapter 7 (in 6th

edition) are all about synchronization
Lec 6.169/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 6.179/18/06 Kubiatowicz CS162 ©UCB Fall 2006

• Threaded programs must work for all interleavings of
thread instruction sequences

– Cooperating threads inherently non-deterministic and
non-reproducible

– Really hard to debug unless carefully designed!
• Example: Therac-25

– Machine for radiation therapy
» Software control of electron

accelerator and electron beam/
Xray production

» Software control of dosage
– Software errors caused the
death of several patients

» A series of race conditions on
shared variables and poor
software design

» “They determined that data entry speed during editing
was the key factor in producing the error condition: If
the prescription data was edited at a fast pace, the
overdose occurred.”

Correctness Requirements

Lec 6.189/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Space Shuttle Example
• Original Space Shuttle launch aborted 20 minutes

before scheduled launch
• Shuttle has five computers:

– Four run the “Primary Avionics
Software System” (PASS)

» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms

– The Fifth computer is the “Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS

• Countdown aborted because BFS disagreed with PASS
– A 1/67 chance that PASS was out of sync one cycle
– Bug due to modifications in initialization code of PASS

» A delayed init request placed into timer queue
» As a result, timer queue not empty at expected time to

force use of hardware clock
– Bug not found during extensive simulation

PASS

BFS

Lec 6.199/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Another Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What it both threads have their own CPU running at

same speed? Is it guaranteed that it goes on
forever?

Lec 6.209/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Hand Simulation Multiprocessor Example

• Inner loop looks like this:
Thread A Thread B

r1=0 load r1, M[i]
r1=0 load r1, M[i]

r1=1 add r1, r1, 1
r1=-1 sub r1, r1, 1

M[i]=1 store r1, M[i] M[i]=-1 store r1, M[i]
• Hand Simulation:

– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?
– Yes! Unlikely, but if you depending on it not happening,
it will and your system will break…

Lec 6.219/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Motivation: “Too much milk”

• Great thing about OS’s – analogy between
problems in OS and problems in real life

– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Lec 6.229/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Definitions

• Synchronization: using atomic operations to ensure
cooperation between threads

– For now, only loads and stores are atomic
– We are going to show that its hard to build anything
useful with only reads and writes

• Mutual Exclusion: ensuring that only one thread does
a particular thing at a time

– One thread excludes the other while doing its task
• Critical Section: piece of code that only one thread

can execute at once. Only one thread at a time will
get into this section of code.

– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of
describing the same thing.

Lec 6.239/18/06 Kubiatowicz CS162 ©UCB Fall 2006

More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on

the refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

#$@%@#$@

Lec 6.249/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Too Much Milk: Correctness Properties

• Need to be careful about correctness of
concurrent programs, since non-deterministic

– Always write down behavior first
– Impulse is to start coding first, then when it
doesn’t work, pull hair out

– Instead, think first, then code
• What are the correctness properties for the

“Too much milk” problem???
– Never more than one person buys
– Someone buys if needed

• Restrict ourselves to use only atomic load and
store operations as building blocks

Lec 6.259/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory
read/write are atomic):

if (noMilk) {if (noNote) {leave Note;buy milk;remove note;}}
• Result?

– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and
note but before buying milk!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Lec 6.269/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {if (noNote) {leave Note;buy milk;}}
remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Lec 6.279/18/06 Kubiatowicz CS162 ©UCB Fall 2006

To Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;if (noNote B) { if (noNoteA) {if (noMilk) { if (noMilk) {buy Milk; buy Milk;} }} }remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead
each to think that the other is going to buy

• Really insidious:
– Extremely unlikely that this would happen, but will at
worse possible time

– Probably something like this in UNIX
Lec 6.289/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

Lec 6.299/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;while (note B) { //X if (noNote A) { //Ydo nothing; if (noMilk) {} buy milk;if (noMilk) { }buy milk; }} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 6.309/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece

of code for each thread:
if (noMilk) {buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide better (higher-level) primitives
than atomic load and store

– Build even higher-level programming abstractions on this
new hardware support

Lec 6.319/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a

lock (more in a moment).
– Lock.Acquire() – wait until lock is free, then grab
– Lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are
waiting for the lock and both see it’s free, only one
succeeds to grab the lock

• Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

• Once again, section of code between Acquire() and Release() called a “Critical Section”
• Of course, you can make this even simpler: suppose

you are out of ice cream instead of milk
– Skip the test since you always need more ice cream.

Lec 6.329/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations

– Everything is pretty painful if only atomic primitives are
load and store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level
API

Programs

Lec 6.339/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary

• Concurrent threads are a very useful abstraction
– Allow transparent overlapping of computation and I/O
– Allow use of parallel processing when available

• Concurrent threads introduce problems when accessing
shared data

– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become
completely inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various
synchronization primitives

• Showed how to protect a critical section with only
atomic load and store ⇒ pretty complex!

CS162
Operating Systems and
Systems Programming

Lecture 7

Mutual Exclusion, Semaphores,
Monitors, and Condition Variables

September 20, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 7.29/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: A Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What it both threads have their own CPU running at

same speed? Is it guaranteed that it goes on
forever?

Lec 7.39/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Hand Simulating Multiprocessor Example

• Inner loop looks like this:
Thread A Thread B

r1=0 load r1, M[i]
r1=0 load r1, M[i]

r1=1 add r1, r1, 1
r1=-1 sub r1, r1, 1

M[i]=1 store r1, M[i]
M[i]=-1 store r1, M[i]

Hand Simulation:
– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?
– Yes! Unlikely, but if you depending on it not happening,
it will and your system will break…

Lec 7.49/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;while (note B) {\\X if (noNote A) {\\Ydo nothing; if (noMilk) {} buy milk;if (noMilk) { }buy milk; }} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 7.59/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Hardware Support for Synchronization
• Higher-level Synchronization Abstractions

– Semaphores, monitors, and condition variables
• Programming paradigms for concurrent programs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 7.69/20/06 Kubiatowicz CS162 ©UCB Fall 2006

High-Level Picture
• The abstraction of threads is good:

– Maintains sequential execution model
– Allows simple parallelism to overlap I/O and computation

• Unfortunately, still too complicated to access state
shared between threads

– Consider “too much milk” example
– Implementing a concurrent program with only loads and
stores would be tricky and error-prone

• Today, we’ll implement higher-level operations on top
of atomic operations provided by hardware

– Develop a “synchronization toolbox”
– Explore some common programming paradigms

Lec 7.79/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations

– Everything is pretty painful if only atomic primitives are
load and store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level
API

Programs

Lec 7.89/20/06 Kubiatowicz CS162 ©UCB Fall 2006

How to implement Locks?
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• Atomic Load/Store: get solution like Milk #3

– Looked at this last lecture
– Pretty complex and error prone

• Hardware Lock instruction
– Is this a good idea?
– Complexity?

» Done in the Intel 432
» Each feature makes hardware more complex and slow

– What about putting a task to sleep?
» How do you handle the interface between the hardware

and scheduler?

Lec 7.99/20/06 Kubiatowicz CS162 ©UCB Fall 2006

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();While(TRUE) {;}
– Real-Time system—no guarantees on timing!

» Critical Sections might be arbitrarily long
– What happens with I/O or other important events?

» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

Lec 7.109/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Better Implementation of Locks by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE;
Acquire() {

disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

Lec 7.119/20/06 Kubiatowicz CS162 ©UCB Fall 2006

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

• Note: unlike previous solution, the critical section
(inside Acquire()) is very short

– User of lock can take as long as they like in their own
critical section: doesn’t impact global machine behavior

– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical
Section

Lec 7.129/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Interrupt re-enable in going to sleep
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the
thread still thinks it needs to go to sleep

– Misses wakeup and still holds lock (deadlock!)
• Want to put it after sleep(). But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position
Enable Position
Enable Position

Lec 7.139/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 7.149/20/06 Kubiatowicz CS162 ©UCB Fall 2006

How to Re-enable After Sleep()?
• In Nachos, since ints are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B
..disable intssleep

sleep returnenable ints
...

disable intsleep
sleep returnenable ints..

context
switch

context
switch

Lec 7.159/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Interrupt disable and enable across context switches

• An important point about structuring code:
– In Nachos code you will see lots of comments about
assumptions made concerning when interrupts disabled

– This is an example of where modifications to and
assumptions about program state can’t be localized
within a small body of code

– In these cases it is possible for your program to
eventually “acquire” bugs as people modify code

• Other cases where this will be a concern?
– What about exceptions that occur after lock is
acquired? Who releases the lock?

mylock.acquire();
a = b / 0;
mylock.release()

Lec 7.169/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Atomic Read-Modify-Write instructions

• Problems with previous solution:
– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires
messages and would be very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value from memory and
write a new value atomically

– Hardware is responsible for implementing this
correctly on both uniprocessors (not too hard) and
multiprocessors (requires help from cache coherence
protocol)

– Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

Lec 7.179/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */result = M[address];M[address] = 1;return result;}
• swap (&address, register) { /* x86 */temp = M[address];M[address] = register;register = temp;}
• compare&swap (&address, reg1, reg2) { /* 68000 */if (reg1 == M[address]) {M[address] = reg2;return success;} else {return failure;}}
• load-linked&store conditional(&address) { /* R4000, alpha */loop:ll r1, M[address];movi r2, 1; /* Can do arbitrary comp */sc r2, M[address];beqz r2, loop;}

Lec 7.189/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Implementing Locks with test&set

• Another flawed, but simple solution:
int value = 0; // Free
Acquire() {

while (test&set(value)); // while busy
}
Release() {

value = 0;
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so
lock is now busy. It returns 0 so while exits.

– If lock is busy, test&set reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

– When we set value = 0, someone else can get lock
• Busy-Waiting: thread consumes cycles while waiting

Lec 7.199/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient because the busy-waiting
thread will consume cycles waiting

– Waiting thread may take cycles away from thread
holding lock (no one wins!)

– Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock ⇒ no progress!

• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may

wait for an arbitrary length of time!
– Thus even if busy-waiting was OK for locks, definitely
not ok for other primitives

– Homework/exam solutions should not have busy-waiting!

Lec 7.209/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;
Acquire() {

// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lec 7.219/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Higher-level Primitives than Locks

• Goal of last couple of lectures:
– What is the right abstraction for synchronizing threads
that share memory?

– Want as high a level primitive as possible
• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to
find bugs, since they happen rarely

– UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would
crash every week or so – concurrency bugs

• Synchronization is a way of coordinating multiple
concurrent activities that are using shared state

– This lecture and the next presents a couple of ways of
structuring the sharing

Lec 7.229/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Semaphores

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Note that P() stands for “proberen” (to test) and V
stands for “verhogen” (to increment) in Dutch

Lec 7.239/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Semaphores Like Integers Except

• Semaphores are like integers, except
– No negative values
– Only operations allowed are P and V – can’t read or
write value, except to set it initially

– Operations must be atomic
» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup

from V – even if they both happen at same time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource
control:

Value=210

Lec 7.249/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Two Uses of Semaphores
• Mutual Exclusion (initial value = 1)

– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

semaphore.P();// Critical section goes heresemaphore.V();
• Scheduling Constraints (initial value = 0)

– Locks are fine for mutual exclusion, but what if you
want a thread to wait for something?

– Example: suppose you had to implement ThreadJoin
which must wait for thread to terminiate:

Initial value of semaphore = 0
ThreadJoin {semaphore.P();}
ThreadFinish {semaphore.V();}

Lec 7.259/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer

Lec 7.269/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none
full (scheduling constraint)

– Producer must wait for consumer to empty buffers, if all
full (scheduling constraint)

– Only one thread can manipulate buffer queue at a time
(mutual exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the
machine and somebody comes up and tries to stick their
money into the machine

• General rule of thumb: Use a separate semaphore for
each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 7.279/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Full Solution to Bounded Buffer
Semaphore fullBuffer = 0; // Initially, no coke
Semaphore emptyBuffers = numBuffers;// Initially, num empty slots
Semaphore mutex = 1; // No one using machine
Producer(item) {emptyBuffers.P(); // Wait until spacemutex.P(); // Wait until buffer freeEnqueue(item);mutex.V();fullBuffers.V(); // Tell consumers there is// more coke}
Consumer() {fullBuffers.P(); // Check if there’s a cokemutex.P(); // Wait until machine freeitem = Dequeue();mutex.V();emptyBuffers.V(); // tell producer need morereturn item;}

Lec 7.289/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?

Lec 7.299/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Motivation for Monitors and Condition Variables

• Semaphores are a huge step up; just think of trying
to do the bounded buffer with only loads and stores

– Problem is that semaphores are dual purpose:
» They are used for both mutex and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious. How do you
prove correctness to someone?

• Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more
condition variables for managing concurrent access to
shared data

– Some languages like Java provide this natively
– Most others use actual locks and condition variables

Lec 7.309/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for
something inside a critical section

– Key idea: make it possible to go to sleep inside critical
section by atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

Lec 7.319/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple Monitor Example
• Here is an (infinite) synchronized queue

Lock lock;Condition dataready;Queue queue;

AddToQueue(item) {lock.Acquire(); // Get Lockqueue.enqueue(item); // Add itemdataready.signal(); // Signal any waiterslock.Release(); // Release Lock}
RemoveFromQueue() {lock.Acquire(); // Get Lockwhile (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue(); // Get next itemlock.Release(); // Release Lockreturn(item);
}

Lec 7.329/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various
synchronization primitives

• Talked about hardware atomicity primitives:
– Disabling of Interrupts, test&set, swap, comp&swap,
load-linked/store conditional

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine
resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware
mechanisms to protect modifications of that variable

• Talked about Semaphores, Monitors, and Condition
Variables

– Higher level constructs that are harder to “screw up”

CS162
Operating Systems and
Systems Programming

Lecture 8

Readers-Writers
Language Support for Synchronization

September 25, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 8.29/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Implementation of Locks by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE;
Acquire() {

disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

Lec 8.39/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: How to Re-enable After Sleep()?
• In Nachos, since ints are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B
..disable intssleep

sleep returnenable ints
...

disable intsleep
sleep returnenable ints..

context
switch

context
switch

Lec 8.49/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;
Acquire() {

// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lec 8.59/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Value=2Value=1Value=0

Review: Semaphores
• Definition: a Semaphore has a non-negative integer

value and supports the following two operations:
– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Only time can set integer directly is at initialization time

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=0

Lec 8.69/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Producer-consumer with a bounded buffer
• Problem Definition

– Producer puts things into a shared buffer (wait if full)
– Consumer takes them out (wait if empty)
– Use a fixed-size buffer between them to avoid lockstep

» Need to synchronize access to this buffer
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid

• General rule of thumb:
Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 8.79/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Continue with Synchronization Abstractions
– Monitors and condition variables

• Readers-Writers problem and solutoin
• Language Support for Synchronization

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 8.89/25/06 Kubiatowicz CS162 ©UCB Fall 2006

• compare&swap (&address, reg1, reg2) { /* 68000 */if (reg1 == M[address]) {M[address] = reg2;return success;} else {return failure;}}

Here is an atomic add to linked-list function:
addToQueue(&object) {do { // repeat until no conflictld r1, M[root] // Get ptr to current headst r1, M[object] // Save link in new object} until (compare&swap(&root,r1,object));}

Using of Compare&Swap for queues

root next next

next
New

Object

Lec 8.99/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up, but:

– They are confusing because they are dual purpose:
» Both mutual exclusion and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared
data

– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the
language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

Lec 8.109/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Lock shared data
queue.enqueue(item); // Add item
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Lock shared data
item = queue.dequeue();// Get next item or null
lock.Release(); // Release Lock
return(item); // Might return null

}

Lec 8.119/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section

– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
– In Birrell paper, he says can perform signal() outside of
lock – IGNORE HIM (this is only an optimization)

Lec 8.129/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue

Lock lock;Condition dataready;Queue queue;

AddToQueue(item) {lock.Acquire(); // Get Lockqueue.enqueue(item); // Add itemdataready.signal(); // Signal any waiterslock.Release(); // Release Lock}
RemoveFromQueue() {lock.Acquire(); // Get Lockwhile (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue(); // Get next itemlock.Release(); // Release Lockreturn(item);
}

Lec 8.139/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal

and wait. Consider a piece of our dequeue code:
while (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue();// Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue();// Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it

exits critical section or if it waits again
– Mesa-style (Nachos, most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

Lec 8.149/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 8.159/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

Lec 8.169/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()Wait until no writersAccess data baseCheck out – wake up a waiting writer
– Writer()Wait until no active readers or writersAccess databaseCheck out – wake up waiting readers or writer
– State variables (Protected by a lock called “lock”):

» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL

Lec 8.179/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Code for a Reader
Reader() {
// First check self into system
lock.Acquire();
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
lock.release();
// Perform actual read-only access
AccessDatabase(ReadOnly);
// Now, check out of system
lock.Acquire();
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
lock.Release();

}
Lec 8.189/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Writer() {// First check self into systemlock.Acquire();
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++; // Now we are active!lock.release();
// Perform actual read/write accessAccessDatabase(ReadWrite);
// Now, check out of systemlock.Acquire();AW--; // No longer activeif (WW > 0){ // Give priority to writersokToWrite.signal(); // Wake up one writer} else if (WR > 0) { // Otherwise, wake readerokToRead.broadcast(); // Wake all readers}lock.Release();

}

Code for a Writer

Lec 8.199/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3
• On entry, each reader checks the following:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• First, R1 comes along:
AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database
– Situation: Locks released
– Only AR is non-zero

Lec 8.209/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Simulation(2)

• Next, W1 comes along:while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++;

• Can’t start because of readers, so go to sleep:
AR = 2, WR = 0, AW = 0, WW = 1

• Finally, R3 comes along:
AR = 2, WR = 1, AW = 0, WW = 1

• Now, say that R2 finishes before R1:
AR = 1, WR = 1, AW = 0, WW = 1

• Finally, last of first two readers (R1) finishes and
wakes up writer:

if (AR == 0 && WW > 0) // No other active readersokToWrite.signal(); // Wake up one writer

Lec 8.219/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Simulation(3)

• When writer wakes up, get:
AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

– Writer wakes up reader, so get:
AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

Lec 8.229/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Questions
• Can readers starve? Consider Reader() entry code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
• Further, what if we turn the signal() into broadcast()

AR--; // No longer active
okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call
it “okToContinue”) instead of two separate ones?

– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

Lec 8.239/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait() { semaphore.P(); }
Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock lock) {lock.Release();semaphore.P();lock.Acquire();}Signal() { semaphore.V(); }
– No: Condition vars have no history, semaphores have
history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue

Lec 8.249/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {lock.Release();semaphore.P();lock.Acquire();}Signal() {if semaphore queue is not emptysemaphore.V();}
– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

Lec 8.259/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Monitor Conclusion
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
lockwhile (need to wait) {condvar.wait();}unlock
do something so no need to wait
lock
condvar.signal();
unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Lec 8.269/25/06 Kubiatowicz CS162 ©UCB Fall 2006

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section
int Rtn() {

lock.acquire();
…
if (exception) {

lock.release();
return errReturnCode;

}
…
lock.release();
return OK;

}
– Watch out for setjmp/longmp!
– Can cause a non-local jump out of procedure

Lec 8.279/25/06 Kubiatowicz CS162 ©UCB Fall 2006

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
void Rtn() {

lock.acquire();
…
DoFoo();
…
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Notice that an exception in DoFoo() will exit without
releasing the lock

Lec 8.289/25/06 Kubiatowicz CS162 ©UCB Fall 2006

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Must catch exceptions, release lock, then re-throw the
exception:

void Rtn() {lock.acquire();try {…DoFoo();…} catch (…) { // catch exceptionlock.release(); // release lockthrow; // re-throw the exception}lock.release();}
void DoFoo() {…if (exception) throw errException;…
}

Lec 8.299/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
class Account {private int balance;// object constructorpublic Account (int initialBalance) {balance = initialBalance;}public synchronized int getBalance() {return balance;}public synchronized void deposit(int amount) {balance += amount;}}

– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

Lec 8.309/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
synchronized (object) {

…
}

– Since every Java object has an associated lock, this
type of statement acquires and releases the object’s
lock on entry and exit of the body

– Works properly even with exceptions:
synchronized (object) {

…
DoFoo();
…

}
void DoFoo() {

throw errException;
}

Lec 8.319/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

t1 = time.now();while (!ATMRequest()) {wait (CHECKPERIOD);t2 = time.new();if (t2 – t1 > LONG_TIME) checkMachine();}
– Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!
Lec 8.329/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Readers/Writers

– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Language support for synchronization:
– Java provides synchronized keyword and one condition-
variable per object (with wait() and notify())

CS162
Operating Systems and
Systems Programming

Lecture 9

Tips for Handling Group Projects
Deadlock

September 27, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 9.29/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Programming with Monitors
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
lockwhile (need to wait) {condvar.wait();}unlock
do something so no need to wait
lock
condvar.signal();
unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Lec 9.39/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method

• Java also has synchronized statements
– This type of statement acquires and releases the
object’s lock on entry and exit of the body

– Works properly even with exceptions
• In addition to a lock, every object has a single

condition variable associated with it
– Condition variables can wait for a bounded length of
time (useful for handling exception cases)

• Not all Java VMs equivalent!
– Different scheduling policies, not necessarily preemptive!

Lec 9.49/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Tips for Programming in a Project Team
• Discussion of Deadlocks

– Conditions for its occurrence
– Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 9.59/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Tips for Programming in a Project Team
• Big projects require more than one

person (or long, long, long time)
– Big OS: thousands of person-years!

• It’s very hard to make software
project teams work correctly

– Doesn’t seem to be as true of big
construction projects

» Empire state building finished in
one year: staging iron production
thousands of miles away

» Or the Hoover dam: built towns to
hold workers

– Is it OK to miss deadlines?
» We make it free (slip days)
» Reality: they’re very expensive as

time-to-market is one of the most
important things!

“You just have
to get your

synchronization right!”

Lec 9.69/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Big Projects
• What is a big project?

– Time/work estimation is hard
– Programmers are eternal optimistics
(it will only take two days)!

» This is why we bug you about
starting the project early

» Had a grad student who used to say he just needed
“10 minutes” to fix something. Two hours later…

• Can a project be efficiently partitioned?
– Partitionable task decreases in time as
you add people

– But, if you require communication:
» Time reaches a minimum bound
» With complex interactions, time increases!

– Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people
» Project takes even more time!

Lec 9.79/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Techniques for Partitioning Tasks
• Functional

– Person A implements threads, Person B implements
semaphores, Person C implements locks…

– Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes
» Story: Large airline company spent $200 million on a new

scheduling and booking system. Two teams “working
together.” After two years, went to merge software.
Failed! Interfaces had changed (documented, but no one
noticed). Result: would cost another $200 million to fix.

• Task
– Person A designs, Person B writes code, Person C tests
– May be difficult to find right balance, but can focus on
each person’s strengths (Theory vs systems hacker)

– Since Debugging is hard, Microsoft has two testers for
each programmer

• Most CS162 project teams are functional, but people
have had success with task-based divisions

Lec 9.89/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Communication
• More people mean more communication

– Changes have to be propagated to more people
– Think about person writing code for most
fundamental component of system: everyone depends
on them!

• Miscommunication is common
– “Index starts at 0? I thought you said 1!”

