

Masters Programme in **Mathematics**

COURSE OF OPTIMIZATION

Class exercises

Chiara Segala

1. Exercises on convex analysis

EXERCISE 1.1. Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$. Prove that the following facts are equivalent:

- (1) for every $\alpha \in \mathbb{R}$ the set $C_{\alpha} := \{x : f(x) \le \alpha\}$ is either empty or convex.
- (2) $f(\lambda x + (1 \lambda)y) \le \max\{f(x), f(y)\}$, for all $x, y \in \mathbb{R}^n, \lambda \in]0, 1[$.

Can we conclude that *f* is convex? Give a proof or a counterexample.

EXERCISE 1.2. Find all the functions $f : H \to] - \infty, +\infty]$, defined on an Hilbert space *H*, satisfying $f^* = f$.

EXERCISE 1.3. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ be a matrix, $f : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ be a proper convex function. Assume that $f(y) = +\infty$ for every $y \notin \operatorname{Im}(A) := \{z \in \mathbb{R}^m : z = Ax \text{ for a certain } x \in \mathbb{R}^n\}$. Compute $(f \circ A)^* : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$.

EXERCISE 1.4. Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be a proper function such that $f(x + y) \leq f(x) + f(y)$ and $f(\lambda x) = \lambda f(x)$ for all $\lambda > 0$. Prove that there exists a unique closed convex set $C \subseteq \mathbb{R}^d$ such that $\overline{f} = \sigma_C$, where σ_C denotes the support function to *C*. Extend the result when $f : X \to \mathbb{R} \cup \{+\infty\}$, where *X* is a normed space.

EXERCISE 1.5. Let X be a normed space. Give an example showing that, in general, the supremum appearing in

$$\|p\|_{X'} = \sigma_{\overline{B_X(0,1)}}(p) = \sup_{\|q\|_X \le 1} \langle p, q \rangle_{X',X}.$$

may not be attained.

EXERCISE 1.6. Let *X* be a vector space, $K \subseteq X$ be a convex set such that $0 \in K$, $\alpha K \subseteq K$ for all $|\alpha| \leq 1$, and for every $x \in X$ there exists r > 0 such that $x \in rK$. Define

$$p_K(x) = \inf\{r > 0 : x \in rK\},\$$

and prove that p_K is a seminorm on X. Is p_K a norm? Provide a proof or give a counterexample.

EXERCISE 1.7. Let *H* be an Hilbert space, $f : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be not identically $+\infty$, $\ell : H \to \mathbb{R}$ a linear and continuous map, $\ell \neq 0$, $\alpha \in \mathbb{R}$. Define $g : H \to \mathbb{R} \cup \{+\infty\}$ by $g(x) := f(\ell(x) + \alpha)$ and compute $g^* : H \to \mathbb{R} \cup \{+\infty\}$.

EXERCISE 1.8. Let $g : \mathbb{R}^2 \to \mathbb{R}$ be defined by $g(x_1, x_2) = e^{x_1 + 2x_2}$. Compute g^* .

2. Simulation of first partial test

EXERCISE 2.1. Let Ω be a bounded open subset of \mathbb{R}^2 . Consider the problem:

$$\inf_{u \in H_0^1(\Omega)} \int_{\Omega} \left(5 \left| \nabla u \left(x_1, x_2 \right) \right|^2 - 2 \partial_{x_2} u \left(x_1, x_2 \right) \partial_{x_1} u \left(x_1, x_2 \right) + \left(\left(x_1^4 + 3 x_2^2 \right) u \left(x_1, x_2 \right) - 2 \right)^2 + \frac{1}{2} \left(x_1^4 + 3 x_2^2 \right) \left(x_1^4 + 3 x_2^2 \right) \right)^2 + \frac{1}{2} \left(x_1^4 + 3 x_2^2 \right) \right)^2 + \frac{1}{2} \left(x_1^4 + 3 x_2^2 \right) \right)^2 + \frac{1}{2} \left(x_1^4 + 3 x_2^2 \right) \right) \right)$$

Masters Programme in **Mathematics**

 $+4[\partial_{x_1}u(x_1,x_2)]^2+[\partial_{x_2}u(x_1,x_2)]^2\Big)\,dx_1\,dx_2.$

- (1) Prove that the problem admits a unique solution.
- (2) State the problem in the form $\mathscr{F}(u) = F(u) + G \circ \Lambda(u)$, where $F : X \to] \infty, +\infty]$, $G : Y \to] -\infty, +\infty]$ and $\Lambda : X \to Y$, carefully precising the function spaces X, Y and discussing the regularity properties of F, G, Λ .
- (3) Write the dual problem and the extremality conditions, establish whether the dual problems admits a unique solution.
- (4) Use the previous results to write a partial differential equations satisfied by the minimum.

EXERCISE 2.2. Let Ω be an open bounded subset of \mathbb{R}^d , $q \in H^1_0(\Omega; \mathbb{R})$ be fixed. Set:

$$\mathscr{C} := \{ v \in H^