• Who makes decisions?
– Individual decisions are fast but trouble
– Group decisions take time
– Centralized decisions require a big picture view (someone
who can be the “system architect”)

• Often designating someone as the system architect
can be a good thing

– Better not be clueless
– Better have good people skills
– Better let other people do work

Lec 9.99/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Coordination
• More people ⇒ no one can make all meetings!

– They miss decisions and associated discussion
– Example from earlier class: one person missed
meetings and did something group had rejected

– Why do we limit groups to 5 people?
» You would never be able to schedule meetings

– Why do we require 4 people minimum?
» You need to experience groups to get ready for real world

• People have different work styles
– Some people work in the morning, some at night
– How do you decide when to meet or work together?

• What about project slippage?
– It will happen, guaranteed!
– Ex: phase 4, everyone busy but not talking. One person
way behind. No one knew until very end – too late!

• Hard to add people to existing group
– Members have already figured out how to work together

Lec 9.109/27/06 Kubiatowicz CS162 ©UCB Fall 2006

How to Make it Work?
• People are human. Get over it.

– People will make mistakes, miss meetings, miss
deadlines, etc. You need to live with it and adapt

– It is better to anticipate problems than clean up
afterwards.

• Document, document, document
– Why Document?

» Expose decisions and communicate to others
» Easier to spot mistakes early
» Easier to estimate progress

– What to document?
» Everything (but don’t overwhelm people or no one will read)

– Standardize!
» One programming format: variable naming conventions, tab

indents,etc.
» Comments (Requires, effects, modifies)—javadoc?

Lec 9.119/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Suggested Documents for You to Maintain

• Project objectives: goals, constraints, and priorities
• Specifications: the manual plus performance specs

– This should be the first document generated and the
last one finished

• Meeting notes
– Document all decisions
– You can often cut & paste for the design documents

• Schedule: What is your anticipated timing?
– This document is critical!

• Organizational Chart
– Who is responsible for what task?

Lec 9.129/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Use Software Tools

• Source revision control software (CVS)
– Easy to go back and see history
– Figure out where and why a bug got introduced
– Communicates changes to everyone (use CVS’s features)

• Use automated testing tools
– Write scripts for non-interactive software
– Use “expect” for interactive software
– Microsoft rebuild the Longhorn/Vista kernel every night
with the day’s changes. Everyone is running/testing the
latest software

• Use E-mail and instant messaging consistently to
leave a history trail

Lec 9.139/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Test Continuously

• Integration tests all the time, not at 11pm
on due date!

– Write dummy stubs with simple functionality
» Let’s people test continuously, but more work

– Schedule periodic integration tests
» Get everyone in the same room, check out code, build,

and test.
» Don’t wait until it is too late!

• Testing types:
– Unit tests: check each module in isolation (use JUnit?)
– Daemons: subject code to exceptional cases
– Random testing: Subject code to random timing changes

• Test early, test later, test again
– Tendency is to test once and forget; what if something
changes in some other part of the code?

Lec 9.149/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 9.159/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Cautionary Tale: OS/2

• Every major OS since 1985 provides threads
– Makes it easier to write concurrent programs

• Microsoft OS/2 (circa 1988): initially, a failure
• IBM re-wrote it using threads for everything

– Window systems, Inter-Process Communication, …
– OS/2 let you print while you worked!
– Could have 100 threads, but most not on run queue
(waiting for something)

• Each thread needs its own stack, say 9 KB
• Result: System needs an extra 1MB of memory

– $200 in 1988
• Moral: Threads are cheap, but they’re not free

– <$0.10 today, but context switching is expensive…
Lec 9.169/27/06 Kubiatowicz CS162 ©UCB Fall 2006

• Resources – passive entities needed by threads to do
their work

– CPU time, disk space, memory
• Two types of resources:

– Preemptable – can take it away
» CPU, Embedded security chip

– Non-preemptable – must leave it with the thread
» Disk space, plotter, chunk of virtual address space
» Mutual exclusion – the right to enter a critical section

• Resources may require exclusive access or may be
sharable

– Read-only files are typically sharable
– Printers are not sharable during time of printing

• One of the major tasks of an operating system is to
manage resources

Resources

Lec 9.179/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources

constantly in use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock ⇒ Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 9.189/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes:

Thread A Thread B
x.P(); y.P();
y.P(); x.P();
y.V(); x.V();
x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and

there it is, controlling a nuclear power plant
• Deadlocks occur with multiple resources

– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one

Lec 9.199/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

• If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)

– Several cars may have to be backed up
• Starvation is possible

– East-going traffic really fast ⇒ no one goes west
Lec 9.209/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Disallowed

By Rule

Lec 9.219/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry
lawyer has two chopsticks afterwards

Lec 9.229/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 9.239/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Symbols
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn
– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances.
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()
• Resource-Allocation Graph:

– V is partitioned into two types:
» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 → Rj
– assignment edge – directed edge Rj → Ti

R1
R2

T1 T2

Lec 9.249/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1 → Rj
– assignment edge – directed edge Rj → Ti

Lec 9.259/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for forcibly preempting resources
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks
never occur in the system

– Used by most operating systems, including UNIX

Lec 9.269/27/06 Kubiatowicz CS162 ©UCB Fall 2006

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Only one of each type of resource ⇒ look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type[RequestX]: Current requests from thread X[AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
[Avail] = [FreeResources] Add all nodes to UNFINISHED do {

done = trueForeach node in UNFINISHED {if ([Requestnode] <= [Avail]) {remove node from UNFINISHED[Avail] = [Avail] + [Allocnode]done = false}}
} until(done)

– Nodes left in UNFINISHED ⇒ deadlocked

Lec 9.279/27/06 Kubiatowicz CS162 ©UCB Fall 2006

What to do when detect deadlock?
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

– Shoot a dining lawyer
– But, not always possible – killing a thread holding a
mutex leaves world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few
minutes never happened

– For bridge example, make one car roll backwards (may
require others behind him)

– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may
reenter deadlock once again

• Many operating systems use other options
Lec 9.289/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

– Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

– Inefficient, since have to keep retrying
» Consider: driving to San Francisco; when hit traffic jam,

suddenly you’re transported back home and told to retry!

Lec 9.299/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Techniques for Preventing Deadlock (con’t)

• Make all threads request everything they’ll need at
the beginning.

– Problem: Predicting future is hard, tend to over-
estimate resources

– Example:
» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any

intersection between here and where you want to go; only
one car on the Bay Bridge at a time

• Force all threads to request resources in a particular
order preventing any cyclic use of resources

– Thus, preventing deadlock
– Example (x.P, y.P, z.P,…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise
Lec 9.309/27/06 Kubiatowicz CS162 ©UCB Fall 2006

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ≥ max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail])
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a
sequence {T1, T2, … Tn} with T1 requesting all remaining
resources, finishing, then T2 requesting all remaining
resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock

Lec 9.319/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers
– “Safe” (won’t cause deadlock) if when try to grab
chopstick either:

» Not last chopstick
» Is last chopstick but someone will have

two afterwards
– What if k-handed lawyers? Don’t allow if:

» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» … Lec 9.329/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Suggestions for dealing with Project Partners

– Start Early, Meet Often
– Develop Good Organizational Plan, Document Everything,
Use the right tools, Develop Comprehensive Testing Plan

– (Oh, and add 2 years to every deadline!)
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
» ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern

Lec 9.339/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary (2)

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never
occur in the system

• Deadlock detection
– Attempts to assess whether waiting graph can ever
make progress

• Deadlock prevention
– Assess, for each allocation, whether it has the
potential to lead to deadlock

– Banker’s algorithm gives one way to assess this

CS162
Operating Systems and
Systems Programming

Lecture 10

Deadlock (cont’d)
Thread Scheduling

October 2, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 10.210/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources
– Deadlock⇒Starvation, but not other way around

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
» There exists a set {T1, …, Tn} of threads with a cyclic

waiting pattern

Lec 10.310/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1 → Rj
– assignment edge – directed edge Rj → Ti

Lec 10.410/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for selectively preempting resources
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks
never occur in the system

– used by most operating systems, including UNIX

Lec 10.510/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Disallowed

By Rule

Lec 10.610/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Preventing Deadlock
• Scheduling Policy goals
• Policy Options
• Implementation Considerations

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 10.710/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

– Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

– Inefficient, since have to keep retrying
» Consider: driving to San Francisco; when hit traffic jam,

suddenly you’re transported back home and told to retry!

Lec 10.810/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Techniques for Preventing Deadlock (con’t)

• Make all threads request everything they’ll need at
the beginning.

– Problem: Predicting future is hard, tend to over-
estimate resources

– Example:
» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any

intersection between here and where you want to go; only
one car on the Bay Bridge at a time

• Force all threads to request resources in a particular
order preventing any cyclic use of resources

– Thus, preventing deadlock
– Example (x.P, y.P, z.P,…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise

Lec 10.910/2/06 Kubiatowicz CS162 ©UCB Fall 2006

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ≥ max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
([Maxnode]-[Allocnode] ≤ [Avail]) for ([Requestnode] ≤ [Avail])
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a
sequence {T1, T2, … Tn} with T1 requesting all remaining
resources, finishing, then T2 requesting all remaining
resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock

Lec 10.1010/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers
– “Safe” (won’t cause deadlock) if when try to grab
chopstick either:

» Not last chopstick
» Is last chopstick but someone will have

two afterwards
– What if k-handed lawyers? Don’t allow if:

» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

Lec 10.1110/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Deadlock Summary

• Starvation vs. Deadlock
– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
» ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern

Lec 10.1210/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 10.1310/2/06 Kubiatowicz CS162 ©UCB Fall 2006

CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to
Running to various waiting queues.

• Question: How is the OS to decide which of several
tasks to take off a queue?

– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access
to resources from moment to moment

Lec 10.1410/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the
problem so it can be solved

– For instance: is “fair” about fairness among users or
programs?

» If I run one compilation job and you run five, you get five
times as much CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time

Lec 10.1510/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of
CPU and I/O

– Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

Lec 10.1610/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

Lec 10.1710/2/06 Kubiatowicz CS162 ©UCB Fall 2006

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300

Lec 10.1810/2/06 Kubiatowicz CS162 ©UCB Fall 2006

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1
Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of
small items. Upside: get to read about space aliens!

P1P3P2

63 300

Lec 10.1910/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Round Robin (RR)
• FCFS Scheme: Potentially bad for short jobs!

– Depends on submit order
– If you are first in line at supermarket with milk, you
don’t care who is behind you, on the other hand…

• Round Robin Scheme
– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q ⇒
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

• Performance
– q large ⇒ FCFS
– q small ⇒ Interleaved (really small ⇒ hyperthreading?)
– q must be large with respect to context switch,
otherwise overhead is too high (all overhead)

Lec 10.2010/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Example of RR with Time Quantum = 20
• Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

Lec 10.2110/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Round-Robin Discussion
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite (∞)?
» Get back FIFO

– What if time slice too small?
» Throughput suffers!

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo

each keystroke!
– In practice, need to balance short-job performance
and long-job throughput:

» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

Lec 10.2210/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR

always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with

RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

1000100010
9999009
………

9922002
9911001
RRFIFOJob #

Lec 10.2310/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 10.2410/2/06 Kubiatowicz CS162 ©UCB Fall 2006

What if we Knew the Future?

• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of
computation to do

– Sometimes called “Shortest Time to
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to
Completion First” (SRTCF)

• These can be applied either to a whole program or
the current CPU burst of each program

– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

Lec 10.2510/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Discussion

• SJF/SRTF are the best you can do at minimizing
average response time

– Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

– Since SRTF is always at least as good as SJF, focus
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

Lec 10.2610/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Example to illustrate benefits of SRTF

• Three jobs:
– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?
– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 10.2710/2/06 Kubiatowicz CS162 ©UCB Fall 2006

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots
of wakeups!

Disk
Utilization:

90%

Disk
Utilization:

9/201 ~ 4.5%

Lec 10.2810/2/06 Kubiatowicz CS162 ©UCB Fall 2006

SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

Lec 10.2910/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

– For instance,
exponential averaging
τn = αtn-1+(1-α)τn-1
with (0<α≤1)

Lec 10.3010/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 10.3110/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Scheduling Details
• Result approximates SRTF:

– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of
the OS designer

– For multilevel feedback, put in a bunch of meaningless
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing
at higher priority the competitors.

» Put in printf’s, ran much faster!
Lec 10.3210/2/06 Kubiatowicz CS162 ©UCB Fall 2006

What about Fairness?
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):

» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express

lanes get so long, get better service by going into one of
the other lines

– Could increase priority of jobs that don’t get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priority ⇒ Interactive jobs suffer

Lec 10.3310/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more,
long running jobs get fewer

– To avoid starvation, every job gets at least one
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves
gracefully as load changes

– Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
job possesses

Lec 10.3410/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Lottery Scheduling Example

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable
response time?

» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

5%50%1/10
0.99%9.9%10/1
N/A50%2/0
50%N/A0/2
9%91%1/1

% of CPU each
long jobs gets

% of CPU each
short jobs gets

short jobs/
long jobs

Lec 10.3510/2/06 Kubiatowicz CS162 ©UCB Fall 2006

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the
performance of each algorithm for that workload

• Queuing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

Lec 10.3610/2/06 Kubiatowicz CS162 ©UCB Fall 2006

A Final Word on Scheduling
• When do the details of the scheduling policy and

fairness really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay
for itself in improved response time

» Assuming you’re paying for worse
response time in reduced productivity,
customer angst, etc…

» Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization⇒100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear”
portion of the load curve, fail otherwise

– Argues for buying a faster X when hit “knee” of curve

Utilization

Response
tim

e 100%

Lec 10.3710/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Scheduling: selecting a waiting process from the ready

queue and allocating the CPU to it
• FCFS Scheduling:

– Run threads to completion in order of submission
– Pros: Simple
– Cons: Short jobs get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

– Pros: Better for short jobs
– Cons: Poor when jobs are same length

Lec 10.3810/2/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary (2)

• Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):

– Run whatever job has the least amount of computation
to do/least remaining amount of computation to do

– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of
tokens (short tasks ⇒ more tokens)

– Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

CS162
Operating Systems and
Systems Programming

Lecture 11

Thread Scheduling (con’t)
Protection: Address Spaces

October 4, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 11.210/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Last Time
• Scheduling: selecting a waiting process from the ready

queue and allocating the CPU to it
• FCFS Scheduling:

– Run threads to completion in order of submission
– Pros: Simple (+)
– Cons: Short jobs get stuck behind long ones (-)

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

– Pros: Better for short jobs (+)
– Cons: Poor when jobs are same length (-)

• Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):

– Run whatever job has the least amount of computation to
do/least remaining amount of computation to do

– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

Lec 11.310/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Last Time (2)

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of
tokens (short tasks ⇒ more tokens)

– Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

• Countermeasure: user action that can foil intent of
the OS designer

• Scheduling tradeoff: fairness gained by hurting avg
response time!

Lec 11.410/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish discussion of Scheduling
• Kernel vs User Mode
• What is an Address Space?
• How is it Implemented?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 11.510/4/06 Kubiatowicz CS162 ©UCB Fall 2006

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– Takes a predetermined workload and compute the
performance of each algorithm for that workload

• Queuing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

Lec 11.610/4/06 Kubiatowicz CS162 ©UCB Fall 2006

A Final Word On Scheduling
• When do the details of the scheduling policy and

fairness really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay
for itself in improved response time

» Assuming you’re paying for worse
response time in reduced productivity,
customer angst, etc…

» Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization⇒100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear”
portion of the load curve, fail otherwise

– Argues for buying a faster X when hit “knee” of curve

Utilization

Response
tim

e 100%

Lec 11.710/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Virtualizing Resources

• Physical Reality:
Different Processes/Threads share the same hardware

– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (Today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is
defined by its data in memory (and registers)

– Consequently, cannot just let different threads of control
use the same memory

» Physics: two different pieces of data cannot occupy the same
locations in memory

– Probably don’t want different threads to even have access
to each other’s memory (protection)

Lec 11.810/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process

Lec 11.910/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Important Aspects of Memory Multiplexing
• Controlled overlap:

– Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!

– Conversely, would like the ability to overlap when
desired (for communication)

• Translation:
– Ability to translate accesses from one address space
(virtual) to a different one (physical)

– When translation exists, processor uses virtual
addresses, physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves

Lec 11.1010/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Binding of Instructions and Data to Memory
• Binding of instructions and data to addresses:

– Choose addresses for instructions and data from the
standpoint of the processor

– Could we place data1, start, and/or checkit at
different addresses?

» Yes
» When? Compile time/Load time/Execution time

– Related: which physical memory locations hold particular
instructions or data?

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, r0, loop…

checkit: …

0x300 00000020
… …

0x900 8C2000C0
0x904 0C000340
0x908 2021FFFF
0x90C 1420FFFF
…

0xD00 …

Lec 11.1110/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Multi-step Processing of a Program for Execution
• Preparation of a program for

execution involves components at:
– Compile time (i.e. “gcc”)
– Link/Load time (unix “ld” does link)
– Execution time (e.g. dynamic libs)

• Addresses can be bound to final
values anywhere in this path

– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code, stub, used to
locate the appropriate memory-
resident library routine

– Stub replaces itself with the
address of the routine, and
executes routine

Lec 11.1210/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 11.1310/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Recall: Uniprogramming

• Uniprogramming (no Translation or Protection)
– Application always runs at same place in physical
memory since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving
it reality of a dedicated machine

• Of course, this doesn’t help us with multithreading

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

A
dd

re
ss

es

Lec 11.1410/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Multiprogramming (First Version)
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Trick: Use Loader/Linker: Adjust addresses while
program loaded into memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days

• With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

Lec 11.1510/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Multiprogramming (Version with Protection)
• Can we protect programs from each other without

translation?

– Yes: use two special registers base and limit to prevent
user from straying outside designated area

» If user tries to access an illegal address, cause an error
– During switch, kernel loads new base/limit from TCB

» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 Base=0x20000

Limit=0x10000

Lec 11.1610/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Segmentation with Base and Limit registers

• Could use base/limit for dynamic address translation
(often called “segmentation”):

– Alter address of every load/store by adding “base”
– User allowed to read/write within segment

» Accesses are relative to segment so don’t have to be
relocated when program moved to different segment

– User may have multiple segments available (e.g x86)
» Loads and stores include segment ID in opcode:

x86 example: mov [es:bx],ax.
» Operating system moves around segment base pointers as

necessary

DRAM

<?
+

Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

Lec 11.1710/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Issues with simple segmentation method

• Fragmentation problem
– Not every process is the same size
– Over time, memory space becomes fragmented

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by providing multiple segments per process

• Need enough physical memory for every process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 6

process 5

process 9

OS

process 9

process 10

Lec 11.1810/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Multiprogramming (Translation and Protection version 2)
• Problem: Run multiple applications in such a way that

they are protected from one another
• Goals:

– Isolate processes and kernel from one another
– Allow flexible translation that:

» Doesn’t lead to fragmentation
» Allows easy sharing between processes
» Allows only part of process to be resident in physical

memory
• (Some of the required) Hardware Mechanisms:

– General Address Translation
» Flexible: Can fit physical chunks of memory into arbitrary

places in users address space
» Not limited to small number of segments
» Think of this as providing a large number (thousands) of

fixed-sized segments (called “pages”)
– Dual Mode Operation

» Protection base involving kernel/user distinction

Lec 11.1910/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Example of General Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 11.2010/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Two Views of Memory

• Recall: Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently: two views of memory:
– View from the CPU (what program sees, virtual memory)
– View fom memory (physical memory)
– Translation box converts between the two views

• Translation helps to implement protection
– If task A cannot even gain access to task B’s data, no
way for A to adversely affect B

• With translation, every program can be linked/loaded
into same region of user address space

– Overlap avoided through translation, not relocation

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

Lec 11.2110/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Example of Translation Table Format

Two-level Page Tables
32-bit address:

P1 index P2 index page offset
10 10 12

4 bytes

4 bytes

4KB

1K
PTEs

• Page: a unit of memory translatable by
memory management unit (MMU)

– Typically 1K – 8K
• Page table structure in memory

– Each user has different page table
• Address Space switch: change pointer

to base of table (hardware register)
– Hardware traverses page table (for many
architectures)

– MIPS uses software to traverse table (why?)
Lec 11.2210/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Dual-Mode Operation
• Can an application modify its own translation tables?

– If it could, could get access to all of physical memory
– Has to be restricted somehow

• To assist with protection, hardware provides at
least two modes (Dual-Mode Operation):

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bits in special control register only
accessible in kernel-mode

• Intel processor actually has four “rings” of
protection:

– PL (Privilege Level) from 0 – 3
» PL0 has full access, PL3 has least

– Privilege Level set in code segment descriptor (CS)
– Mirrored “IOPL” bits in condition register gives
permission to programs to use the I/O instructions

– Typical OS kernels on Intel processors only use PL3
(“user”) and PL0 (“kernel”)

Lec 11.2310/4/06 Kubiatowicz CS162 ©UCB Fall 2006

For Protection, Lock User-Programs in Asylum
• Idea: Lock user programs in padded cell

with no exit or sharp objects
– Cannot change mode to kernel mode
– User cannot modify page table mapping
– Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to
memory-mapped I/O operations
(I/O that occurs by reading/writing memory locations)

– Limited access to interrupt controller
– What else needs to be protected?

• A couple of issues
– How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

– How do programs interact?
– How does one switch between kernel and user modes?

» OS → user (kernel → user mode): getting into cell
» User→ OS (user → kernel mode): getting out of cell

Lec 11.2410/4/06 Kubiatowicz CS162 ©UCB Fall 2006

How to get from Kernel→User
• What does the kernel do to create a new user

process?
– Allocate and initialize address-space control block
– Read program off disk and store in memory
– Allocate and initialize translation table

» Point at code in memory so program can execute
» Possibly point at statically initialized data

– Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before
– Save/restore PSL (hardware pointer to translation table)

Lec 11.2510/4/06 Kubiatowicz CS162 ©UCB Fall 2006

User→Kernel (System Call)
• Can’t let inmate (user) get out of padded cell on own

– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled User→Kernel transition
– Can any kernel routine be called?

» No! Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel
Lec 11.2610/4/06 Kubiatowicz CS162 ©UCB Fall 2006

System Call Continued
• What are some system calls?

– I/O: open, close, read, write, lseek
– Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
– Process: fork, exit, wait (like join)
– Network: socket create, set options

• Are system calls constant across operating systems?
– Not entirely, but there are lots of commonalities
– Also some standardization attempts (POSIX)

• What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

• System Call argument passing:
– In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel mem

» User addresses must be translated!
» Kernel has different view of memory than user

– Every argument must be explicitly checked!

Lec 11.2710/4/06 Kubiatowicz CS162 ©UCB Fall 2006

User→Kernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of synchronous exceptions:
– Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves
registers, changes stack, etc.

• Actual handler typically saves registers, other CPU
state, and switches to kernel stack

Lec 11.2810/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Additions to MIPS ISA to support Exceptions?
• Exception state is kept in “Coprocessor 0”

– Use mfc0 read contents of these registers:
» BadVAddr (register 8): contains memory address at which

memory reference error occurred
» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

• Status Register fields:
– Mask: Interrupt enable

» 1 bit for each of 5 hardware and 3 software interrupts
– k = kernel/user: 0⇒kernel mode
– e = interrupt enable: 0⇒interrupts disabled
– Exception⇒6 LSB shifted left 2 bits, setting 2 LSB to 0:

» Run in kernel mode with interrupts disabled

Status
15 8 5 4 3 2 1 0

k e k e k eMask
old prev cur

Lec 11.2910/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers

Lec 11.3010/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Communication
• Now that we have isolated processes, how

can they communicate?
– Shared memory: common mapping to physical page

» As long as we place objects in shared memory address
range, threads from each process can communicate

» Note that processes A and B can talk to shared memory
through different addresses

» In some sense, this violates the whole notion of
protection that we have been developing

– If address spaces don’t share memory, all inter-
address space communication must go through kernel
(via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message passing (send/receive): Will explain later how you
can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared state!

Lec 11.3110/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Example Application–Kernel Interaction

• Shells and UNIX fork
– Shell runs as user program (not part of kernel!)

» Prompts user to type command
» Does system call to run command
» Nachos system call is “exec,” but UNIX is different

• UNIX idea: separate notion of fork vs. exec
– Fork – Create a new process, exact copy of current one
– Exec – Change current process to run different program

• To run a program in UNIX:
– Fork a process
– In child, exec program
– In parent, wait for child to finish

Lec 11.3210/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: Application–Kernel Interaction (cont’d)

• UNIX fork:
– Stop current process
– Create exact copy
– Put on ready list
– Resume original

• Original has code/data/stack. Copy has same!
– Does this work?

• UNIX changes one register in child before resume
• Child process:

– Exec program:
» Stop process
» Copy new program over current one
» Resume at location 0

• Why copy everything so you can discard it?

Lec 11.3310/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Closing thought: Protection without Hardware
• Does protection require hardware support for

translation and dual-mode behavior?
– No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express
program that would trash another program

– Loader needs to make sure that program was produced
by valid compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate
object code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)

– Or: use virtual machine to guarantee safe behavior
(loads and stores recompiled on fly to check bounds)

Lec 11.3410/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Shortest Job First (SJF)/Shortest Remaining Time

First (SRTF):
– Run whatever job has the least amount of computation
to do/least remaining amount of computation to do

– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of
tokens (short tasks⇒more tokens)

– Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

• Evaluation of mechanisms:
– Analytical, Queuing Theory, Simulation

Lec 11.3510/4/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary (2)
• Memory is a resource that must be shared

– Controlled Overlap: only shared when appropriate
– Translation: Change Virtual Addresses into Physical
Addresses

– Protection: Prevent unauthorized Sharing of resources
• Simple Protection through Segmentation

– Base+limit registers restrict memory accessible to user
– Can be used to translate as well

• Full translation of addresses through Memory
Management Unit (MMU)

– Every Access translated through page table
– Changing of page tables only available to user

• Dual-Mode
– Kernel/User distinction: User restricted
– User→Kernel: System calls, Traps, or Interrupts
– Inter-process communication: shared memory, or
through kernel (system calls)

CS162
Operating Systems and
Systems Programming

Lecture 12

Protection (continued)
Address Translation

October 9, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 12.210/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Important Aspects of Memory Multiplexing
• Controlled overlap:

– Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!

– Conversely, would like the ability to overlap when
desired (for communication)

• Translation:
– Ability to translate accesses from one address space
(virtual) to a different one (physical)

– When translation exists, processor uses virtual
addresses, physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves

Lec 12.310/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Communication
• Now that we have isolated processes, how

can they communicate?
– Shared memory: common mapping to physical page

» As long as place objects in shared memory address range,
threads from each process can communicate

» Note that processes A and B can talk to shared memory
through different addresses

» In some sense, this violates the whole notion of
protection that we have been developing

– If address spaces don’t share memory, all inter-
address space communication must go through kernel
(via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message passing (send/receive): Will explain later how you
can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared state!
Lec 12.410/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish discussion of protection
• Address Translation Schemes

– Segmentation
– Paging
– Multi-level translation
– Paged page tables
– Inverted page tables

• Comparison among options

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 12.510/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Example Application–Kernel Interaction

• Shells and UNIX fork
– Shell runs as user program (not part of kernel!)

» Prompts user to type command
» Does system call to run command
» Nachos system call is “exec,” but UNIX is different

• UNIX idea: separate notion of fork vs. exec
– Fork – Create a new process, exact copy of current one
– Exec – Change current process to run different program

• To run a program in UNIX:
– Fork a process
– In child, exec program
– In parent, wait for child to finish

Lec 12.610/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: Application–Kernel Interaction (cont’d)

• UNIX fork:
– Stop current process
– Create exact copy
– Put on ready list
– Resume original

• Original has code/data/stack. Copy has same!
– Does this work?

• UNIX changes one register in child before resume
• Child process:

– Exec program:
» Stop process
» Copy new program over current one
» Resume at location 0

• Why copy everything so you can discard it?

Lec 12.710/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple Segmentation: Base and Bounds (CRAY-1)

• Can use base & bounds/limit for dynamic address
translation (Simple form of “segmentation”):

– Alter every address by adding “base”
– Generate error if address bigger than limit

• This gives program the illusion that it is running on its
own dedicated machine, with memory starting at 0

– Program gets continuous region of memory
– Addresses within program do not have to be relocated
when program placed in different region of DRAM

DRAM

>?
+

Base

Limit

CPU

Virtual
Address

Physical
Address

Yes: Error!

Lec 12.810/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Base and Limit segmentation discussion
• Provides level of indirection

– OS can move bits around behind program’s back
– Can be used to correct if program needs to grow
beyond its bounds or coalesce fragments of memory

• Only OS gets to change the base and limit!
– Would defeat protection

• What gets saved/restored on a context switch?
– Everything from before + base/limit values
– Or: How about complete contents of memory (out to
disk)?

» Called “Swapping”
• Hardware cost

– 2 registers/Adder/Comparator
– Slows down hardware because need to take time to do
add/compare on every access

• Base and Limit Pros: Simple, relatively fast

Lec 12.910/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Cons for Simple Segmentation Method
• Fragmentation problem (complex memory allocation)

– Not every process is the same size
– Over time, memory space becomes fragmented
– Really bad if want space to grow dynamically (e.g. heap)

• Other problems for process maintenance
– Doesn’t allow heap and stack to grow independently
– Want to put these as far apart in virtual memory space
as possible so that they can grow as needed

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 5

process 9

OS

process 10

Lec 12.1010/9/06 Kubiatowicz CS162 ©UCB Fall 2006

More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory

1

3

2

4

user view of
memory space

1

4

2

3

physical
memory space

1

2

Lec 12.1110/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N”?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V
+ Physical

Address

> Error

Lec 12.1210/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: Four Segments (16 bit addresses)

0x30000x00003 (stack)
0x10000xF0002 (shared)
0x14000x48001 (data)
0x08000x40000 (code)
LimitBaseSeg ID #

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might
be shared

Lec 12.1310/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Example of segment translation

Let’s simulate a bit of this code to see what happens (PC=0x240):
• Fetch 0x240. Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 → $a0, Move PC+4→PC

2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 → $ra (return address!), Move 0x0360 → PC

3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0”
Move 0x0000 → $v0, Move PC+4→PC

4. Fetch 0x364. Translated to Physical=0x4364. Get “lb $t0,($a0)”
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050. Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,
Load Byte from 0x4850→$t0, Move PC+4→PC

0x240 main: la $a0, varx0x244 jal strlen
… …

0x360 strlen: li $v0, 0 ;count0x364 loop: lb $t0, ($a0)0x368 beq $r0,$t1, done
… …

0x4050 varx dw 0x314159 0x30000x00003 (stack)
0x10000xF0002 (shared)
0x14000x48001 (data)
0x08000x40000 (code)
LimitBaseSeg ID #

Lec 12.1410/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Observations about Segmentation
• Virtual address space has holes

– Segmentation efficient for sparse address spaces
– A correct program should never address gaps (except
as mentioned in moment)

» If it does, trap to kernel and dump core
• When it is OK to address outside valid range:

– This is how the stack and heap are allowed to grow
– For instance, stack takes fault, system automatically
increases size of stack

• Need protection mode in segment table
– For example, code segment would be read-only
– Data and stack would be read-write (stores allowed)
– Shared segment could be read-only or read-write

• What must be saved/restored on context switch?
– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when
switched (called “swapping”)

Lec 12.1510/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 12.1610/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Schematic View of Swapping

• Extreme form of Context Switch: Swapping
– In order to make room for next process, some or all
of the previous process is moved to disk

» Likely need to send out complete segments
– This greatly increases the cost of context-switching

• Desirable alternative?
– Some way to keep only active portions of a process in
memory at any one time

– Need finer granularity control over physical memory

Lec 12.1710/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Paging: Physical Memory in Fixed Size Chunks
• Problems with segmentation?

– Must fit variable-sized chunks into physical memory
– May move processes multiple times to fit everything
– Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1⇒allocated, 0⇒free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment

Lec 12.1810/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Physical Address
Offset

How to Implement Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset ⇒ 1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W

N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

Lec 12.1910/9/06 Kubiatowicz CS162 ©UCB Fall 2006

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N

V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

OffsetVirtual
Page #

Virtual Address:
Process B

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W

Lec 12.2010/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple Page Table Discussion
• What needs to be switched on

a context switch?
– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is
sparse?

» E.g. on UNIX, code starts at
0, stack starts at (231-1).

» With 1K pages, need 2 million
page table entries!

– Con: What if table really big?
» Not all pages used all the

time ⇒ would be nice to have
working set of page table in
memory

• How about combining paging
and segmentation?

a
b
c
de
f
g
hi
j
k
l

0x00

0x04

0x08

Virtual
Memory

a
b
c
d

e
f
g
h

i
j
k
l

0x00

0x04

0x08

0x0C

0x10

Physical
Memory

4
3
1

Page
Table

Example (4 byte pages)

Lec 12.2110/9/06 Kubiatowicz CS162 ©UCB Fall 2006

• What about a tree of tables?
– Lowest level page table⇒memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W
Physical
Page #

Check Perm

Access
Error

Lec 12.2210/9/06 Kubiatowicz CS162 ©UCB Fall 2006

What about Sharing (Complete Segment)?
Process

A OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R

V,R,W
V,R,W

N
V,R,W

Shared Segment

Process
B OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Lec 12.2310/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Physical
Address: OffsetPhysical

Page #

4KB

Another common example: two-level page table
10 bits 10 bits 12 bits

Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

• Valid bits on Page Table Entries
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables
can reside on disk if not in use 4 bytes

Lec 12.2410/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we
need for application

» In other wards, sparse address spaces are easy
– Easy memory allocation
– Easy Sharing

» Share at segment or page level (need additional reference
counting)

• Cons:
– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, previous example keeps tables to exactly one
page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

Lec 12.2510/9/06 Kubiatowicz CS162 ©UCB Fall 2006

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of
virtual memory allocated to processes

– Physical memory may be much less
» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Lec 12.2610/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Closing thought: Protection without Hardware
• Does protection require hardware support for

translation and dual-mode behavior?
– No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express
program that would trash another program

– Loader needs to make sure that program produced by
valid compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate
object code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)

– Or: use virtual machine to guarantee safe behavior
(loads and stores recompiled on fly to check bounds)

Lec 12.2710/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary (1/2)
• Memory is a resource that must be shared

– Controlled Overlap: only shared when appropriate
– Translation: Change Virtual Addresses into Physical
Addresses

– Protection: Prevent unauthorized Sharing of resources
• Dual-Mode

– Kernel/User distinction: User restricted
– User→Kernel: System calls, Traps, or Interrupts
– Inter-process communication: shared memory, or
through kernel (system calls)

• Exceptions
– Synchronous Exceptions: Traps (including system calls)
– Asynchronous Exceptions: Interrupts

Lec 12.2810/9/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary (2/2)
• Segment Mapping

– Segment registers within processor
– Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

– Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped
through page table to physical page number

– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted page table
– Size of page table related to physical memory size

CS162
Operating Systems and
Systems Programming

Lecture 13

Address Translation (con’t)
Caches and TLBs

October 16, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 13.210/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Exceptions: Traps and Interrupts
• A system call instruction causes a synchronous

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of synchronous exceptions:
– Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves
registers, changes stack, etc.

• Actual handler typically saves registers, other CPU
state, and switches to kernel stack

Lec 13.310/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• What about a tree of tables?
– Lowest level page table⇒memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Review: Multi-level Translation

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W
Physical
Page #

Check Perm

Access
Error

Lec 13.410/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Physical
Address: OffsetPhysical

Page #

4KB

Review: Two-Level Page Table
10 bits 10 bits 12 bits

Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

• Sometimes, top-level page tables
called “directories” (Intel)

• Each entry called a (surprise!)
Page Table Entry (PTE) 4 bytes

Lec 13.510/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish discussion of Address Translation
• Caching and TLBs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 13.610/16/06 Kubiatowicz CS162 ©UCB Fall 2006

What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, execute-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1⇒4MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U W P

01234567811-931-12

Lec 13.710/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Examples of how to use a PTE
• How do we use the PTE?

– Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background

Lec 13.810/16/06 Kubiatowicz CS162 ©UCB Fall 2006

How is the translation accomplished?

• What, exactly happens inside MMU?
• One possibility: Hardware Tree Traversal

– For each virtual address, takes page table base pointer
and traverses the page table in hardware

– Generates a “Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture

– Pros: Relatively fast (but still many memory accesses!)
– Cons: Inflexible, Complex hardware

• Another possibility: Software
– Each traversal done in software
– Pros: Very flexible
– Cons: Every translation must invoke Fault!

• In fact, need way to cache translations for either case!

CPU MMU
Virtual

Addresses
Physical

Addresses

Lec 13.910/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Caching Concept

• Cache: a repository for copies that can be accessed
more quickly than the original

– Make frequent case fast and infrequent case less dominant
• Caching underlies many of the techniques that are used

today to make computers fast
– Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Lec 13.1010/16/06 Kubiatowicz CS162 ©UCB Fall 2006

CPU
µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10
yrs)

DRAM

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Moore’s Law”
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)

Why Bother with Caching?

“Less’ Law?”

Lec 13.1110/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• Too expensive to translate on every access
– At least two DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse problem: What if we are using caching to
make memory access faster than DRAM access???

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

Lec 13.1210/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space0 2n - 1

Probability
of reference

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Lec 13.1310/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

1s 10,000,000s
(10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts

Lec 13.1410/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Where does a Block Get Placed in a Cache?

Lec 13.1510/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 13.1610/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• Compulsory (cold start): first reference to a block
– “Cold” fact of life: not a whole lot you can do about it
– Note: When running “billions” of instruction, Compulsory
Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped to same cache location
– Solutions: increase cache size, or increase associativity

• Two others:
– Coherence (Invalidation): other process (e.g., I/O)
updates memory

– Policy: Due to non-optimal replacement policy

A Summary on Sources of Cache Misses

Lec 13.1710/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

Lec 13.1810/16/06 Kubiatowicz CS162 ©UCB Fall 2006

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 : 31

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

Lec 13.1910/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block
Lec 13.2010/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Fully Associative Cache
• Fully Associative: Every block can hold any line

– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

Lec 13.2110/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Example application’s miss rate under LRU and random:
2-way 4-way 8-way

Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?

Lec 13.2210/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

• Write back: The information is written only to the
block in the cache.

– Modified cache block is written to main memory only
when it is replaced

– Question is block clean or dirty?
• Pros and Cons of each?

– WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM

processor not held up on writes
» CON: More complex

Read miss may require write back of dirty data

Review: What happens on a write?

Lec 13.2310/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sa
ve

Re
sul

t

Lec 13.2410/16/06 Kubiatowicz CS162 ©UCB Fall 2006

What Actually Happens on a TLB Miss?
• Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which

kernel decides what to do afterwards
• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults
since they use translation for many things

– Examples:
» shared segments
» user-level portions of an operating system

Lec 13.2510/16/06 Kubiatowicz CS162 ©UCB Fall 2006

What happens on a Context Switch?

• Need to do something, since TLBs map virtual
addresses to physical addresses

– Address Space just changed, so TLB entries no
longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

Lec 13.2610/16/06 Kubiatowicz CS162 ©UCB Fall 2006

What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

Lec 13.2710/16/06 Kubiatowicz CS162 ©UCB Fall 2006

TLB organization: include protection
• How big does TLB actually have to be?

– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 13.2810/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Lec 13.2910/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

Lec 13.3010/16/06 Kubiatowicz CS162 ©UCB Fall 2006

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

Lec 13.3110/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary #1/2
• The Principle of Locality:

– Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start
misses.

– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O
devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent

Lec 13.3210/16/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary #2/2: Translation Caching (TLB)
• PTE: Page Table Entries

– Includes physical page number
– Control info (valid bit, writeable, dirty, user, etc)

• A cache of translations called a “Translation Lookaside
Buffer” (TLB)

– Relatively small number of entries (< 512)
– Fully Associative (Since conflict misses expensive)
– TLB entries contain PTE and optional process ID

• On TLB miss, page table must be traversed
– If located PTE is invalid, cause Page Fault

• On context switch/change in page table
– TLB entries must be invalidated somehow

• TLB is logically in front of cache
– Thus, needs to be overlapped with cache access to be
really fast

CS162
Operating Systems and
Systems Programming

Lecture 14

Caching and
Demand Paging

October 18, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 14.210/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

1s 10,000,000s
(10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts

Lec 14.310/18/06 Kubiatowicz CS162 ©UCB Fall 2006

• Compulsory (cold start): first reference to a block
– “Cold” fact of life: not a whole lot you can do about it
– Note: When running “billions” of instruction, Compulsory
Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped to same cache location
– Solutions: increase cache size, or increase associativity

• Two others:
– Coherence (Invalidation): other process (e.g., I/O)
updates memory

– Policy: Due to non-optimal replacement policy

Review: A Summary on Sources of Cache Misses

Lec 14.410/18/06 Kubiatowicz CS162 ©UCB Fall 2006

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Review: Where does a Block Get Placed in a Cache?

Lec 14.510/18/06 Kubiatowicz CS162 ©UCB Fall 2006

• What line gets replaced on cache miss?
– Easy for Direct Mapped: Only one possibility
– Set Associative or Fully Associative:

» Random
» LRU (Least Recently Used)

• What happens on a write?
– Write through: The information is written to both the
cache and to the block in the lower-level memory

– Write back: The information is written only to the
block in the cache

» Modified cache block is written to main memory only
when it is replaced

» Question is block clean or dirty?

Review: Other Caching Questions

Lec 14.610/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sa
ve

Re
sul

t

Lec 14.710/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish discussion of TLBs
• Concept of Paging to Disk
• Page Faults and TLB Faults
• Precise Interrupts
• Page Replacement Policies

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 14.810/18/06 Kubiatowicz CS162 ©UCB Fall 2006

What Actually Happens on a TLB Miss?
• Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which

kernel decides what to do afterwards
• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults
since they use translation for many things

– Examples:
» shared segments
» user-level portions of an operating system

Lec 14.910/18/06 Kubiatowicz CS162 ©UCB Fall 2006

What happens on a Context Switch?

• Need to do something, since TLBs map virtual
addresses to physical addresses

– Address Space just changed, so TLB entries no
longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

Lec 14.1010/18/06 Kubiatowicz CS162 ©UCB Fall 2006

What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

Lec 14.1110/18/06 Kubiatowicz CS162 ©UCB Fall 2006

TLB organization: include protection
• How big does TLB actually have to be?

– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 14.1210/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Lec 14.1310/18/06 Kubiatowicz CS162 ©UCB Fall 2006

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

Lec 14.1410/18/06 Kubiatowicz CS162 ©UCB Fall 2006

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

Lec 14.1510/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 14.1610/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 14.1710/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Midterm Problem #3

• Dining Philosophers using Semaphores
• Simplicity is the key (only 8 points for code)
• Correctness constraint:

– A diner waits for two chopsticks
• Key insight:

– Use the semaphore to count pairs of chopsticks
Int chopsticks = N; // Total number of chopsticks
Semaphore sticks = new Semaphore(floor(chopsticks/2));
Dine() {

sticks.P(); // This “acquires” two chopsticks
Eat();
sticks.V(); // This “releases” two chopsticks

}

Lec 14.1810/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Midterm Problem #3: Alternate Solution

Int chopsticks = N; // Total number of chopsticks
Semaphore reach = new Semaphore (1); // mutex
Semaphore waiting = new Semaphore (0); // scheduling
Dine() {
reach.P(); // This “acquires” mutex
while (chopsticks < 2) {
reach.V(); // This “releases” mutex
wait.P(); // This “waits” on semaphore
reach.P(); // This “acquires” mutex

}
chopsticks -= 2;
reach.V(); // This “releases” mutex
Eat();
Reach.P(); // This “acquires” mutex
chopsticks += 2;
reach.V(); // This “releases” mutex
wait.V(); // This “wakes” waiters
}

Lec 14.1910/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10%
of their code

– Wasteful to require all of user’s code to be in memory
• Solution: use main memory as cache for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

Tertiary
Storage
(Tape)

Caching

Lec 14.2010/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory ⇒
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than
physical memory

» More programs fit into memory, allowing more concurrency
• Principle: Transparent Level of Indirection (page table)

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

∞

Virtual
Memory
4 GB

Lec 14.2110/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Demand Paging is Caching

• Since Demand Paging is Caching, must ask:
– What is block size?

» 1 page
– What is organization of this cache (i.e. direct-mapped,
set-associative, fully-associative)?

» Fully associative: arbitrary virtual→physical mapping
– How do we find a page in the cache when look for it?

» First check TLB, then page-table traversal
– What is page replacement policy? (i.e. LRU, Random…)

» This requires more explanation… (kinda LRU)
– What happens on a miss?

» Go to lower level to fill miss (i.e. disk)
– What happens on a write? (write-through, write back)

» Definitely write-back. Need dirty bit!

Lec 14.2210/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1⇒4MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U W P

01234567811-931-12

Lec 14.2310/18/06 Kubiatowicz CS162 ©UCB Fall 2006

• PTE helps us implement demand paging
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue

» Suspended process sits on wait queue

Demand Paging Mechanisms

Lec 14.2410/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Software-Loaded TLB
• MIPS/Snake/Nachos TLB is loaded by software

– High TLB hit rate⇒ok to trap to software to fill the
TLB, even if slower

– Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format

• How can a process run without access to page table?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a “TLB Fault”
– What does OS do on a TLB Fault?

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling

Lec 14.2510/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Transparent Exceptions

• How to transparently restart faulting instructions?
– Could we just skip it?

» No: need to perform load or store after reconnecting
physical page

• Hardware must help out by saving:
– Faulting instruction and partial state

» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Load TLB
Fa

ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 2

Fa
ul
ti
ng

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 14.2610/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once

read-only
• What about “RISC” processors?

– For instance delayed branches?
» Example: bne somewhereld r1,(sp)
» Precise exception state consists of two PCs: PC and nPC

– Delayed exceptions:
» Example: div r1, r2, r3ld r1, (sp)
» What if takes many cycles to discover divide by zero,

but load has already caused page fault?

Lec 14.2710/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Precise Exceptions
• Precise ⇒ state of the machine is preserved as if

program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order
execution, ...

– MIPS takes this position
• Imprecise ⇒ system software has to figure out what is

where and put it all back together
• Performance goals often lead designers to forsake

precise interrupts
– system software developers, user, markets etc. usually
wish they had not done this

• Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

Lec 14.2810/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• What about MIN?
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• What about RANDOM?
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

• What about FIFO?
– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

Lec 14.2910/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Replacement Policies (Con’t)
• What about LRU?

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that
can change position in list…

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Lec 14.3010/18/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• TLB is cache on translations

– Fully associative to reduce conflicts
– Can be overlapped with cache access

• Demand Paging:
– Treat memory as cache on disk
– Cache miss ⇒ get page from disk

• Transparent Level of Indirection
– User program is unaware of activities of OS behind scenes
– Data can be moved without affecting application correctness

• Software-loaded TLB
– Fast Path: handled in hardware (TLB hit with valid=1)
– Slow Path: Trap to software to scan page table

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: replace page that will be used farthest in future
– LRU: Replace page that hasn’t be used for the longest time

CS162
Operating Systems and
Systems Programming

Lecture 15

Page Allocation and
Replacement

October 23, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 15.210/23/06 Kubiatowicz CS162 ©UCB Fall 2006

• PTE helps us implement demand paging
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue

» Suspended process sits on wait queue

Review: Demand Paging Mechanisms

Lec 15.310/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Software-Loaded TLB
• MIPS/Snake/Nachos TLB is loaded by software

– High TLB hit rate⇒ok to trap to software to fill the
TLB, even if slower

– Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format

• How can a process run without hardware TLB fill?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a “TLB Fault”
– What does OS do on a TLB Fault?

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling

Lec 15.410/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Transparent Exceptions

• Hardware must help out by saving:
– Faulting instruction and partial state
– Processor State: sufficient to restart user thread

» Save/restore registers, stack, etc
• Precise Exception ⇒ state of the machine is preserved

as if program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

– Difficult with pipelining, out-of-order execution, ...
– MIPS takes this position

• Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

Load TLB

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 2

Fa
ul
ti
ng

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 15.510/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Page Replacement Policies
– Clock Algorithm
– Nth chance algorithm
– Second-Chance-List Algorithm

• Page Allocation Policies
• Working Set/Thrashing

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 15.610/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Steps in Handling a Page Fault

Lec 15.710/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Demand Paging Example
• Since Demand Paging like caching, can compute

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = (1 – p) x 200ns + p x 8 ms
= (1 – p) x 200ns + p x 8,000,000ns
= 200ns + p x 7,999,800ns

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6

– This is about 1 page fault in 400000!
Lec 15.810/23/06 Kubiatowicz CS162 ©UCB Fall 2006

What Factors Lead to Misses?
• Compulsory Misses:

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust

percentage of memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory,
since it is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out
prematurely because of the replacement policy

– How to fix? Better replacement policy

Lec 15.910/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

Lec 15.1010/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that
can change position in list…

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Lec 15.1110/23/06 Kubiatowicz CS162 ©UCB Fall 2006

• Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:

– A B C A B D A D B C B
• Consider FIFO Page replacement:

– FIFO: 7 faults.
– When referencing D, replacing A is bad choice, since
need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Lec 15.1210/23/06 Kubiatowicz CS162 ©UCB Fall 2006

• Suppose we have the same reference stream:
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults
– Where will D be brought in? Look for page not
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Lec 15.1310/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 15.1410/23/06 Kubiatowicz CS162 ©UCB Fall 2006

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

Lec 15.1510/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the
miss rate goes down

– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this
obvious property!

Lec 15.1610/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with
X pages are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

Lec 15.1710/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand

– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1→used recently; clear and leave alone

0→selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop around⇒FIFO
Lec 15.1810/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly
• What if hand is moving quickly?

– Lots of page faults and/or lots of reference bits set
• One way to view clock algorithm:

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Lec 15.1910/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1⇒clear use and also clear counter (used in last sweep)
» 0⇒increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 15.2010/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Clock Algorithms: Details
• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock
algorithm

– Modified: set when page is modified, cleared when page
written to disk

– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Do we really need hardware-supported “modified” bit?

– No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages
» On write, trap to OS. OS sets software “modified” bit,

and marks page as read-write.
» Whenever page comes back in from disk, mark read-only

Lec 15.2110/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits
and mark page as invalid again

• Remember, however, that clock is just an
approximation of LRU

– Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list

Lec 15.2210/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

Ac
ce
ss

New
SC

Victims

Overflow

Lec 15.2310/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0 ⇒ FIFO
– If all ⇒ LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes

– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
Lec 15.2410/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 15.2510/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Demand Paging (more details)

• Does software-loaded TLB need use bit?
Two Options:

– Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page → physical page
– Do we need a reverse mapping (i.e. physical page →
virtual page)?

» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page

» Can’t push page out to disk without invalidating all PTEs

Lec 15.2610/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into
memory can make forward progress

– Example: IBM 370 – 6 pages to handle SS MOVE
instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame
from set of all frames; one process can take a frame
from another

– Local replacement – each process selects from only its own
set of allocated frames

Lec 15.2710/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processes⇒process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = Σsi
m = total number of frames

ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault,
select for replacement a frame from a process with lower
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S
si ×

Lec 15.2810/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

Lec 15.2910/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing ≡ a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 15.3010/23/06 Kubiatowicz CS162 ©UCB Fall 2006

• Program Memory Access
Patterns have temporal
and spatial locality

– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working Set⇒Thrashing

– Better to swap out
process?

Locality In A Memory-Reference Pattern

Lec 15.3110/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Working-Set Model

• Δ ≡ working-set window ≡ fixed number of page
references

– Example: 10,000 instructions
• WSi (working set of Process Pi) = total set of pages

referenced in the most recent Δ (varies in time)
– if Δ too small will not encompass entire locality
– if Δ too large will encompass several localities
– if Δ = ∞ ⇒ will encompass entire program

• D = Σ|WSi| ≡ total demand frames
• if D > m ⇒ Thrashing

– Policy: if D > m, then suspend one of the processes
– This can improve overall system behavior by a lot!

Lec 15.3210/23/06 Kubiatowicz CS162 ©UCB Fall 2006

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur
the first time that a page is seen

– Pages that are touched for the first time
– Pages that are touched after process is swapped
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Lec 15.3310/23/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU
and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

CS162
Operating Systems and
Systems Programming

Lecture 16

Page Allocation and
Replacement (con’t)

I/O Systems
October 25, 2006

Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Lec 16.210/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Page Replacement Policies
• FIFO (First In, First Out)

– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

• LRU (Least Recently Used):
– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.

Lec 16.310/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: pages arranged in a ring
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1→used recently; clear and leave alone

0→selected candidate for replacement
Lec 16.410/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1⇒clear use and also clear counter (used in last sweep)
» 0⇒increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 16.510/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish Page Allocation Policies
• Working Set/Thrashing
• I/O Systems

– Hardware Access
– Device Drivers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 16.610/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

Ac
ce
ss

New
SC

Victims

Overflow

Lec 16.710/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0 ⇒ FIFO
– If all ⇒ LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes

– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
Lec 16.810/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 16.910/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Demand Paging (more details)

• Does software-loaded TLB need use bit?
Two Options:

– Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page → physical page
– Do we need a reverse mapping (i.e. physical page →
virtual page)?

» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page

» Can’t push page out to disk without invalidating all PTEs

Lec 16.1010/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into
memory can make forward progress

– Example: IBM 370 – 6 pages to handle SS MOVE
instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame
from set of all frames; one process can take a frame
from another

– Local replacement – each process selects from only its own
set of allocated frames

Lec 16.1110/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processes⇒process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = Σsi
m = total number of frames

ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault,
select for replacement a frame from a process with lower
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S
si ×

Lec 16.1210/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

Lec 16.1310/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing ≡ a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 16.1410/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 16.1510/25/06 Kubiatowicz CS162 ©UCB Fall 2006

• Program Memory Access
Patterns have temporal
and spatial locality

– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working Set⇒Thrashing

– Better to swap out
process?

Locality In A Memory-Reference Pattern

Lec 16.1610/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Working-Set Model

• Δ ≡ working-set window ≡ fixed number of page
references

– Example: 10,000 instructions
• WSi (working set of Process Pi) = total set of pages

referenced in the most recent Δ (varies in time)
– if Δ too small will not encompass entire locality
– if Δ too large will encompass several localities
– if Δ = ∞ ⇒ will encompass entire program

• D = Σ|WSi| ≡ total demand frames
• if D > m ⇒ Thrashing

– Policy: if D > m, then suspend one of the processes
– This can improve overall system behavior by a lot!

Lec 16.1710/25/06 Kubiatowicz CS162 ©UCB Fall 2006

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur
the first time that a page is seen

– Pages that are touched for the first time
– Pages that are touched after process is swapped
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Lec 16.1810/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Demand Paging Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU
and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

Lec 16.1910/25/06 Kubiatowicz CS162 ©UCB Fall 2006

The Requirements of I/O
• So far in this course:

– We have learned how to manage CPU, memory
• What about I/O?

– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do
or how they will perform?

• Some operational parameters:
– Byte/Block

» Some devices provide single byte at a time (e.g. keyboard)
» Others provide whole blocks (e.g. disks, networks, etc)

– Sequential/Random
» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disk, cd, etc.)

– Polling/Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service

Lec 16.2010/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Modern I/O Systems

Lec 16.2110/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Example Device-Transfer Rates (Sun Enterprise 6000)

• Device Rates vary over many orders of magnitude
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

Lec 16.2210/25/06 Kubiatowicz CS162 ©UCB Fall 2006

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range
of Different Devices

– This code works on many different devices:
int fd = open(“/dev/something”);
for (int i = 0; i < 10; i++) {

fprintf(fd,”Count %d\n”,i);
}
close(fd);

– Why? Because code that controls devices (“device
driver”) implements standard interface.

• We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture

– Can only scratch surface!

Lec 16.2310/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices

– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes
Lec 16.2410/25/06 Kubiatowicz CS162 ©UCB Fall 2006

How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put
process to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of
bytes successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 16.2510/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Main components of Intel Chipset: Pentium 4

• Northbridge:
– Handles memory
– Graphics

• Southbridge: I/O
– PCI bus
– Disk controllers
– USB controllers
– Audio
– Serial I/O
– Interrupt controller
– Timers

Lec 16.2610/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How does the processor actually talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that
can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:

– I/O instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL

– Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 16.2710/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers
and display memory into physical
address space

» Addresses set by hardware jumpers
or programming at boot time

– Simply writing to display memory
(also called the “frame buffer”)
changes image on screen

» Addr: 0x8000F000—0x8000FFFF
– Writing graphics description to
command-queue area

» Say enter a set of triangles that
describe some scene

» Addr: 0x80010000—0x8001FFFF
– Writing to the command register
may cause on-board graphics
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 16.2810/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Transfering Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

Lec 16.2910/25/06 Kubiatowicz CS162 ©UCB Fall 2006

A Kernel I/O Structure

Lec 16.3010/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the ioctl() system call
• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» Implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(),strategy()
» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 16.3110/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 16.3210/25/06 Kubiatowicz CS162 ©UCB Fall 2006

I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Handled in bottom half of device driver

» Often run on special kernel-level stack
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance: High-bandwidth network device:

» Interrupt for first incoming packet
» Poll for following packets until hardware empty

Lec 16.3310/25/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• Working Set:

– Set of pages touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store
to special physical memory

– Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

• Device Driver: Device-specific code in kernel

CS162
Operating Systems and
Systems Programming

Lecture 17

Disk Management and
File Systems

October 30, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 17.210/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, Cdrom

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices

– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

Lec 17.310/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put
process to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of
bytes successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 17.410/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

Review: How does the processor talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that
can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:

– I/O instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL

– Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 17.510/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Memory-Mapped Display Controller Example
• Memory-Mapped:

– Hardware maps control registers
and display memory to physical
address space

» Addresses set by hardware jumpers
or programming at boot time

– Simply writing to display memory
(also called the “frame buffer”)
changes image on screen

» Addr: 0x8000F000—0x8000FFFF
– Writing graphics description to
command-queue area

» Say enter a set of triangles that
describe some scene

» Addr: 0x80010000—0x8001FFFF
– Writing to the command register
may cause on-board graphics
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 17.610/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Transferring Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

Lec 17.710/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish Discussing I/O Systems
– Hardware Access
– Device Drivers

• Disk Performance
– Hardware performance parameters
– Queuing Theory

• File Systems
– Structure, Naming, Directories, and Caching

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 17.810/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the ioctl() system call
• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(),strategy()
» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 17.910/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 17.1010/30/06 Kubiatowicz CS162 ©UCB Fall 2006

I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Handled in bottom half of device driver

» Often run on special kernel-level stack
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance: High-bandwidth network device:

» Interrupt for first incoming packet
» Poll for following packets until hardware empty

Lec 17.1110/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 17.1210/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Hard Disk Drives

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

Lec 17.1310/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Properties of a Hard Magnetic Disk

• Properties
– Independently addressable element: sector

» OS always transfers groups of sectors together—”blocks”
– A disk can access directly any given block of information
it contains (random access). Can access any file either
sequentially or randomly.

– A disk can be rewritten in place: it is possible to
read/modify/write a block from the disk

• Typical numbers (depending on the disk size):
– 500 to more than 20,000 tracks per surface
– 32 to 800 sectors per track

» A sector is the smallest unit that can be read or written
• Zoned bit recording

– Constant bit density: more sectors on outer tracks
– Speed varies with track location

Track

Sector

Platters

Lec 17.1410/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Disk I/O Performance

Response Time = Queue+Disk Service Time

User
Thread

Queue
[OS Paths]

Controller

Disk

• Performance of disk drive/file system
– Metrics: Response Time, Throughput
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» Physical disk media

• Queuing behavior:
– Can lead to big increases of latency as utilization
approaches 100%

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 17.1510/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Magnetic Disk Characteristic
• Cylinder: all the tracks under the

head at a given point on all surface
• Read/write data is a three-stage

process:
– Seek time: position the head/arm over the proper track
(into proper cylinder)

– Rotational latency: wait for the desired sector
to rotate under the read/write head

– Transfer time: transfer a block of bits (sector)
under the read-write head

• Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

• Highest Bandwidth:
– Transfer large group of blocks sequentially from one track

Sector
Track

Cylinder
Head

Platter

Software
Queue

(Device Driver)

H
ardware

Controller

Media Time
(Seek+Rot+Xfer)

Request

Result

Lec 17.1610/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Typical Numbers of a Magnetic Disk
• Average seek time as reported by the industry:

– Typically in the range of 8 ms to 12 ms
– Due to locality of disk reference may only be 25% to 33%
of the advertised number

• Rotational Latency:
– Most disks rotate at 3,600 to 7200 RPM (Up to
15,000RPM or more)

– Approximately 16 ms to 8 ms per revolution, respectively
– An average latency to the desired information is halfway
around the disk: 8 ms at 3600 RPM, 4 ms at 7200 RPM

• Transfer Time is a function of:
– Transfer size (usually a sector): 512B – 1KB per sector
– Rotation speed: 3600 RPM to 15000 RPM
– Recording density: bits per inch on a track
– Diameter: ranges from 1 in to 5.25 in
– Typical values: 2 to 50 MB per second

• Controller time depends on controller hardware
• Cost drops by factor of two per year (since 1991)

Lec 17.1710/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Disk Performance

• Assumptions:
– Ignoring queuing and controller times for now
– Avg seek time of 5ms, avg rotational delay of 4ms
– Transfer rate of 4MByte/s, sector size of 1 KByte

• Random place on disk:
– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)
– Roughly 10ms to fetch/put data: 100 KByte/sec

• Random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.25ms)
– Roughly 5ms to fetch/put data: 200 KByte/sec

• Next sector on same track:
– Transfer (0.25ms): 4 MByte/sec

• Key to using disk effectively (esp. for filesystems)
is to minimize seek and rotational delays

Lec 17.1810/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Disk Tradeoffs

• How do manufacturers choose disk sector sizes?
– Need 100-1000 bits between each sector to allow
system to measure how fast disk is spinning and to
tolerate small (thermal) changes in track length

• What if sector was 1 byte?
– Space efficiency – only 1% of disk has useful space
– Time efficiency – each seek takes 10 ms, transfer
rate of 50 – 100 Bytes/sec

• What if sector was 1 KByte?
– Space efficiency – only 90% of disk has useful space
– Time efficiency – transfer rate of 100 KByte/sec

• What if sector was 1 MByte?
– Space efficiency – almost all of disk has useful space
– Time efficiency – transfer rate of 4 MByte/sec

Lec 17.1910/30/06 Kubiatowicz CS162 ©UCB Fall 2006

DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state
behavior ⇒ Arrival rate = Departure rate

• Little’s Law:
Mean # tasks in system = arrival rate x mean response time

– Observed by many, Little was first to prove
– Simple interpretation: you should see the same number of
tasks in queue when entering as when leaving.

• Applies to any system in equilibrium, as long as nothing
in black box is creating or destroying tasks

– Typical queuing theory doesn’t deal with transient
behavior, only steady-state behavior

Queue

Controller

Disk

Lec 17.2010/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Background: Use of random distributions

• Server spends variable time with customers
– Mean (Average) m1 = Σp(T)×T
– Variance σ2 = Σp(T)×(T-m1)2 = Σp(T)×T2-m1
– Squared coefficient of variance: C = σ2/m12

Aggregate description of the distribution.

• Important values of C:
– No variance or deterministic ⇒ C=0
– “memoryless” or exponential ⇒ C=1

» Past tells nothing about future
» Many complex systems (or aggregates)

well described as memoryless
– Disk response times C ≈ 1.5 (majority seeks < avg)

Mean
(m1)

mean

Memoryless

Distribution
of service times

σ

Lec 17.2110/30/06 Kubiatowicz CS162 ©UCB Fall 2006

A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– λ: mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = λ × Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1):

» Called M/M/1 queue: Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server:

» Called M/G/1 queue: Tq = Tser x ½(1+C) x u/(1 – u))

Arrival Rate
 λ

Queue ServerService Rate
 μ=1/Tser

Lec 17.2210/30/06 Kubiatowicz CS162 ©UCB Fall 2006

A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions:
– How utilized is the disk?

» Ans: server utilization, u = λTser
– What is the average time spent in the queue?

» Ans: Tq
– What is the number of requests in the queue?

» Ans: Lq
– What is the avg response time for disk request?

» Ans: Tsys = Tq + Tser
• Computation:

λ (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = λ x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = λ x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms

Lec 17.2310/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Disk Scheduling
• Disk can do only one request at a time; What order do

you choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be to
random spots on the disk ⇒ Very long seeks

• SSTF: Shortest seek time first
– Pick the request that’s closest on the disk
– Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

• SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel

– No starvation, but retains flavor of SSTF
• S-SCAN: Circular-Scan: only goes in one direction

– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

Lec 17.2410/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Building a File System
• File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

• User vs. System View of a File
– User’s view:

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you

want to store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)

» Block size ≥ sector size; in UNIX, block size is 4KB

Lec 17.2510/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Translating from User to System View

• What happens if user says: give me bytes 2—12?
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about: write bytes 2—12?
– Fetch block
– Modify portion
– Write out Block

• Everything inside File System is in whole size blocks
– For example, getc(), putc() ⇒ buffers something like
4096 bytes, even if interface is one byte at a time

• From now on, file is a collection of blocks

File
System

Lec 17.2610/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in
logical space

– Directory: user-visible index mapping names to files
(next lecture)

• Access disk as linear array of sectors. Two Options:
– Identify sectors as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.

– Logical Block Addressing (LBA). Every sector has integer
address from zero up to max number of sectors.

– Controller translates from address ⇒ physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

• Need way to track free disk blocks
– Link free blocks together ⇒ too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header
– Track which blocks belong at which offsets within the
logical file structure

– Optimize placement of files’ disk blocks to match access
and usage patterns

Lec 17.2710/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Designing the File System: Access Patterns
• How do users access files?

– Need to know type of access patterns user is likely to
throw at system

• Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)

– Almost all file access are of this flavor
• Random Access: read/write element out of middle of

array (“give me bytes i—j”)
– Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file

– Want this to be fast – don’t want to have to read all
bytes to get to the middle of the file

• Content-based Access: (“find me 100 bytes starting
with JOSEPH”)

– Example: employee records – once you find the bytes,
increase my salary by a factor of 2

– Many systems don’t provide this; instead, databases are
built on top of disk access to index content (requires
efficient random access)

Lec 17.2810/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Designing the File System: Usage Patterns
• Most files are small (for example, .login, .c files)

– A few files are big – nachos, core files, etc.; the nachos
executable is as big as all of your .class files combined

– However, most files are small – .class’s, .o’s, .c’s, etc.
• Large files use up most of the disk space and

bandwidth to/from disk
– May seem contradictory, but a few enormous files are
equivalent to an immense # of small files

• Although we will use these observations, beware usage
patterns:

– Good idea to look at usage patterns: beat competitors by
optimizing for frequent patterns

– Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?

• Digression, danger of predicting future:
– In 1950’s, marketing study by IBM said total worldwide
need for computers was 7!

– Company (that you haven’t heard of) called “GenRad”
invented oscilloscope; thought there was no market, so
sold patent to Tektronix (bet you have heard of them!)

Lec 17.2910/30/06 Kubiatowicz CS162 ©UCB Fall 2006

How to organize files on disk
• Goals:

– Maximize sequential performance
– Easy random access to file
– Easy management of file (growth, truncation, etc)

• First Technique: Continuous Allocation
– Use continuous range of blocks in logical block space

» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)

– Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?

– File Header Contains:
» First block/LBA in file
» File size (# of blocks)

– Pros: Fast Sequential Access, Easy Random access
– Cons: External Fragmentation/Hard to grow files

» Free holes get smaller and smaller
» Could compact space, but that would be really expensive

• Continuous Allocation used by IBM 360
– Result of allocation and management cost: People would
create a big file, put their file in the middle

Lec 17.3010/30/06 Kubiatowicz CS162 ©UCB Fall 2006

How to organize files on disk (continued)
• Second Technique: Linked List Approach

– Each block, pointer to next on disk

– Pros: Can grow files dynamically, Free list same as file
– Cons: Bad Sequential Access (seek between each block),

Unreliable (lose block, lose rest of file)
– Serious Con: Bad random access!!!!
– Technique originally from Alto (First PC, built at Xerox)

» No attempt to allocate contiguous blocks
• MSDOS used a similar linked approach

– Links not in pages, but in the File Allocation Table (FAT)
» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

– Compare with Linked List Approach:
» Sequential access costs more unless FAT cached in memory
» Random access is better if FAT cached in memory

Null

File Header

Lec 17.3110/30/06 Kubiatowicz CS162 ©UCB Fall 2006

How to Organize Files on Disk (continued)

• Third Technique: Indexed Files (Nachos, VMS)
– System Allocates file header block to hold array of
pointers big enough to point to all blocks

» User pre-declares max file size;
– Pros: Can easily grow up to space allocated for index

Random access is fast
– Cons: Clumsy to grow file bigger than table size

Still lots of seeks: blocks may be spread over disk
Lec 17.3210/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Where do we still have to go?

• Still don’t have good internal file structure
– Want to minimize seeks, maximize sequential access
– Want to be able to handle small and large files efficiently

• Don’t yet know how to name/locate files
– What is a directory?
– How do we look up files?

• Don’t yet know how to make file system fast
– Must figure out how to use caching

• Will address these issues next time….

Lec 17.3310/30/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store
to special physical memory

– Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

• Disk Performance:
– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed
and bit storage density

• Queuing Latency:
– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency → ∞

Tq = Tser x ½(1+C) x u/(1 – u))
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

CS162
Operating Systems and
Systems Programming

Lecture 18

File Systems, Naming, and Directories

November 1, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 18.211/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Magnetic Disk Characteristic
• Cylinder: all the tracks under the

head at a given point on all surface
• Read/write data is a three-stage

process:
– Seek time: position the head/arm over the proper track
(into proper cylinder)

– Rotational latency: wait for the desired sector
to rotate under the read/write head

– Transfer time: transfer a block of bits (sector)
under the read-write head

• Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

• Highest Bandwidth:
– transfer large group of blocks sequentially from one track

Sector
Track

Cylinder
Head

Platter

Software
Queue

(Device Driver)

H
ardware

Controller
Media Time

(Seek+Rot+Xfer)

Request

Result

Lec 18.311/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Building a File System
• File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

• User vs. System View of a File
– User’s view:

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
– System’s view (inside OS):

» Everything inside File System is in whole size blocks
» File is a collection of blocks (a block is a logical transfer

unit, while a sector is the physical transfer unit)
» Block size ≥ sector size; in UNIX, block size is 4KB

Lec 18.411/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in
logical space

– Directory: user-visible index mapping names to files
(next lecture)

• Access disk as linear array of sectors. Two Options:
– Identify sectors as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.

– Logical Block Addressing (LBA). Every sector has integer
address from zero up to max number of sector.

– Controller translates from address ⇒ physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

• Need way to track free disk blocks
– Link free blocks together ⇒ too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header
– Track which blocks belong at which offsets within the
logical file structure

– Optimize placement of files disk blocks to match access
and usage patterns

Lec 18.511/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: File System Patterns
• How do users access files?

– Sequential Access: bytes read in order (“give me
the next X bytes, then give me next, etc”)

– Random Access: read/write element out of middle
of array (“give me bytes i—j”)

– Content-based Access: (“find me 100 bytes
starting with JOSEPH”)

• What are file sizes?
– Most files are small (for example, .login, .c files)

»A few files are big – nachos, core files, etc.
– However, most files are small – .class’s, .o’s,
.c’s, etc.

– Large files use up most of the disk space and
bandwidth to/from disk

»May seem contradictory, but a few enormous files
are equivalent to an immense # of small files

Lec 18.611/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• File Systems
– Structure, Naming, Directories

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 18.711/1/06 Kubiatowicz CS162 ©UCB Fall 2006

How to organize files on disk
• Goals:

– Maximize sequential performance
– Easy random access to file
– Easy management of file (growth, truncation, etc)

• First Technique: Continuous Allocation
– Use continuous range of blocks in logical block space

» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)

– Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?

– File Header Contains:
» First block/LBA in file
» File size (# of blocks)

– Pros: Fast Sequential Access, Easy Random access
– Cons: External Fragmentation/Hard to grow files

» Free holes get smaller and smaller
» Could compact space, but that would be really expensive

• Continuous Allocation used by IBM 360
– Result of allocation and management cost: People would
create a big file, put their file in the middle

Lec 18.811/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Linked List Allocation
• Second Technique: Linked List Approach

– Each block, pointer to next on disk

– Pros: Can grow files dynamically, Free list same as file
– Cons: Bad Sequential Access (seek between each block),

Unreliable (lose block, lose rest of file)
– Serious Con: Bad random access!!!!
– Technique originally from Alto (First PC, built at Xerox)

» No attempt to allocate contiguous blocks

Null

File Header

Lec 18.911/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Linked Allocation: File-Allocation Table (FAT)

• MSDOS links pages together to create a file
– Links not in pages, but in the File Allocation Table (FAT)

» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

– Access properties:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not cached in memory
Lec 18.1011/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Indexed Allocation

• Third Technique: Indexed Files (Nachos, VMS)
– System Allocates file header block to hold array of
pointers big enough to point to all blocks

» User pre-declares max file size;
– Pros: Can easily grow up to space allocated for index

Random access is fast
– Cons: Clumsy to grow file bigger than table size

Still lots of seeks: blocks may be spread over disk

Lec 18.1111/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Multilevel Indexed Files (UNIX 4.1)
• Multilevel Indexed Files:

Like multilevel address
translation
(from UNIX 4.1 BSD)

– Key idea: efficient for small
files, but still allow big files

• File hdr contains 13 pointers
– Fixed size table, pointers not all equivalent
– This header is called an “inode” in UNIX

• File Header format:
– First 10 pointers are to data blocks
– Ptr 11 points to “indirect block” containing 256 block ptrs
– Pointer 12 points to “doubly indirect block” containing 256
indirect block ptrs for total of 64K blocks

– Pointer 13 points to a triply indirect block (16M blocks)
Lec 18.1211/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Multilevel Indexed Files (UNIX 4.1): Discussion

• Basic technique places an upper limit on file size
that is approximately 16Gbytes

– Designers thought this was bigger than anything
anyone would need. Much bigger than a disk at
the time…

– Fallacy: today, EOS producing 2TB of data per
day

• Pointers get filled in dynamically: need to
allocate indirect block only when file grows > 10
blocks

– On small files, no indirection needed

Lec 18.1311/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Example of Multilevel Indexed Files
• Sample file in multilevel

indexed format:
– How many accesses for
block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,

indirect block, and data
• UNIX 4.1 Pros and cons

– Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect block (four
I/Os per block!)

Lec 18.1411/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 18.1511/1/06 Kubiatowicz CS162 ©UCB Fall 2006

File Allocation for Cray-1 DEMOS

• DEMOS: File system structure similar to segmentation
– Idea: reduce disk seeks by

» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation

– Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)

• Header: table of base & size (10 “block group” pointers)
– Each block chunk is a contiguous group of disk blocks
– Sequential reads within a block chunk can proceed at high
speed – similar to continuous allocation

• How do you find an available block group?
– Use freelist bitmap to find block of 0’s.

basesize

file header

1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk group

Basic Segmentation Structure:
Each segment contiguous on disk

Lec 18.1611/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Large File Version of DEMOS

• What if need much bigger files?
– If need more than 10 groups, set flag in header: BIGFILE

» Each table entry now points to an indirect block group
– Suppose 1000 blocks in a block group ⇒ 80GB max file

» Assuming 8KB blocks, 8byte entries⇒
(10 ptrs×1024 groups/ptr×1000 blocks/group)*8K =80GB

• Discussion of DEMOS scheme
– Pros: Fast sequential access, Free areas merge simply

Easy to find free block groups (when disk not full)
– Cons: Disk full ⇒ No long runs of blocks (fragmentation),

so high overhead allocation/access
– Full disk ⇒ worst of 4.1BSD (lots of seeks) with worst of
continuous allocation (lots of recompaction needed)

file header

base size 1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk groupbase size

indirect
block group

Lec 18.1711/1/06 Kubiatowicz CS162 ©UCB Fall 2006

How to keep DEMOS performing well?
• In many systems, disks are always full

– CS department growth: 300 GB to 1TB in a year
» That’s 2GB/day! (Now at 3—4 TB!)

– How to fix? Announce that disk space is getting low, so
please delete files?

» Don’t really work: people try to store their data faster
– Sidebar: Perhaps we are getting out of this mode with
new disks… However, let’s assume disks full for now

• Solution:
– Don’t let disks get completely full: reserve portion

» Free count = # blocks free in bitmap
» Scheme: Don’t allocate data if count < reserve

– How much reserve do you need?
» In practice, 10% seems like enough

– Tradeoff: pay for more disk, get contiguous allocation
» Since seeks so expensive for performance, this is a very

good tradeoff
Lec 18.1811/1/06 Kubiatowicz CS162 ©UCB Fall 2006

UNIX BSD 4.2
• Same as BSD 4.1 (same file header and triply indirect

blocks), except incorporated ideas from DEMOS:
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned next slide)

• Problem: When create a file, don’t know how big it
will become (in UNIX, most writes are by appending)

– How much contiguous space do you allocate for a file?
– In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc

– In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in

bitmap, then choose new range of blocks
– Also in BSD 4.2: store files from same directory near
each other

Lec 18.1911/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a

track: give time for processing to overlap rotation
– Solution2: Read ahead: read next block right after first,
even if application hasn’t asked for it yet.

» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have

internal RAM that allows them to read a complete track
• Important Aside: Modern disks+controllers do many

complex things “under the covers”
– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Lec 18.2011/1/06 Kubiatowicz CS162 ©UCB Fall 2006

How do we actually access files?
• All information about a file contained in its file header

– UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber”)

– Once you load the header structure, all the other blocks
of the file are locatable

• Question: how does the user ask for a particular file?
– One option: user specifies an inode by a number (index).

» Imagine: open(“14553344”)
– Better option: specify by textual name

» Have to map name→inumber
– Another option: Icon

» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.

• Naming: The process by which a system translates from
user-visible names to system resources

– In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes

– For global file systems, data may be spread over
globe⇒need to translate from strings or icons to some
combination of physical server location and inumber

Lec 18.2111/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Directories
• Directory: a relation used for naming

– Just a table of (file name, inumber) pairs

• How are directories constructed?
– Directories often stored in files

» Reuse of existing mechanism
» Directory named by inode/inumber like other files

– Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

• How are directories modified?
– Originally, direct read/write of special file
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

Lec 18.2211/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Directory Organization

• Directories organized into a hierarchical structure
– Seems standard, but in early 70’s it wasn’t
– Permits much easier organization of data structures

• Entries in directory can be either files or
directories

• Files named by ordered set (e.g., /programs/p/list)

Lec 18.2311/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Directory Structure

• Not really a hierarchy!
– Many systems allow directory structure to be organized
as an acyclic graph or even a (potentially) cyclic graph

– Hard Links: different names for the same file
» Multiple directory entries point at the same file

– Soft Links: “shortcut” pointers to other files
» Implemented by storing the logical name of actual file

• Name Resolution: The process of converting a logical
name into a physical resource (like a file)

– Traverse succession of directories until reach target file
– Global file system: May be spread across the network

Lec 18.2411/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Directory Structure (Con’t)
• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed spot on disk)
– Read in first data bock for root

» Table of file name/index pairs. Search linearly – ok since
directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names

– Allows user to specify relative filename instead of
absolute path (say CWD=“/my/book” can resolve “count”)

Lec 18.2511/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders

– Header not stored anywhere near the data blocks.
To read a small file, seek to get header, see
back to data.

– Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 18.2611/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Where are inodes stored?

• Later versions of UNIX moved the header
information to be closer to the data blocks

– Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an ls
of that directory run fast).

– Pros:
» Reliability: whatever happens to the disk, you can

find all of the files (even if directories might be
disconnected)

» UNIX BSD 4.2 puts a portion of the file header
array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder⇒no
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

Lec 18.2711/1/06 Kubiatowicz CS162 ©UCB Fall 2006

Summary
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header
– Called “inode” with index called “inumber”

• Multilevel Indexed Scheme
– Inode contains file info, direct pointers to blocks,
– indirect blocks, doubly indirect, etc..

• DEMOS:
– CRAY-1 scheme like segmentation
– Emphsized contiguous allocation of blocks, but allowed to
use non-contiguous allocation when necessary

• Naming: the process of turning user-visible names into
resources (such as files)

CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems continued
Distributed Systems

November 6, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 19.211/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Disk Scheduling
• Disk can do only one request at a time; What order do

you choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be to
random spots on the disk ⇒ Very long seeks

• SSTF: Shortest seek time first
– Pick the request that’s closest on the disk
– Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

• SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel

– No starvation, but retains flavor of SSTF
• C-SCAN: Circular-Scan: only goes in one direction

– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

Lec 19.311/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Access and Usage Patterns
• Access Pattern

– Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)

» Almost all file access are of this flavor
– Random Access: read/write element out of middle of
array (“give me bytes i—j”)

» Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file

» Want this to be fast – don’t want to have to read all bytes
to get to the middle of the file

• Usage Pattern
– Most files are small (for example, .login, .c files)

» A few files are big – nachos, core files, etc.
» However, most files are small – .class’s, .o’s, .c’s, etc.

– Large files use up most of the disk space and bandwidth
to/from disk

» May seem contradictory, but a few enormous files are
equivalent to an immense # of small files

Lec 19.411/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Building File Systems
• File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

• Need way to structure files: File Header
– Track which blocks belong at which offsets within the
logical file structure

– Optimize placement of files disk blocks to match access
and usage patterns

• File System Design Goals:
– Maximize sequential performance
– Easy random access to file
– Easy management of file (growth, truncation, etc)

Lec 19.511/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Multilevel Indexed Files (UNIX 4.1)
• Multilevel Indexed Files:

Like multilevel address
translation
(from UNIX 4.1 BSD)

– Key idea: efficient for small
files, but still allow big files

• File hdr contains 13 pointers
– Fixed size table, pointers not all equivalent
– This header is called an “inode” in UNIX

• File Header format:
– First 10 pointers are to data blocks
– Ptr 11 points to “indirect block” containing 256 block ptrs
– Pointer 12 points to “doubly indirect block” containing 256
indirect block ptrs for total of 64K blocks

– Pointer 13 points to a triply indirect block (16M blocks)
Lec 19.611/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: File Allocation for Cray-1 DEMOS

• DEMOS: File system structure similar to segmentation
– Idea: reduce disk seeks by

» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation

• Header: table of base & size (10 “block group” pointers)
– Each block chunk is a contiguous group of disk blocks
– Sequential reads within a block chunk can proceed at high
speed – similar to continuous allocation

• What if need much bigger files?
– If need more than 10 groups, set flag in header: BIGFILE

» Each table entry now points to an indirect block group

basesize

file header

1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk group

file header

base size 1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk groupbase size

indirect
block group

Lec 19.711/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: UNIX BSD 4.2

• Same as BSD 4.2 (same file header and triply
indirect blocks), except incorporated ideas from
DEMOS:

– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning

Lec 19.811/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Finish Discussion of File Systems
– Structure, Naming, Directories

• File Caching
• Data Durability
• Beginning of Distributed Systems Discussion

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 19.911/06/06 Kubiatowicz CS162 ©UCB Fall 2006

How do we actually access files?
• All information about a file contained in its file header

– UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber”)

– Once you load the header structure, all the other blocks
of the file are locatable

• Question: how does the user ask for a particular file?
– One option: user specifies an inode by a number (index).

» Imagine: open(“14553344”)
– Better option: specify by textual name

» Have to map name→inumber
– Another option: Icon

» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.

• Naming: The process by which a system translates from
user-visible names to system resources

– In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes

– For global file systems, data may be spread over
globe⇒need to translate from strings or icons to some
combination of physical server location and inumber

Lec 19.1011/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Directories
• Directory: a relation used for naming

– Just a table of (file name, inumber) pairs

• How are directories constructed?
– Directories often stored in files

» Reuse of existing mechanism
» Directory named by inode/inumber like other files

– Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

• How are directories modified?
– Originally, direct read/write of special file
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

Lec 19.1111/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Directory Organization

• Directories organized into a hierarchical structure
– Seems standard, but in early 70’s it wasn’t
– Permits much easier organization of data structures

• Entries in directory can be either files or
directories

• Files named by ordered set (e.g., /programs/p/list)

Lec 19.1211/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Directory Structure

• Not really a hierarchy!
– Many systems allow directory structure to be organized
as an acyclic graph or even a (potentially) cyclic graph

– Hard Links: different names for the same file
» Multiple directory entries point at the same file

– Soft Links: “shortcut” pointers to other files
» Implemented by storing the logical name of actual file

• Name Resolution: The process of converting a logical
name into a physical resource (like a file)

– Traverse succession of directories until reach target file
– Global file system: May be spread across the network

Lec 19.1311/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Directory Structure (Con’t)
• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed spot on disk)
– Read in first data bock for root

» Table of file name/index pairs. Search linearly – ok since
directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names

– Allows user to specify relative filename instead of
absolute path (say CWD=“/my/book” can resolve “count”)

Lec 19.1411/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 19.1511/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders

– Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

– Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 19.1611/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Where are inodes stored?

• Later versions of UNIX moved the header
information to be closer to the data blocks

– Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an ls
of that directory run fast).

– Pros:
» UNIX BSD 4.2 puts a portion of the file header

array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder⇒no
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)

Lec 19.1711/06/06 Kubiatowicz CS162 ©UCB Fall 2006

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Structures

Lec 19.1811/06/06 Kubiatowicz CS162 ©UCB Fall 2006

File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from paths→inodes
– Disk blocks: Mapping from block address→disk content

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)
• Replacement policy? LRU

– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to

accommodate a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system,
thereby flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

Lec 19.1911/06/06 Kubiatowicz CS162 ©UCB Fall 2006

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate

to the buffer cache vs virtual memory?
– Too much memory to the file system cache ⇒ won’t be
able to run many applications at once

– Too little memory to file system cache ⇒ many
applications may run slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early
– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests
Lec 19.2011/06/06 Kubiatowicz CS162 ©UCB Fall 2006

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent

out to disk
– Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other application tries to read data before
written to disk, file system will read from cache

– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value

for a file
» Some files need never get written to disk! (e..g temporary

scratch files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file

has been written out? (lose pointer to inode!)

Lec 19.2111/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Important “ilities”
• Availability: the probability that the system can

accept and process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)

– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk
crashes, other problems

Lec 19.2211/06/06 Kubiatowicz CS162 ©UCB Fall 2006

How to make file system durable?
• Disk blocks contain Reed-Solomon error correcting

codes (ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is

struck by lightning….
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may
not even know that there is more than one disk in use

Lec 19.2311/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Hardware RAID: Subsystem Organization

CPU array
controller

single board
disk

controller

single board
disk

controller

single board
disk

controller

single board
disk

controller

host
adapter

manages interface
to host, DMA

control, buffering,
parity logic

physical device
control

often piggy-backed
in small format devices

• Some systems duplicate
all hardware, namely
controllers, busses, etc.

Lec 19.2411/06/06 Kubiatowicz CS162 ©UCB Fall 2006

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow“
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)

• Reads may be optimized
– Can have two independent reads to same data

• Recovery:
– Disk failure ⇒ replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be
used for immediate replacement

recovery
group

Lec 19.2511/06/06 Kubiatowicz CS162 ©UCB Fall 2006

• Data stripped across
multiple disks

– Successive blocks
stored on successive
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green)
constructed by XORing
data bocks in stripe

– P0=D0⊕D1⊕D2⊕D3
– Can destroy any one
disk and still
reconstruct data

– Suppose D3 fails,
then can reconstruct:
D3=D0⊕D1⊕D2⊕P0

• Later in term: talk about spreading information widely
across internet for durability.

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk

Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 19.2611/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Remote File Systems: Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

Lec 19.2711/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: remote procedure calls (RPC) for file
operations on server

– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• NFS servers are stateless; each request provides all
arguments require for execution

• Modified data must be committed to the server’s disk
before results are returned to the client

– lose some of the advantages of caching
– Can lead to weird results: write file on one client, read
on other, get old data

Lec 19.2811/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Schematic View of NFS Architecture

Lec 19.2911/06/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• Cray DEMOS: optimization for sequential access

– Inode holds set of disk ranges, similar to segmentation
• 4.2 BSD Multilevel index files

– Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc

– Optimizations for sequential access: start new files in
open ranges of free blocks

– Rotational Optimization
• Naming: act of translating from user-visible names to

actual system resources
– Directories used for naming for local file systems

• Important system properties
– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• VFS: Virtual File System layer
– NFS: An example use of the VFS layer

CS162
Operating Systems and
Systems Programming

Lecture 20

Distributed Systems

November 8, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 20.211/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Important “ilities”
• Availability: the probability that the system can

accept and process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)

– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk
crashes, other problems

Lec 20.311/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: RAID 1 – Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow“
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)

• Reads may be optimized
– Can have two independent reads to same data

• Recovery:
– Disk failure ⇒ replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be
used for immediate replacement

recovery
group

Lec 20.411/08/06 Kubiatowicz CS162 ©UCB Fall 2006

• Data stripped across
multiple disks

– Successive blocks
stored on successive
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green)
constructed by XORing
data bocks in stripe

– P0=D0⊕D1⊕D2⊕D3
– Can destroy any one
disk and still
reconstruct data

– Suppose D3 fails,
then can reconstruct:
D3=D0⊕D1⊕D2⊕P0

• Later in term: talk about spreading information widely
across internet for durability.

Review: RAID 5+ – High I/O Rate Parity

Increasing
Logical
Disk

Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 20.511/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Why Redundancy is Important?

• From: ___@berkeley.edu
Date: April 4, 2006
Subject: Why people should also backup their hard drives...

Hi Professor Joseph,
Remember in class today how you were talking about backing up

your harddrive? I'm the kind of person that usually never does that.
I figured that my files aren't worth that much. Well, it turns out
life put that to the test today. When I got back from lecture, I
found out that my apartment had been broken into and my MacBook
Pro laptop (that I had just got les than a month ago) had been stolen
among other things (including my digital camera and PocketPC). my
roommate and I (both in your 162 class) had to cancel our design doc
meeting to meet with police, but hopefully we'll find more time
during the rest of the week. But thankfully, for some reason, I had
backed up all my documents and music during break onto a DVD which
I still have.

Morale of the story? backing up your data protects against more
than just earthquakes and disk crashes.

Lec 20.611/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: remote procedure calls (RPC) for file
operations on server

– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• NFS servers are stateless; each request provides all
arguments require for execution

• Modified data must be committed to the server’s disk
before results are returned to the client

– lose some of the advantages of caching
– Can lead to weird results: write file on one client, read
on other, get old data

Lec 20.711/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Schematic View of NFS Architecture

Lec 20.811/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Authorization
• Distributed Systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 20.911/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Authorization: Who Can Do What?

• How do we decide who is
authorized to do actions in the
system?

• Access Control Matrix: contains
all permissions in the system

– Resources across top
» Files, Devices, etc…

– Domains in columns
» A domain might be a user or a

group of permissions
» E.g. above: User D3 can read F2 or execute F3

– In practice, table would be huge and sparse!

Lec 20.1011/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Authorization: Two Implemention Choices

• Access Control Lists: store permissions with each object
– Still might be lots of users!
– UNIX limits each file to: r,w,x for owner, group, world
– More recent systems allow definition of groups of users and

permissions for each group
– ACLs allow easy changing of an object’s permissions

» Example: add Users C, D, and F with rw permissions
• Capability List: each process tracks objects has permission to

touch
– Popular in the past, idea out of favor today
– Consider page table: Each process has list of pages it has

access to, not each page has list of processes …
– Capability lists allow easy changing of a domain’s permissions

» Example: you are promoted to system administrator and should be
given access to all system files

Lec 20.1111/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Authorization: Combination Approach

• Objects have ACLs
• Users have capabilities, called “groups” or “roles”
• ACLs can refer to users or groups
• Change permissions on an object by modifying its

ACL
• Change broad user permissions via changes in

group membership

Lec 20.1211/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Authorization: How to Revoke?

• How does one revoke someone’s access rights to
a particular object?

– Easy with ACLs: just remove entry from the list
– Takes effect immediately since the ACL is checked
on each object access

• Harder to do with capabilities since they aren’t
stored with the object being controlled:

– Not so bad in a single machine: could keep all
capability lists in a well-known place (e.g., the OS
capability table).

– Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

Lec 20.1311/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Revoking Capabilities

• Various approaches possible:
• Put expiration dates on capabilities and force

reacquisition
• Put epoch numbers on capabilities and revoke all

capabilities by bumping the epoch number (which
gets checked on each access attempt)

• Maintain back pointers to all capabilities that
have been handed out (Tough if capabilities can
be copied)

• Maintain a revocation list that gets checked on
every access attempt

Lec 20.1411/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 20.1511/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Centralized vs Distributed Systems

• Centralized System: System in which major functions
are performed by a single physical computer

– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers
working together on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Lec 20.1611/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Systems: Motivation/Issues
• Why do we want distributed systems?

– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

• Reality has been disappointing
– Worse availability: depend on every machine being up

» Lamport: “a distributed system is one where I can’t do work
because some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information
(using only a network)

– What would be easy in a centralized system becomes a lot
more difficult

Lec 20.1711/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its

complexity behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by spliting
them into smaller pieces

– Fault Tolerance: System may hide varoius things that go
wrong in the system

• Transparency and collaboration require some way for
different processors to communicate with one another

Lec 20.1811/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Networking Definitions

• Network: physical connection that allows two computers
to communicate

• Packet: unit of transfer, sequence of bits carried over
the network

– Network carries packets from one CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how
information is to be transmitted

Lec 20.1911/08/06 Kubiatowicz CS162 ©UCB Fall 2006

• Broadcast Network: Shared Communication Medium

– Shared Medium can be a set of wires
» Inside a computer, this is called a bus
» All devices simultaneously connected to devices

– Originally, Ethernet was a broadcast network
» All computers on local subnet connected to one another

– More examples (wireless: medium is air): cellular phones,
GSM GPRS, EDGE, CDMA 1xRTT, and 1EvDO

Broadcast Networks

MemoryProcessor
I/O

Device
I/O

Device
I/O

Device

Internet

Lec 20.2011/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Broadcast Networks Details

• Delivery: When you broadcast a packet, how does a
receiver know who it is for? (packet goes to everyone!)

– Put header on front of packet: [Destination | Packet]
– Everyone gets packet, discards if not the target
– In Ethernet, this check is done in hardware

» No OS interrupt if not for particular destination
– This is layering: we’re going to build complex network
protocols by layering on top of the packet

Header
(Dest:2)

Body
(Data)

Message
ID:1

(ignore)

ID:2
(receive)

ID:4
(ignore)

ID:3
(sender)

Lec 20.2111/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Broadcast Network Arbitration
• Arbitration: Act of negotiating use of shared medium

– What if two senders try to broadcast at same time?
– Concurrent activity but can’t use shared memory to
coordinate!

• Aloha network (70’s): packet radio within Hawaii
– Blind broadcast, with checksum at end of
packet. If received correctly (not garbled),
send back an acknowledgement. If not
received correctly, discard.

» Need checksum anyway – in case airplane
flies overhead

– Sender waits for a while, and if doesn’t
get an acknowledgement, re-transmits.

– If two senders try to send at same time, both get
garbled, both simply re-send later.

– Problem: Stability: what if load increases?
» More collisions ⇒ less gets through ⇒more resent ⇒ more

load… ⇒ More collisions…
» Unfortunately: some sender may have started in clear, get

scrambled without finishing
Lec 20.2211/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Carrier Sense, Multiple Access/Collision Detection
• Ethernet (early 80’s): first practical local area network

– It is the most common LAN for UNIX, PC, and Mac
– Use wire instead of radio, but still broadcast medium

• Key advance was in arbitration called CSMA/CD:
Carrier sense, multiple access/collision detection

– Carrier Sense: don’t send unless idle
» Don’t mess up communications already in process

– Collision Detect: sender checks if packet trampled.
» If so, abort, wait, and retry.

– Backoff Scheme: Choose wait time before trying again
• How long to wait after trying to send and failing?

– What if everyone waits the same length of time? Then,
they all collide again at some time!

– Must find way to break up shared behavior with nothing
more than shared communication channel

• Adaptive randomized waiting strategy:
– Adaptive and Random: First time, pick random wait time
with some initial mean. If collide again, pick random value
from bigger mean wait time. Etc.

– Randomness is important to decouple colliding senders
– Scheme figures out how many people are trying to send!

Lec 20.2311/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Point-to-point networks

• Why have a shared bus at all? Why not simplify and
only have point-to-point links + routers/switches?

– Didn’t used to be cost-effective
– Now, easy to make high-speed switches and routers that
can forward packets from a sender to a receiver.

• Point-to-point network: a network in which every
physical wire is connected to only two computers

• Switch: a bridge that transforms a shared-bus
configuration into a point-to-point network.

• Router: a device that acts as a junction between two
networks to transfer data packets among them.

Router

Internet

Switch

Lec 20.2411/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Point-to-Point Networks Discussion
• Advantages:

– Higher link performance
» Can drive point-to-point link faster than broadcast link

since less capacitance/less echoes (from impedance
mismatches)

– Greater aggregate bandwidth than broadcast link
» Can have multiple senders at once

– Can add capacity incrementally
» Add more links/switches to get more capacity

– Better fault tolerance (as in the Internet)
– Lower Latency

» No arbitration to send, although need buffer in the switch
• Disadvantages:

– More expensive than having everyone share broadcast link
– However, technology costs now much cheaper

• Examples
– ATM (asynchronous transfer mode)

» The first commercial point-to-point LAN
» Inspiration taken from telephone network

– Switched Ethernet
» Same packet format and signaling as broadcast Ethernet,

but only two machines on each ethernet.

Lec 20.2511/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Point-to-Point Network design

• Switches look like computers: inputs, memory, outputs
– In fact probably contains a processor

• Function of switch is to forward packet to output that
gets it closer to destination

• Can build big crossbar by combining smaller switches

Queue

Queue

Queue

Queue

Queue

Queue

Queue

Queue

Crossbar

Control
(processor)

Inputs Outputs

Switch
1

Switch
2

Switch
3

Lec 20.2611/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Flow control options

• What if everyone sends to the same output?
– Congestion—packets don’t flow at full rate

• In general, what if buffers fill up?
– Need flow control policy

• Option 1: no flow control. Packets get dropped if
they arrive and there’s no space

– If someone sends a lot, they are given buffers and
packets from other senders are dropped

– Internet actually works this way
• Option 2: Flow control between switches

– When buffer fills, stop inflow of packets
– Problem: what if path from source to destination is
completely unused, but goes through some switch that
has buffers filled up with unrelated traffic?

A,B
B,C,D
A

C
D

Lec 20.2711/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Flow Control (con’t)
• Option 3: Per-flow flow control.

– Allocate a separate set of buffers to each end-to-
end stream and use separate “don’t send me more”
control on each end-to-end stream

• Problem: fairness
– Throughput of each stream is entirely dependent on
topology, and relationship to bottleneck

• Automobile Analogy
– At traffic jam, one strategy is merge closest to the
bottleneck

» Why people get off at one exit, drive 500 feet, merge
back into flow

» Ends up slowing everybody else a huge amount
– Also why have control lights at on-ramps

» Try to keep from injecting more cars than capacity of
road (and thus avoid congestion)

aaaa
bbbb cccc

ababab
dddd

acbcac dadcdbdc

Lec 20.2811/08/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• RAID: Redundant Arrays of Inexpensive Disks

– RAID1: mirroring, RAID5: Parity block
• Important system properties

– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• Authorization
– Controlling access to resources using

» Access Control Lists
» Capabilities

• Network: physical connection that allows two
computers to communicate

– Packet: unit of transfer, sequence of bits carried over
the network

CS162
Operating Systems and
Systems Programming

Lecture 21

Networking

November 13, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 21.211/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Networking Definitions
• Network: physical connection that allows two computers

to communicate
• Packet: unit of transfer, bits carried over the network

– Network carries packets from on CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how
information is to be transmitted

• Broadcast Network: Shared Communication Medium
• Delivery: How does a receiver know who packet is for?

– Put header on front of packet: [Destination | Packet]
– Everyone gets packet, discards if not the target

• Arbitration: Act of negotiating use of shared medium
• Point-to-point network: a network in which every

physical wire is connected to only two computers
• Switch: a bridge that transforms a shared-bus

(broadcast) configuration into a point-to-point network
• Router: a device that acts as a junction between two

networks to transfer data packets among them

Lec 21.311/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Ethernet
• Ethernet (early 80’s): first practical local area network

– It is the most common LAN for UNIX, PC, and Mac
– Use wire instead of radio, but still broadcast medium

• Key advance was in arbitration called CSMA/CD:
Carrier sense, multiple access/collision detection

– Carrier Sense: don’t send unless idle
» Don’t mess up communications already in process

– Collision Detect: sender checks if packet trampled.
» If so, abort, wait, and retry.

– Backoff Scheme: Choose wait time before trying again
• Adaptive randomized waiting strategy:

– Adaptive and Random: First time, pick random wait time
with some initial mean. If collide again, pick random value
from bigger mean wait time. Etc.

– Randomness is important to decouple colliding senders
– Scheme figures out how many people are trying to send!

Lec 21.411/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Point-to-Point Network design

• Switches look like computers: inputs, memory, outputs
– In fact probably contains a processor

• Function of switch is to forward packet to output that
gets it closer to destination

• Can build big crossbar by combining smaller switches

• Can perform broadcast if necessary

Queue

Queue

Queue

Queue

Queue

Queue

Queue

Queue

Crossbar

Control
(processor)

Inputs Outputs

Switch
1

Switch
2

Switch
3

Lec 21.511/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Networking
– Network Protocols

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 21.611/13/06 Kubiatowicz CS162 ©UCB Fall 2006

The Internet Protocol: “IP”
• The Internet is a large network of computers spread

across the globe
– According to the Internet Systems Consortium, there
were over 353 million computers as of July 2005

– In principle, every host can speak with every other one
under the right circumstances

• IP Packet: a network packet on the internet
• IP Address: a 32-bit integer used as the destination

of an IP packet
– Often written as four dot-separated integers, with each
integer from 0—255 (thus representing 8x4=32 bits)

– Example CS file server is: 169.229.60.83 ≡ 0xA9E53C53
• Internet Host: a computer connected to the Internet

– Host has one or more IP addresses used for routing
» Some of these may be private and unavailable for routing

– Not every computer has a unique IP address
» Groups of machines may share a single IP address
» In this case, machines have private addresses behind a

“Network Address Translation” (NAT) gateway

Lec 21.711/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Address Subnets
• Subnet: A network connecting a set of hosts with

related destination addresses

• With IP, all the addresses in subnet are related by a
prefix of bits

– Mask: The number of matching prefix bits
» Expressed as a single value (e.g., 24) or a set of ones in a

32-bit value (e.g., 255.255.255.0)

• A subnet is identified by 32-bit value, with the bits
which differ set to zero, followed by a slash and a
mask

– Example: 128.32.131.0/24 designates a subnet in which
all the addresses look like 128.32.131.XX

– Same subnet: 128.32.131.0/255.255.255.0

• Difference between subnet and complete network range
– Subnet is always a subset of address range
– Once, subnet meant single physical broadcast wire; now,
less clear exactly what it means (virtualized by switches)

Lec 21.811/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Address Ranges in IP

• IP address space divided into prefix-delimited ranges:
– Class A: NN.0.0.0/8

» NN is 1–126 (126 of these networks)
» 16,777,214 IP addresses per network
» 10.xx.yy.zz is private

– Class B: NN.MM.0.0/16
» NN is 128–191 (16,384 of these networks)
» 65,534 IP addresses per network
» 172.[16-31].xx.yy are private

– Class C: NN.MM.LL.0/24
» NN is 192–223 (2,097,151 of these networks)
» 254 IP addresses per networks
» 192.168.xx.yy are private

• Address ranges are often owned by organizations
– Can be further divided into subnets

Lec 21.911/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Hierarchical Networking: The Internet
• How can we build a network with millions of hosts?

– Hierarchy! Not every host connected to every other one
– Use a network of Routers to connect subnets together

» Routing is often by prefix: e.g. first router matches first
8 bits of address, next router matches more, etc.

subnet1

subnet2

Router

Other
subnets

Router

Router

Transcontinental
Link

subnet3Other
subnets

Lec 21.1011/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple Network Terminology
• Local-Area Network (LAN) – designed to cover small

geographical area
– Multi-access bus, ring, or star network
– Speed ≈ 10 – 1000 Megabits/second
– Broadcast is fast and cheap
– In small organization, a LAN could consist of a single
subnet. In large organizations (like UC Berkeley), a LAN
contains many subnets

• Wide-Area Network (WAN) – links geographically
separated sites

– Point-to-point connections over long-haul lines (often
leased from a phone company)

– Speed ≈ 1.544 – 45 Megabits/second
– Broadcast usually requires multiple messages

Lec 21.1111/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Routing
• Routing: the process of forwarding packets hop-by-hop

through routers to reach their destination
– Need more than just a destination address!

» Need a path
– Post Office Analogy:

» Destination address on each letter is not
sufficient to get it to the destination

» To get a letter from here to Florida, must route to local
post office, sorted and sent on plane to somewhere in
Florida, be routed to post office, sorted and sent with
carrier who knows where street and house is…

• Internet routing mechanism: routing tables
– Each router does table lookup to decide which link to use
to get packet closer to destination

– Don’t need 4 billion entries in table: routing is by subnet
– Could packets be sent in a loop? Yes, if tables incorrect

• Routing table contains:
– Destination address range → output link closer to
destination

– Default entry (for subnets without explicit entries)
Lec 21.1211/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Setting up Routing Tables
• How do you set up routing tables?

– Internet has no centralized state!
» No single machine knows entire topology
» Topology constantly changing (faults, reconfiguration, etc)

– Need dynamic algorithm that acquires routing tables
» Ideally, have one entry per subnet or portion of address
» Could have “default” routes that send packets for unknown

subnets to a different router that has more information
• Possible algorithm for acquiring routing table

– Routing table has “cost” for each entry
» Includes number of hops to destination, congestion, etc.
» Entries for unknown subnets have infinite cost

– Neighbors periodically exchange routing tables
» If neighbor knows cheaper route to a subnet, replace your

entry with neighbors entry (+1 for hop to neighbor)
• In reality:

– Internet has networks of many different scales
– Different algorithms run at different scales

Lec 21.1311/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 21.1411/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Network Protocols
• Protocol: Agreement between two parties as to how

information is to be transmitted
– Example: system calls are the protocol between the
operating system and application

– Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how

are 0 and 1 represented)
» Link level: packet formats/error control (for instance, the

CSMA/CD protocol)
» Network level: network routing, addressing
» Transport Level: reliable message delivery

• Protocols on today’s Internet:

Ethernet ATM Packet radio

IP
UDP TCP

RPC
NFS WWW e-mail ssh

Physical/Link

Network

Transport

Lec 21.1511/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Network Layering
• Layering: building complex services from simpler ones

– Each layer provides services needed by higher layers by
utilizing services provided by lower layers

• The physical/link layer is pretty limited
– Packets are of limited size (called the “Maximum Transfer
Unit or MTU: often 200-1500 bytes in size)

– Routing is limited to within a physical link (wire) or perhaps
through a switch

• Our goal in the following is to show how to construct a
secure, ordered, message service routed to anywhere:

SecureInsecure
SynchronousAsynchronous

Routed anywhereOnly on local area net
Process-to-processMachine-to-machine

ReliableUnreliable
OrderedUnordered (sometimes)

Arbitrary SizeLimited Size

Abstraction: MessagesPhysical Reality: Packets

Lec 21.1611/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Building a messaging service
• Handling Arbitrary Sized Messages:

– Must deal with limited physical packet size
– Split big message into smaller ones (called fragments)

» Must be reassembled at destination
– Checksum computed on each fragment or whole message

• Internet Protocol (IP): Must find way to send packets
to arbitrary destination in network

– Deliver messages unreliably (“best effort”) from one
machine in Internet to another

– Since intermediate links may have limited size, must be
able to fragment/reassemble packets on demand

– Includes 256 different “sub-protocols” build on top of IP
» Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)

Lec 21.1711/13/06 Kubiatowicz CS162 ©UCB Fall 2006

IP Packet Format
• IP Packet Format:

16-bit identification
ToS4

13-bit frag off
Total length(16-bits)

protocolTTL 16-bit header checksum
32-bit source IP address

32-bit destination IP address

IHL
flags

options (if any)

Data

0 15 16 31
IP Ver4

IP Header
Length

Size of datagram
(header+data)

Flags &
Fragmentation
to split large

messages

Time to
Live (hops)

Type of
transport
protocol

IP header
20 bytes

Lec 21.1811/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Building a messaging service
• Process to process communication

– Basic routing gets packets from machine→machine
– What we really want is routing from process→process

» Example: ssh, email, ftp, web browsing
– Several IP protocols include notion of a “port”, which is a
16-bit identifiers used in addition to IP addresses

» A communication channel (connection) defined by 5 items:
[source address, source port, dest address, dest port,
protocol]

• UDP: The User Datagram Protocol
– UDP layered on top of basic IP (IP Protocol 17)

» Unreliable, unordered, user-to-user communication

UDP Data

16-bit UDP length 16-bit UDP checksum
16-bit source port 16-bit destination port

IP Header
(20 bytes)

Lec 21.1911/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Building a messaging service (con’t)
• UDP: The Unreliable Datagram Protocol

– Datagram: an unreliable, unordered, packet sent from
source user → dest user (Call it UDP/IP)

– Important aspect: low overhead!
» Often used for high-bandwidth video streams
» Many uses of UDP considered “anti-social” – none of the

“well-behaved” aspects of (say) TCP/IP
• But we need ordered messages

– Create ordered messages on top of unordered ones
» IP can reorder packets! P0,P1 might arrive as P1,P0

– How to fix this? Assign sequence numbers to packets
» 0,1,2,3,4…..
» If packets arrive out of order, reorder before delivering to

user application
» For instance, hold onto #3 until #2 arrives, etc.

– Sequence numbers are specific to particular connection

Lec 21.2011/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Performance Considerations
• Before continue, need some performance metrics

– Overhead: CPU time to put packet on wire
– Throughput: Maximum number of bytes per second

» Depends on “wire speed”, but also limited by slowest router
(routing delay) or by congestion at routers

– Latency: time until first bit of packet arrives at receiver
» Raw transfer time + overhead at each routing hop

• Contributions to Latency
– Wire latency: depends on speed of light on wire

» about 1–1.5 ns/foot
– Router latency: depends on internals of router

» Could be < 1 ms (for a good router)
» Question: can router handle full wire throughput?

Router Router

LR1 LR2LW1 LW2 Lw3

Lec 21.2111/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Sample Computations
• E.g.: Ethernet within Soda

– Latency: speed of light in wire is 1.5ns/foot, which
implies latency in building < 1 μs (if no routers in path)

– Throughput: 10-1000Mb/s
– Throughput delay: packet doesn’t arrive until all bits

» So: 4KB/100Mb/s = 0.3 milliseconds (same order as disk!)
• E.g.: ATM within Soda

– Latency (same as above, assuming no routing)
– Throughput: 155Mb/s
– Throughput delay: 4KB/155Mb/s = 200μ

• E.g.: ATM cross-country
– Latency (assuming no routing):

» 3000miles * 5000ft/mile ⇒ 15 milliseconds
– How many bits could be in transit at same time?

» 15ms * 155Mb/s = 290KB
– In fact, Berkeley→MIT Latency ~ 45ms

» 872KB in flight if routers have wire-speed throughput
• Requirements for good performance:

– Local area: minimize overhead/improve bandwidth
– Wide area: keep pipeline full!

Lec 21.2211/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput –

even if some packets get lost
» If transmit at lowest voltage such that error correction just

starts correcting errors, get best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver

can process?
• Reliable Message Delivery

– Reliable messages on top of unreliable packets
– Need some way to make sure that packets actually make
it to receiver

» Every packet received at least once
» Every packet received only once

– Can combine with ordering: every packet received by
process at destination exactly once and in order

Lec 21.2311/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending “ack”) when packet
received properly at destination

– Timeout at sender: if no ack, retransmit
• Some questions:

– If the sender doesn’t get an ack, does that mean the
receiver didn’t get the original message?

» No
– What it ack gets dropped? Or if message gets delayed?

» Sender doesn’t get ack, retransmits. Receiver gets message
twice, acks each.

BA
Packet

ack

BA

Packet

ack

Packet
Timeout

Lec 21.2411/13/06 Kubiatowicz CS162 ©UCB Fall 2006

BA Pkt #0

Ack #0
Pkt #1

Ack #1
Pkt #0

Ack #0

How to deal with message duplication
• Solution: put sequence number in message to identify

re-transmitted packets
– Receiver checks for duplicate #’s; Discard if detected

• Requirements:
– Sender keeps copy of unack’ed messages

» Easy: only need to buffer messages
– Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?
• Simple solution: Alternating-bit protocol

– Send one message at a time; don’t send
next message until ack received

– Sender keeps last message; receiver
tracks sequence # of last message received

• Pros: simple, small overhead
• Con: Poor performance

– Wire can hold multiple messages; want to
fill up at (wire latency × throughput)

• Con: doesn’t work if network can delay
or duplicate messages arbitrarily

Lec 21.2511/13/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• Network: physical connection that allows two

computers to communicate
– Packet: sequence of bits carried over the network

• Broadcast Network: Shared Communication Medium
– Transmitted packets sent to all receivers
– Arbitration: act of negotiating use of shared medium

» Ethernet: Carrier Sense, Multiple Access, Collision Detect
• Point-to-point network: a network in which every

physical wire is connected to only two computers
– Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.

• Protocol: Agreement between two parties as to how
information is to be transmitted

• Internet Protocol (IP)
– Used to route messages through routes across globe
– 32-bit addresses, 16-bit ports

• Reliable, Ordered, Arbitrary-sized Messaging:
– Built through protocol layering on top of unreliable,
limited-sized, non-ordered packet transmission links

CS162
Operating Systems and
Systems Programming

Lecture 22

Networking II

November 15, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 22.211/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Hierarchical Networking (The Internet)

• How can we build a network with millions of hosts?
– Hierarchy! Not every host connected to every other one
– Use a network of Routers to connect subnets together

subnet1

subnet2

Router

Other
subnets

Router

Router

Transcontinental
Link

subnet3Other
subnets

Lec 22.311/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Network Protocols
• Protocol: Agreement between two parties as to how

information is to be transmitted
– Example: system calls are the protocol between the
operating system and application

– Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how

are 0 and 1 represented)
» Link level: packet formats/error control (for instance, the

CSMA/CD protocol)
» Network level: network routing, addressing
» Transport Level: reliable message delivery

• Protocols on today’s Internet:

Ethernet ATM Packet radio

IP
UDP TCP

RPC
NFS WWW e-mail ssh

Physical/Link

Network

Transport

Lec 22.411/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Network Layering
• Layering: building complex services from

simpler ones
– Each layer provides services needed by
higher layers by utilizing services
provided by lower layers

• Our goal in the following is to show how
to construct a secure, ordered,
arbitrary-sized message service routed
to anywhere:

SecureInsecure
SynchronousAsynchronous

Routed anywhereOnly on local area net
Process-to-processMachine-to-machine

ReliableUnreliable
OrderedUnordered (sometimes)

Arbitrary SizeLimited Size

Abstraction: MessagesPhysical Reality: Packets

Lec 22.511/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Basic Networking Limitations
• The physical/link layer is pretty limited

– Packets of limited size
» Maximum Transfer Unit (MTU): often 200-1500 bytes

– Packets can get lost or garbled
– Hardware routing limited to physical link or switch
– Physical routers crash/links get damaged

» Baltimore tunnel fire (July 2001): cut major Internet links
• Handling Arbitrary Sized Messages:

– Must deal with limited physical packet size
– Split big message into smaller ones (called fragments)

» Must be reassembled at destination
» May happen on demand if packet routed through areas of

reduced MTU (e.g. TCP)
– Checksum computed on each fragment or whole message

• Datagram: an independent, self-contained network
message whose arrival, arrival time, and content are
not guaranteed

• Need resilient routing algorithms to send messages on
wide area

– Multi-hop routing mechanisms
– Redundant links/Ability to route around failed links

Lec 22.611/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Performance Considerations
• Some performance metrics

– Overhead: CPU time to put packet on wire
– Throughput: Maximum number of bytes per second

» Depends on “wire speed”, but also limited by slowest router
(routing delay) or by congestion at routers

– Latency: time until first bit of packet arrives at receiver
» Raw transfer time + overhead at each routing hop

• Contributions to Latency
– Wire latency: depends on speed of light in wire or fiber

» about 1–1.5 ns/foot
– Router latency: depends on internals of router

» Could be < 1 ms (for a good router)
» Question: can router handle full wire throughput?

Router Router

LR1 LR2LW1 LW2 Lw3

Lec 22.711/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Networking
– Reliable Messaging

» TCP windowing and congestion avoidance
– Two-phase commit

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 22.811/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Sample Computations
• E.g.: Ethernet within Soda

– Latency: speed of light in wire is 1.5ns/foot, which
implies latency in building < 1 μs (if no routers in path)

– Throughput: 10-1000Mb/s
– Throughput delay: packet doesn’t arrive until all bits

» So: 4KB/100Mb/s = 0.3 milliseconds (same order as disk!)
• E.g.: ATM within Soda

– Latency (same as above, assuming no routing)
– Throughput: 155Mb/s
– Throughput delay: 4KB/155Mb/s = 200μ

• E.g.: ATM cross-country
– Latency (assuming no routing):

» 3000miles * 5000ft/mile ⇒ 15 milliseconds
– How many bits could be in transit at same time?

» 15ms * 155Mb/s = 290KB
– In fact, Berkeley→MIT Latency ~ 45ms

» 872KB in flight if routers have wire-speed throughput
• Requirements for good performance:

– Local area: minimize overhead/improve bandwidth
– Wide area: keep pipeline full!

Lec 22.911/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Sequence Numbers
• Ordered Messages

– Several network services are best constructed by
ordered messaging

» Ask remote machine to first do x, then do y, etc.
– Unfortunately, underlying network is packet based:

» Packets are routed one at a time through the network
» Can take different paths or be delayed individually

– IP can reorder packets! P0,P1 might arrive as P1,P0
• Solution requires queuing at destination

– Need to hold onto packets to undo misordering
– Total degree of reordering impacts queue size

• Ordered messages on top of unordered ones:
– Assign sequence numbers to packets

» 0,1,2,3,4…..
» If packets arrive out of order, reorder before delivering to

user application
» For instance, hold onto #3 until #2 arrives, etc.

– Sequence numbers are specific to particular connection
» Reordering among connections normally doesn’t matter

– If restart connection, need to make sure use different
range of sequence numbers than previously…

Lec 22.1011/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput –

even if some packets get lost
» If transmit at lowest voltage such that error correction just

starts correcting errors, get best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver

can process?
• Reliable Message Delivery on top of Unreliable Packets

– Need some way to make sure that packets actually make
it to receiver

» Every packet received at least once
» Every packet received at most once

– Can combine with ordering: every packet received by
process at destination exactly once and in order

Lec 22.1111/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending “ack”) when packet
received properly at destination

– Timeout at sender: if no ack, retransmit
• Some questions:

– If the sender doesn’t get an ack, does that mean the
receiver didn’t get the original message?

» No
– What if ack gets dropped? Or if message gets delayed?

» Sender doesn’t get ack, retransmits. Receiver gets message
twice, acks each.

BA
Packet

ack

BA

Packet

ack

Packet
Timeout

Lec 22.1211/15/06 Kubiatowicz CS162 ©UCB Fall 2006

BA Pkt #0

Ack #0
Pkt #1

Ack #1
Pkt #0

Ack #0

How to deal with message duplication
• Solution: put sequence number in message to identify

re-transmitted packets
– Receiver checks for duplicate #’s; Discard if detected

• Requirements:
– Sender keeps copy of unack’ed messages

» Easy: only need to buffer messages
– Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?
• Alternating-bit protocol:

– Send one message at a time; don’t send
next message until ack received

– Sender keeps last message; receiver
tracks sequence # of last message received

• Pros: simple, small overhead
• Con: Poor performance

– Wire can hold multiple messages; want to
fill up at (wire latency × throughput)

• Con: doesn’t work if network can delay
or duplicate messages arbitrarily

Lec 22.1311/15/06 Kubiatowicz CS162 ©UCB Fall 2006

BA
Better messaging: Window-based acknowledgements

N=5 Q
ueue

ack
#0

ack
#4

pkt#0

pkt#4

• Window based protocol (TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “received all packets up

to sequence number X”/send more
• Acks serve dual purpose:

– Reliability: Confirming packet received
– Flow Control: Receiver ready for packet

» Remaining space in queue at receiver
can be returned with ACK

• What if packet gets garbled/dropped?
– Sender will timeout waiting for ack packet

» Resend missing packets⇒ Receiver gets packets out of order!
– Should receiver discard packets that arrive out of order?

» Simple, but poor performance
– Alternative: Keep copy until sender fills in missing pieces?

» Reduces # of retransmits, but more complex
• What if ack gets garbled/dropped?

– Timeout and resend just the un-acknowledged packets
Lec 22.1411/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 22.1511/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

• TCP Details
– Fragments byte stream into packets, hands packets to IP

» IP may also fragment by itself
– Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)

» “Window” reflects storage at receiver – sender shouldn’t
overrun receiver’s buffer space

» Also, window should reflect speed/capacity of network –
sender shouldn’t overload network

– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen”

Router Router
Stream in: Stream out:
..zyxwvuts gfedcba

Lec 22.1611/15/06 Kubiatowicz CS162 ©UCB Fall 2006

TCP Windows and Sequence Numbers

• Sender has three regions:
– Sequence regions

» sent and ack’ed
» Sent and not ack’ed
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Sequence regions
» received and ack’ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Lec 22.1711/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/140

Seq:260 A:190/100

Seq:300 A:190/60

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100

Seq:100
Size:40

140

Seq:140
Size:50

190

Seq:230
Size:30

230 260

Seq:260
Size:40

300

Seq:300
Size:40

340

Seq:340
Size:40

380

Seq:380
Size:20

400

Retransmit!

Lec 22.1811/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Selective Acknowledgement Option (SACK)

• Vanilla TCP Acknowledgement
– Every message encodes Sequence number and Ack
– Can include data for forward stream and/or ack for
reverse stream

• Selective Acknowledgement
– Acknowledgement information includes not just one
number, but rather ranges of received packets

– Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

IP H
eader

(20 bytes)

Sequence N
um

ber
A
ck

N
um

ber

TCP Header

IP
 H

ea
de

r
(2

0
by

te
s)

Se
qu

en
ce

 N
um

be
r

A
ck

N
um

be
r

TCP Header

Lec 22.1911/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too long→wastes time if message lost
» Too short→retransmit even though ack will arrive shortly

– Stability problem: more congestion ⇒ ack is delayed ⇒
unnecessary timeout ⇒ more traffic ⇒ more congestion

» Closely related to window size at sender: too big means
putting too much data into network

• How does the sender’s window size get chosen?
– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate
that the slowest link can accommodate

– Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until

acknowledgements start being delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput)
– Timeout ⇒ congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 22.2011/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Sequence-Number Initialization
• How do you choose an initial sequence number?

– When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!
» Receiver might end up discarding valid packets, or duplicate

ack from original transmission might hide lost packet
– Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection

• Some ways of choosing an initial sequence number:
– Time to live: each packet has a deadline.

» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets

in flight to be delivered or to expire
– Epoch #: uniquely identifies which set of sequence
numbers are currently being used

» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of

sequence #
– Pseudo-random increment to previous sequence number

» Used by several protocol implementations

Lec 22.2111/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

Lec 22.2211/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Socket Example (Java)
server://Makes socket, binds addr/port, calls listen()ServerSocket sock = new ServerSocket(6013);while(true) {Socket client = sock.accept();PrintWriter pout = newPrintWriter(client.getOutputStream(),true);

pout.println(“Here is data sent to client!”);…client.close();}
client:// Makes socket, binds addr/port, calls connect()Socket sock = new Socket(“169.229.60.38”,6013);BufferedReader bin = new BufferedReader(new InputStreamReader(sock.getInputStream));String line;while ((line = bin.readLine())!=null)System.out.println(line);sock.close();

Lec 22.2311/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on
different machines

» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

Lec 22.2411/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that the receiver actually
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1→T2

– T1→buffer→T2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 22.2511/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:int msg1[1000];while(1) {prepare message; send(msg1,mbox);}
Consumer:int buffer[1000];while(1) {receive(buffer,mbox);process message;}

• No need for producer/consumer to keep track of space
in mailbox: handled by send/receive

– One of the roles of the window in TCP: window is size of
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 22.2611/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client ≡ requester, Server ≡ responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)char response[1000];

send(“read rutabaga”, server_mbox);receive(response, client_mbox);
Consumer: (responding with the file)char command[1000], answer[1000];

receive(command, server_mbox);decode command;read file into answer;send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response

Lec 22.2711/15/06 Kubiatowicz CS162 ©UCB Fall 2006

General’s Paradox
• General’s paradox:

– Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

• Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?

– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

11 am ok?

So, 11 it is?
Yes, 11 works

Yeah, but what it you
Don’t get this ack?

Lec 22.2811/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e.

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do
something, or not do it, atomically

• Two-Phase Commit protocol does this
– Use a persistent, stable log on each machine to keep track
of whether commit has happened

» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash

– Prepare Phase:
» The global coordinator requests that all participants will

promise to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “abort” in its

log and tells everyone to abort; each records “abort” in log
– Commit Phase:

» After all participants respond that they are prepared, then
the coordinator writes “commit” to its log

» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “got commit” to log

– Log can be used to complete this process such that all
machines either commit or don’t commit

Lec 22.2911/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Two phase commit example
• Simple Example: A≡ATM machine, B≡The Bank

– Phase 1:
» A writes “Begin transaction” to log

A→B: OK to transfer funds to me?
» Not enough funds:

B→A: transaction aborted; A writes “Abort” to log
» Enough funds:

B: Write new account balance to logg
B→A: OK, I can commit

– Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to log

• What if B crashes at beginning?
– Wakes up, does nothing; A will timeout, abort and retry

• What if A crashes at beginning of phase 2?
– Wakes up, sees transaction in progress; sends “abort” to
B

• What if B crashes at beginning of phase 2?
– B comes back up, look at log; when A sends it “Commit”
message, it will say, oh, ok, commit

Lec 22.3011/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Decision Making Discussion
• Two-Phase Commit: Blocking

– A Site can get stuck in a situation where it cannot
continue until some other site (usually the coordinator)
recovers.

– Example of how this could happen:
» Participant site B writes a “prepared to commit” record to

its log, sends a “yes” vote to the coordintor (site A) and
crashes

» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted “yes” on the update. It sends a message to site A
asking what happened. At this point, B cannot change its
mind and decide to abort, because update may have
committed

» B is blocked until A comes back
– Blocking is problematic because a blocked site must hold
resources (locks on updated items, pagespinned in
memory, etc) until it learns fate of update

• Alternative: There are alternatives such as “Three
Phase Commit” which don’t have this blocking problem

Lec 22.3111/15/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• Layering: building complex services from simpler ones
• Datagram: an independent, self-contained network

message whose arrival, arrival time, and content are
not guaranteed

• Performance metrics
– Overhead: CPU time to put packet on wire
– Throughput: Maximum number of bytes per second
– Latency: time until first bit of packet arrives at receiver

• Arbitrary Sized messages:
– Fragment into multiple packets; reassemble at destination

• Ordered messages:
– Use sequence numbers and reorder at destination

• Reliable messages:
– Use Acknowledgements
– Want a window larger than 1 in order to increase
throughput

• TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)

• Two-phase commit: distributed decision making

CS162
Operating Systems and
Systems Programming

Lecture 23

Remote Procedure Call

November 20, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 23.211/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Reliable Networking
• Layering: building complex services from simpler ones
• Datagram: an independent, self-contained network

message whose arrival, arrival time, and content are
not guaranteed

• Performance metrics
– Overhead: CPU time to put packet on wire
– Throughput: Maximum number of bytes per second
– Latency: time until first bit of packet arrives at receiver

• Arbitrary Sized messages:
– Fragment into multiple packets; reassemble at destination

• Ordered messages:
– Use sequence numbers and reorder at destination

• Reliable messages:
– Use Acknowledgements
– Want a window larger than 1 in order to increase
throughput

Lec 23.311/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: TCP Windows and Sequence Numbers
• TCP provides a stream abstraction:

– Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

– Input is an unbounded stream of bytes
– Output is identical stream of bytes (same order)

• Sender has three regions:

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Maximum size of window advertised to sender at setup

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Router Router..zyxwvuts gfedcba

Lec 23.411/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Congestion Avoidance
• Two issues

– Choose appropriate message timeout value
» Too long→wastes time if message lost
» Too short→retransmit even though ack will arrive shortly

– Choose appropriate sender’s window
» Try to match the rate of sending packets with the rate

that the slowest link can accommodate
» Max is receiver’s advertised window size

• TCP solution: “slow start” (start sending slowly)
– Measure/estimate Round-Trip Time
– Use adaptive algorithm to fill network (compute win size)

» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost

– Set window size to one packet
– If no timeout, slowly increase window size (throughput)

» 1 packet per ACK, up to receiver’s advertised buffer size
– Timeout ⇒ congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 23.511/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Using TCP Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket

• Basic model for using Sockets for Client-Server apps:
– On server: set up “server-socket”

» Create socket, Bind to protocol (TCP), local address, port
» Wait for incoming requests
» Accept new connection, pass off to handler thread

– On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Connect to server

Lec 23.611/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Distributed Applications
• Synchronizing multiple threads on different machines:

– No shared memory, so cannot use test&set
– Use send/receive messages

» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message

• Interface:
– Mailbox (mbox): temporary holding area for messages

» Includes both destination location and queue
– Send(message,mbox)

» Send message to remote mailbox identified by mbox
– Receive(buffer,mbox)

» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

• Mailbox provides 1-way communication from T1→T2
– T1→buffer→T2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 23.711/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Messages
– Send/receive
– One vs. two-way communication

• Distributed Decision Making
– Two-phase commit/Byzantine Commit

• Remote Procedure Call

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 23.811/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:int msg1[1000];while(1) {prepare message; send(msg1,mbox);}
Consumer:int buffer[1000];while(1) {receive(buffer,mbox);process message;}

• No need for producer/consumer to keep track of space
in mailbox: handled by send/receive

– One of the roles of the window in TCP: window is size of
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 23.911/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client ≡ requester, Server ≡ responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)char response[1000];

send(“read rutabaga”, server_mbox);receive(response, client_mbox);
Server: (responding with the file)char command[1000], answer[1000];

receive(command, server_mbox);decode command;read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response Lec 23.1011/20/06 Kubiatowicz CS162 ©UCB Fall 2006

• General’s paradox:
– Constraints of problem:

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

• Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?

– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

Yeah, but what if you
Don’t get this ack?

General’s Paradox

11 am ok?

So, 11 it is?
Yes, 11 works

Lec 23.1111/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 23.1211/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e.

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do
something, or not do it, atomically

• Two-Phase Commit protocol does this
– Use a persistent, stable log on each machine to keep track
of whether commit has happened

» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash

– Prepare Phase:
» The global coordinator requests that all participants will

promise to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its

log and tells everyone to abort; each records “Abort” in log
– Commit Phase:

» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log

» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log

– Log can be used to complete this process such that all
machines either commit or don’t commit

Lec 23.1311/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Two phase commit example
• Simple Example: A≡WellsFargo Bank, B≡Bank of America

– Phase 1: Prepare Phase
» A writes “Begin transaction” to log

A→B: OK to transfer funds to me?
» Not enough funds:

B→A: transaction aborted; A writes “Abort” to log
» Enough funds:

B: Write new account balance & promise to commit to log
B→A: OK, I can commit

– Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to log

• What if B crashes at beginning?
– Wakes up, does nothing; A will timeout, abort and retry

• What if A crashes at beginning of phase 2?
– Wakes up, sees that there is a transaction in progress;
sends “Abort” to B

• What if B crashes at beginning of phase 2?
– B comes back up, looks at log; when A sends it “Commit”
message, it will say, “oh, ok, commit”

Lec 23.1411/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or
more of them fail during the process

» Simple failure mode called “failstop” (different modes later)
– After decision made, result recorded in multiple places

• Undesirable feature of Two-Phase Commit: Blocking
– One machine can be stalled until another site recovers:

» Site B writes “prepared to commit” record to its log,
sends a “yes” vote to the coordinator (site A) and crashes

» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted “yes” on the update. It sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update

• Alternative: There are alternatives such as “Three
Phase Commit” which don’t have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making

Lec 23.1511/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1
lieutenants such that:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends

General

Attack!

Attac
k!

Attack!
Retrea

t!

Attack!

Retreat!
Attack!

Attack!Attack!

Lieutenant

Lieutenant

LieutenantMalicious!

Lec 23.1611/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 23.1711/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: remoteFileSystem→Read(“rutabaga”);
– Translated automatically into call on server:fileSys→Read(“rutabaga”);

• Implementation:
– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing
objects, copying arguments passed by reference, etc.

Lec 23.1811/20/06 Kubiatowicz CS162 ©UCB Fall 2006

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2

Lec 23.1911/20/06 Kubiatowicz CS162 ©UCB Fall 2006

RPC Details
• Equivalence with regular procedure call

– Parameters ⇔ Request Message
– Result ⇔ Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition
language (IDL)”

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for
result, unpack result and return to caller

» Code for server to unpack message, call procedure, pack
results, send them off

• Cross-platform issues:
– What if client/server machines are different
architectures or in different languages?

» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded

(avoids unnecessary conversions).
Lec 23.2011/20/06 Kubiatowicz CS162 ©UCB Fall 2006

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name
into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynmaic translation of service→mbox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 23.2111/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free

» Caching can help, but may make failure handling complex

Lec 23.2211/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address
spaces on different machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Lec 23.2311/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can

be on a separate machine from X server; Neither has to run
on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 23.2411/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• TCP: Reliable byte stream between two processes on

different machines over Internet (read, write, flush)
– Uses window-based acknowledgement protocol
– Congestion-avoidance dynamically adapts sender window to
account for congestion in network

• Two-phase commit: distributed decision making
– First, make sure everyone guarantees that they will
commit if asked (prepare)

– Next, ask everyone to commit
• Byzantine General’s Problem: distributed decision making

with malicious failures
– One general, n-1 lieutenants: some number of them may
be malicious (often “f” of them)

– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n ≥ 3f+1

• Remote Procedure Call (RPC): Call procedure on remote
machine

– Provides same interface as procedure
– Automatic packing and unpacking of arguments without
user programming (in stub)

CS162
Operating Systems and
Systems Programming

Lecture 24

Distributed File Systems

November 22, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 24.211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Network Communication
• TCP: Reliable byte stream between two processes on

different machines over Internet (read, write, flush)
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote

machine (called “network socket”)

• Two-phase commit: distributed decision making
– First, make sure everyone guarantees that they will
commit if asked (prepare)

– Next, ask everyone to commit

Server
Socket

socket socketconnection

Reque
st Co

nnect
ion

new
socket

ServerClient

Lec 24.311/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Distributed Applications

• Message Abstraction: send/receive messages
– Already atomic: no receiver gets portion of a message
and two receivers cannot get same message

• Interface:
– Mailbox (mbox): temporary holding area for messages

» Includes both destination location and queue
– Send(message,mbox)

» Send message to remote mailbox identified by mbox
– Receive(buffer,mbox)

» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

Lec 24.411/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f<n/3) can be insane or malicious

• The commanding general must send an order to his n-1
lieutenants such that:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends

• Various algorithms exist to solve problem
– Newer algorithms have message complexity O(n2)

• Use of BFT (Byzantine Fault Tolerance) algorithm
– Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

Request Distributed
Decision

Lec 24.511/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Remote Procedure Call
• RPC model: Calls a procedure on a remote machine

– Client calls: remoteFileSystem→Read(“rutabaga”);
– Translated automatically into call on server:fileSys→Read(“rutabaga”);

• RPC implementation:
– Request-response message passing using “stubs” for
(un)marshalling glue on client/server

» Converting values to a canonical form, serializing objects,
copying arguments passed by reference, etc.

• RPC Problems:
– Non-Atomic failures: different failure modes in
distributed system than on a single machine

» Can easily result in inconsistent view of the world
– Performance: Proc call « same-machine RPC « network RPC

» Means programmers must be aware that RPC is not free

Lec 24.611/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B

mbox1

mbox2

Lec 24.711/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Examples of Distributed File Systems
• Cache Coherence Protocols

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 24.811/22/06 Kubiatowicz CS162 ©UCB Fall 2006

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo→/sue/foo on server

– A single, global name space: every file
in the world has unique name

» Location Transparency: servers
can change and files can move
without involving user

Network
Read File

Data
Client Server

Lec 24.911/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

Lec 24.1011/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 24.1111/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use RPC to translate file system calls
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view
of file system to multiple clients

• Problems? Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client

Write
 (RP

C)

ACK

cache

Lec 24.1211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Lec 24.1311/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Failures

• What if server crashes? Can client wait until server
comes back up and continue as before?

– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does
UNIX “rm foo”, but before acknowledgment?

» Message system will retry: send it again
» How does it know not to delete it again? (could solve with

two-phase commit protocol, but NFS takes a more ad hoc
approach)

• Stateless protocol: A protocol in which all information
required to process a request is passed with request

– Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!

Lec 24.1411/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Schematic View of NFS Architecture

Lec 24.1511/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client

– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

Lec 24.1611/22/06 Kubiatowicz CS162 ©UCB Fall 2006

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once

– Example: Server crashes between disk I/O and message
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know

they are talking over network)

Lec 24.1711/22/06 Kubiatowicz CS162 ©UCB Fall 2006

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Write

 (RP
C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 24.1811/22/06 Kubiatowicz CS162 ©UCB Fall 2006

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the
same as if all processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 24.1911/22/06 Kubiatowicz CS162 ©UCB Fall 2006

NFS Pros and Cons

• NFS Pros:
– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 24.2011/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Andrew File System

• Andrew File System (AFS, late 80’s) → DCE DFS
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only
after the file is closed

» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 24.2111/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 24.2211/22/06 Kubiatowicz CS162 ©UCB Fall 2006

World Wide Web

• Key idea: graphical front-end to RPC protocol

• What happens when a web server fails?
– System breaks!
– Solution: Transport or network-layer redirection

» Invisible to applications
» Can also help with scalability (load balancers)
» Must handle “sessions” (e.g., banking/e-commerce)

• Initial version: no caching
– Didn’t scale well – easy to overload servers

Lec 24.2311/22/06 Kubiatowicz CS162 ©UCB Fall 2006

WWW Caching

• Use client-side caching to reduce number of
interactions between clients and servers and/or
reduce the size of the interactions:

– Time-to-Live (TTL) fields – HTTP “Expires” header
from server

– Client polling – HTTP “If-Modified-Since” request
headers from clients

– Server refresh – HTML “META Refresh tag”
causes periodic client poll

• What is the polling frequency for clients and
servers?

– Could be adaptive based upon a page’s age and its
rate of change

• Server load is still significant!

Lec 24.2411/22/06 Kubiatowicz CS162 ©UCB Fall 2006

WWW Proxy Caches

• Place caches in the network to reduce server load
– But, increases latency in lightly loaded case
– Caches near servers called “reverse proxy caches”

» Offloads busy server machines
– Caches at the “edges” of the network called “content
distribution networks”

» Offloads servers and reduce client latency
• Challenges:

– Caching static traffic easy, but only ~40% of traffic
– Dynamic and multimedia is harder

» Multimedia is a big win: Megabytes versus Kilobytes
– Same cache consistency problems as before

• Caching is changing the Internet architecture
– Places functionality at higher levels of comm. protocols

Lec 24.2511/22/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• Remote Procedure Call (RPC): Call procedure on remote

machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without
user programming (in stub)

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface
for different types of file systems

• Distributed File System:
– Transparent access to files stored on a remote disk

» NFS: Network File System
» AFS: Andrew File System

– Caching for performance
• Cache Consistency: Keeping contents of client caches

consistent with one another
– If multiple clients, some reading and some writing, how do
stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks so can be notified by
server of changes

CS162
Operating Systems and
Systems Programming

Lecture 25

Protection and Security
in Distributed Systems

November 27, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 25.211/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2

Lec 25.311/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Distributed File Systems

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface
for different types of file systems

• Distributed File System:
– Transparent access to files stored on a remote disk

» NFS: Network File System
» AFS: Andrew File System

– Caching for performance
• Cache Consistency: Keeping contents of client caches

consistent with one another
– If multiple clients, some reading and some writing, how do
stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks so can be notified by
server of changes

Network
Read File

Data
Client Server

Lec 25.411/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Security Mechanisms
– Authentication
– Authorization
– Enforcement

• Cryptographic Mechanisms

• Want to learn more about security?
– Take CS 161/194-1 this fall

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 25.511/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Protection vs Security
• Protection: one or more mechanisms for controlling the

access of programs, processes, or users to resources
– Page Table Mechanism
– File Access Mechanism

• Security: use of protection mechanisms to prevent
misuse of resources

– Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Requires consideration of the external environment
within which the system operates

» Most well-constructed system cannot protect information
if user accidentally reveals password

• What we hope to gain today and next time
– Conceptual understanding of how to make systems secure
– Some examples, to illustrate why providing security is
really hard in practice

Lec 25.611/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Preventing Misuse
• Types of Misuse:

– Accidental:
» If I delete shell, can’t log in to fix it!
» Could make it more difficult by asking: “do you really want

to delete the shell?”
– Intentional:

» Some high school brat who can’t get a date, so instead he
transfers $3 billion from B to A.

» Doesn’t help to ask if they want to do it (of course!)
• Three Pieces to Security

– Authentication: who the user actually is
– Authorization: who is allowed to do what
– Enforcement: make sure people do only what they are
supposed to do

• Loopholes in any carefully constructed system:
– Log in as superuser and you’ve circumvented
authentication

– Log in as self and can do anything with your resources;
for instance: run program that erases all of your files

– Can you trust software to correctly enforce
Authentication and Authorization?????

Lec 25.711/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct

password ⇒ must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of

providing long passwords or satisfying
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common
Lec 25.811/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Passwords: Secrecy
• System must keep copy of secret to

check against passwords
– What if malicious user gains access to list
of passwords?

» Need to obscure information somehow
– Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)

• Example: UNIX /etc/passwd file
– passwd→one way transform(hash)→encrypted passwd
– System stores only encrypted version, so OK even if
someone reads the file!

– When you type in your password, system compares
encrypted version

• Problem: Can you trust encryption algorithm?
– Example: one algorithm thought safe had back door

» Governments want back door so they can snoop
– Also, security through obscurity doesn’t work

» GSM encryption algorithm was secret; accidentally released;
Berkeley grad students cracked in a few hours

“eggplant”

Lec 25.911/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 25.1011/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Passwords: How easy to guess?
• Ways of Compromising Passwords

– Password Guessing:
» Often people use obvious information like birthday,

favorite color, girlfriend’s name, etc…
– Dictionary Attack:

» Work way through dictionary and compare encrypted
version of dictionary words with entries in /etc/passwd

– Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)

• Paradox:
– Short passwords are easy to crack
– Long ones, people write down!

• Technology means we have to use longer passwords
– UNIX initially required lowercase, 5-letter passwords:
total of 265=10million passwords

» In 1975, 10ms to check a password→1 day to crack
» In 2005, .01μs to check a password→0.1 seconds to crack

– Takes less time to check for all words in the dictionary!

Lec 25.1111/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Passwords: Making harder to crack
• How can we make passwords harder to crack?

– Can’t make it impossible, but can help
• Technique 1: Extend everyone’s password with a unique

number (stored in password file)
– Called “salt”. UNIX uses 12-bit “salt”, making dictionary
attacks 4096 times harder

– Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

– Also, way that salt is combined with password designed to
frustrate use of off-the-shelf DES hardware

• Technique 2: Require more complex passwords
– Make people use at least 8-character passwords with
upper-case, lower-case, and numbers

» 708=6x1014=6million seconds=69 days@0.01μs/check
– Unfortunately, people still pick common patterns

» e.g. Capitalize first letter of common word, add one digit

Lec 25.1211/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Passwords: Making harder to crack (con’t)
• Technique 3: Delay checking of passwords

– If attacker doesn’t have access to /etc/passwd, delay
every remote login attempt by 1 second

– Makes it infeasible for rapid-fire dictionary attack
• Technique 4: Assign very long passwords

– Long passwords or pass-phrases can have more entropy
(randomness→harder to crack)

– Give everyone a smart card (or ATM card) to carry around
to remember password

» Requires physical theft to steal password
» Can require PIN from user before authenticates self

– Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number

• Technique 5: “Zero-Knowledge Proof”
– Require a series of challenge-response questions

» Distribute secret algorithm to user
» Server presents a number, say “5”; user computes something

from the number and returns answer to server
» Server never asks same “question” twice

– Often performed by smartcard plugged into system

Lec 25.1311/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Authentication in Distributed Systems
• What if identity must be established across network?

– Need way to prevent exposure of information while still
proving identity to remote system

– Many of the original UNIX tools sent passwords over the
wire “in clear text”

» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread

• What do we need? Cannot rely on physical security!
– Encryption: Privacy, restrict receivers
– Authentication: Remote Authenticity, restrict senders

NetworkPA
SS: gina

Lec 25.1411/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA

Lec 25.1511/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Key Distribution
• How do you get shared secret to both places?

– For instance: how do you send authenticated, secret mail
to someone who you have never met?

– Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others

• Third Party: Authentication Server (like Kerberos)
– Notation:

» Kxy is key for talking between x and y
» (…)K means encrypt message (…) with the key K
» Clients: A and B, Authentication server S

– A asks server for key:
» A→S: [Hi! I’d like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking

– Server returns session key encrypted using B’s key
» S→A: Message [Use Kab (This is A! Use Kab)Ksb] Ksa
» This allows A to know, “S said use this key”

– Whenever A wants to talk with B
» A→B: Ticket [This is A! Use Kab]Ksb
» Now, B knows that Kab is sanctioned by S

Lec 25.1611/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Authentication Server Continued

• Details
– Both A and B use passwords (shared with key server) to
decrypt return from key servers

– Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later

– Also have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages

– Want to minimize # times A types in password
» A→S (Give me temporary secret)
» S→A (Use Ktemp-sa for next 8 hours)Ksa
» Can now use Ktemp-sa in place of Ksa in prototcol

Key
ServerReq

Tick
et

Tick
et

Ticket
Secure Communication

Lec 25.1711/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Public Key Encryption
• Can we perform key distribution without an

authentication server?
– Yes. Use a Public-Key Cryptosystem.

• Public Key Details
– Don’t have one key, have two: Kpublic, Kprivate

» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1 ≠ ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography
Lec 25.1811/27/06 Kubiatowicz CS162 ©UCB Fall 2006

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• But: how does Alice know that it was Bob who sent
her Bpublic? And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 25.1911/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily find other message with same digest as given
message.

– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for which H(m1) = H(m2)
– A small change in a message changes many bits of
digest/can’t tell anything about message given its hash

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across

the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox

Lec 25.2011/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of Hash Functions
• Several Standard Hash Functions:

– MD5: 128-bit output
– SHA-1: 160-bit output

• Can we use hashing to securely reduce load on server?
– Yes. Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X File X

Server

Lec 25.2111/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.– Often, we think of Xpublic as a “principle” (user)
• Suppose we want X to sign message M?

– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that
we have is really from X???

– Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.

– X goes to organization, presents identifying papers
» Organization signs X’s key: [Xpublic, H(Xpublic)CAprivate]
» Called a “Certificate”

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted

authority
• How do we get keys of certificate authority?

– Compiled into your browser, for instance!
Lec 25.2211/27/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• User Identification

– Passwords/Smart Cards/Biometrics
• Passwords

– Encrypt them to help hid them
– Force them to be longer/not amenable to dictionary attack
– Use zero-knowledge request-response techniques

• Distributed identity
– Use cryptography

• Symmetrical (or Private Key) Encryption
– Single Key used to encode and decode
– Introduces key-distribution problem

• Public-Key Encryption
– Two keys: a public key and a private key

» Not derivable from one another
• Secure Hash Function

– Used to summarize data
– Hard to find another block of data with same hash

CS162
Operating Systems and
Systems Programming

Lecture 26

Protection and Security
in Distributed Systems II

November 29, 2006
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 26.211/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct

password ⇒ must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of

providing long passwords or satisfying
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

Lec 26.311/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA

Lec 26.411/29/06 Kubiatowicz CS162 ©UCB Fall 2006

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– Alice→Bob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• But: how does Alice know that it was Bob who sent
her Bpublic? And vice versa…

Bprivate
Aprivate

Review: Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 26.511/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Use of Cryptographic Mechanisms
• Authorization Mechanisms
• Worms and Viruses

• Want to learn more about security?
– Take CS 161 this fall

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 26.611/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily find other message with same digest as given
message.

– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for which H(m1) = H(m2)
– A small change in a message changes many bits of
digest/can’t tell anything about message given its hash

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across

the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox

Lec 26.711/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of Hash Functions
• Several Standard Hash Functions:

– MD5: 128-bit output
– SHA-1: 160-bit output

• Can we use hashing to securely reduce load on server?
– Yes. Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X File X

Server Lec 26.811/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.– Often, we think of Xpublic as a “principle” (user)
• Suppose we want X to sign message M?

– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that
we have is really from X???

– Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.

– X goes to organization, presents identifying papers
» Organization signs X’s key: [Xpublic, H(Xpublic)CAprivate]
» Called a “Certificate”

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted

authority
• How do we get keys of certificate authority?

– Compiled into your browser, for instance!

Lec 26.911/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Cryptographic Summary
• Private Key Encryption (also Symmetric Key)

– Pros: Very Fast
» can encrypt at network speed (even without hardware)

– Cons: Need to distribute secret key to both parties
• Public Key Encryption (also Asymmetric Key)

– Pros: Can distribute keys in public
» Although need some sort of certificate authority: Often

called a Public Key Infrastructure (PKI)
– Cons: Very Slow

» 100—1000 times slower than private key encryption
• Session Key

– Randomly generated private key used for single session
– Often distributed via public key encryption

• Secure Hash
– Fixed length summary (digest) of data; security
properties make it effectively hard to spoof

• Message Authentication Code (MAC)
– Technique for using secure hash and session key to
verify individual packets (even at the IP level)

• Signature over Document
– Hash of document encrypted with private key

Lec 26.1011/29/06 Kubiatowicz CS162 ©UCB Fall 2006

(pms)Ks

• SSL Web Protocol
– Port 443: secure http
– Use public-key encryption
for key-distribution

• Server has a certificate signed by certificate authority
– Contains server info (organization, IP address, etc)
– Also contains server’s public key and expiration date

• Establishment of Shared, 48-byte “master secret”
– Client picks 28-byte random value nc to server
– Server returns its own 28-byte random value ns, plus its certificate certs
– Client verifies certificate by checking with public key of
certificate authority compiled into browser

» Also check expiration date
– Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server

– Now, both server and client have nc, ns, and pms
» Each can compute 48-byte master secret using one-way

and collision-resistant function on three values
» Random “nonces” nc and ns make sure master secret fresh

ns,certs

Security through SSL
nc

Lec 26.1111/29/06 Kubiatowicz CS162 ©UCB Fall 2006

SSL Pitfalls

• Netscape claimed to provide secure comm. (SSL)
– So you could send a credit card # over the Internet

• Three problems (reported in NYT):
– Algorithm for picking session keys was predictable
(used time of day) – brute force key in a few hours

– Made new version of Netscape to fix #1, available to
users over Internet (unencrypted!)

» Four byte patch to Netscape executable makes it
always use a specific session key

» Could insert backdoor by mangling packets containing
executable as they fly by on the Internet.

» Many mirror sites (including Berkeley) to redistribute
new version – anyone with root access to any machine
on LAN at mirror site could insert the backdoor

– Buggy helper applications – can exploit any bug in
either Netscape, or its helper applications

Lec 26.1211/29/06 Kubiatowicz CS162 ©UCB Fall 2006

• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: contains
all permissions in the system

– Resources across top
» Files, Devices, etc…

– Domains in columns
» A domain might be a user or a

group of permissions
» E.g. above: User D3 can read F2 or execute F3

– In practice, table would be huge and sparse!
• Two approaches to implementation

– Access Control Lists: store permissions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users

and permissions for each group
– Capability List: each process tracks objects has
permission to touch

» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has

access to, not each page has list of processes …

Authorization: Who Can Do What?

Lec 26.1311/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia

Lec 26.1411/29/06 Kubiatowicz CS162 ©UCB Fall 2006

How fine-grained should access control be?
• Example of the problem:

– Suppose you buy a copy of a new game from “Joe’s Game
World” and then run it.

– It’s running with your userid
» It removes all the files you own, including the project due

the next day…
• How can you prevent this?

– Have to run the program under some userid.
» Could create a second games userid for the user, which

has no write privileges.
» Like the “nobody” userid in UNIX – can’t do much

– But what if the game needs to write out a file recording
scores?

» Would need to give write privileges to one particular file
(or directory) to your games userid.

– But what about non-game programs you want to use,
such as Quicken?

» Now you need to create your own private quicken userid, if
you want to make sure tha the copy of Quicken you bought
can’t corrupt non-quicken-related files

– But – how to get this right??? Pretty complex…

Lec 26.1511/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Authorization Continued
• Principle of least privilege: programs, users, and

systems should get only enough privileges to perform
their tasks

– Very hard to do in practice
» How do you figure out what the minimum set of privileges

is needed to run your programs?
– People often run at higher privilege then necessary

» Such as the “administrator” privilege under windows
• One solution: Signed Software

– Only use software from sources that you trust, thereby
dealing with the problem by means of authentication

– Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them

» Actually, not always fine: recently, one of Microsoft’s
signing keys was compromised, leading to malicious
software that looked valid

– What about new startups?
» Who “validates” them?
» How easy is it to fool them?

Lec 26.1611/29/06 Kubiatowicz CS162 ©UCB Fall 2006

How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu → kubitron@lcs.mit.edu →
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and I got very private email intended for someone else…

– Need something better, more unique to identify person
• Suppose want to connect with any server at any time?

– Need an account on every machine! (possibly with
different user name for each account)

– OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

Different
Authorization

Domains

Lec 26.1711/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)

» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key: 0x22347EF…

File X
Owner Key: 0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group)

(Re
ad

 X
)K

Ke
y:

0x
66

47
DB

C9
AC

…

Re
ad

Gr
ou

p

GA
CL

(da
ta)

Kse
rve

r

Lec 26.1811/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Analysis of Previous Scheme
• Positive Points:

– Identities checked via signatures and public keys
» Client can’t generate request for data unless they have

private key to go with their public identity
» Server won’t use ACLs not properly signed by owner of file

– No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

• Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…!
» This is very expensive

– Better to have unique string identifying you that people
place into ACLs

» Then, ask Certificate Authority to give you a certificate
matching unique string to your current public key

» Client Request: (request + unique ID)Cprivate; give server
certificate if they ask for it.

» Key compromise⇒must distribute “certificate revocation”,
since can’t wait for previous certificate to expire.

– What if you remove someone from ACL of a given file?
» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

Lec 26.1911/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Analysis Continued
• Who signs the data?

– Or: How does the client know they are getting valid
data?

– Signed by server?
» What if server compromised? Should client trust server?

– Signed by owner of file?
» Better, but now only owner can update file!
» Pretty inconvenient!

– Signed by group of servers that accepted latest update?
» If must have signatures from all servers ⇒ Safe, but one

bad server can prevent update from happening
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

• How do you know that data is up-to-date?
– Valid signature only means data is valid older version
– Freshness attack:

» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server

and prevents payroll from seeing latest version of update
– Hard problem

» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzantine Agrement?) Lec 26.2011/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Involuntary Installation
• What about software loaded without your consent?

– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine

– Install software/Launch programs
• Sony Spyware (October 2005)

– About 50 recent CDs from Sony automatically install
software when you played them on Windows machines

» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies

and to prevent peer-to-peer sharing
– Side Effects:

» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft

Lec 26.2111/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Enforcement
• Enforcer checks passwords, ACLs, etc

– Makes sure the only authorized actions take place
– Bugs in enforcer⇒things for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make
private vs public?

– Hard to make sure that code is usable but only necessary
modules are public

– Pick something in middle? Get bugs and weak protection!
Lec 26.2211/29/06 Kubiatowicz CS162 ©UCB Fall 2006

State of the World
• State of the World in Security

– Authentication: Encryption
» But almost no one encrypts or has public key identity

– Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we’re all in trouble/can’t do anything
» What if sysop in charge of instructional resources went

crazy and deleted everybody’s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted

user→install .rhosts file granting you access

Lec 26.2311/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Other Security Problems
• Virus:

– A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

– Most attached to executable files, so don’t get
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport
features

– Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does
damage once installed or run on your computer

Lec 26.2411/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Security Problems: Buffer-overflow Condition
#define BUFFER SIZE 256
int process(int argc, char *argv[])
{
char buffer[BUFFER SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not
checked for size

– Allows execution of code with same privileges as running
program – but happens without any action from user!

• How to prevent?
– Don’t code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”

Lec 26.2511/29/06 Kubiatowicz CS162 ©UCB Fall 2006

The Morris Internet Worm

• Internet worm (Self-reproducing)
– Author Robert Morris, a first-year Cornell grad student
– Launched close of Workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Lec 26.2611/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Some other Attacks
• Trojan Horse Example: Fake Login

– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know” that you are
getting official login program

• Is SONY XCP a Trojan horse?
• Salami attack: Slicing things a little at a time

– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc
– Lesson: never use unencrypted communication!

Lec 26.2711/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Tenex Password Checking

• Tenex – early 70’s, BBN
– Most popular system at universities before UNIX
– Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

– In 48 hours, they figured out how to get every
password in the system

• Here’s the code for the password check:
for (i = 0; i < 8; i++)
if (userPasswd[i] != realPasswd[i])
go to error

• How many combinations of passwords?
– 2568?
– Wrong!

Lec 26.2811/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Defeating Password Checking

• Tenex used VM, and it interacts badly with the above code
– Key idea: force page faults at inopportune times to break

passwords quickly
• Arrange 1st char in string to be last char in pg, rest on next pg

– Then arrange for pg with 1st char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 1st page)

a|aaaaaa
|

page in memory| page on disk
• Time password check to determine if first character is correct!

– If fast, 1st char is wrong
– If slow, 1st char is right, pg fault, one of the others wrong
– So try all first characters, until one is slow
– Repeat with first two characters in memory, rest on disk

• Only 256 * 8 attempts to crack passwords
– Fix is easy, don’t stop until you look at all the characters

Lec 26.2911/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Defense in Depth: Layered Network Security
• How do I minimize the damage when security fails?

– For instance: I make a mistake in the specification
– Or: A bug lets something run that shouldn’t?

• Firewall: Examines every packet to/from public internet
– Can disable all traffic to/from certain ports
– Can route certain traffic to DMZ (De-Militarized Zone)

» Semi-secure area separate from critical systems
– Can do network address translation

» Inside network, computers have private IP addresses
» Connection from inside→outside is translated
» E.g. [10.0.0.2,port 2390] → [169.229.60.38,port 80]

[12.4.35.2,port 5592] → [169.229.60.38,port 80]

Lec 26.3011/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Shrink Wrap Software Woes

• Can I trust software installed by the computer
manufacturer?

– Not really, most major computer manufacturers
have shipped computers with viruses

– How?
» Forgot to update virus scanner on “gold” master

machine
• Software companies, PR firms, and others

routinely release software that contains viruses

• Linux hackers say “Start with the source”
– Does that work?

Lec 26.3111/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Ken Thompson’s self-replicating program
• Bury Trojan horse in binaries, so no evidence in source

– Replicates itself to every UNIX system in the world and
even to new UNIX’s on new platforms. No visible sign.

– Gave Ken Thompson ability to log into any UNIX system
• Two steps: Make it possible (easy); Hide it (tricky)
• Step 1: Modify login.c

A: if (name == “ken”)don’t check passwordlog in as root
– Easy to do but pretty blatant! Anyone looking will see.

• Step 2: Modify C compiler
– Instead of putting code in login.c, put in compiler:

B: if see trigger1insert A into input stream
– Whenever compiler sees trigger1 (say /*gobbledygook*/),
puts A into input stream of compiler

– Now, don’t need A in login.c, just need trigger1

Lec 26.3211/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Self Replicating Program Continued
• Step 3: Modify compiler source code:

C: if see trigger2
insert B+C into input stream

– Now compile this new C compiler to produce binary
• Step 4: Self-replicating code!

– Simply remove statement C in compiler source code and
place “trigger2” into source instead

» As long as existing C compiler is used to recompile the C
compiler, the code will stay into the C compiler and will
compile back door into login.c

» But no one can see this from source code!
• When porting to new machine/architecture, use

existing C compiler to generate cross-compiler
– Code will migrate to new architecture!

• Lesson: never underestimate the cleverness of
computer hackers for hiding things!

Lec 26.3311/29/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• Distributed identity

– Use cryptography (Public Key, Signed by PKI)
• Use of Public Key Encryption to get Session Key

– Can send encrypted random values to server, now share
secret with server

– Used in SSL, for instance
• Authorization

– Abstract table of users (or domains) vs permissions
– Implemented either as access-control list or capability list

• Issues with distributed storage example
– Revocation: How to remove permissions from someone?
– Integrity: How to know whether data is valid
– Freshness: How to know whether data is recent

• Buffer-Overrun Attack: exploit bug to execute code

	lec01-intro.pdf
	lec02-structures.pdf
	lec03-concurrency.pdf
	lec04-threads.pdf
	lec05-cooperating.pdf
	lec06-synchronization.pdf
	lec07-exclusion.pdf
	lec08-readerwriter.pdf
	lec09-deadlock.pdf
	lec10-scheduling.pdf
	lec11-protection.pdf
	lec12-translation.pdf
	lec13-cachetlb.pdf
	lec14-demandpage.pdf
	lec15-pagereplace.pdf
	lec16-io.pdf
	lec17-disks.pdf
	lec18-filesystems.pdf
	lec19-filesystems2.pdf
	lec20-distributed.pdf
	lec21-networking.pdf
	lec22-networking2.pdf
	lec23-rpc.pdf
	lec24-distfiles.pdf
	lec25-security.pdf
	lec26-security2.pdf

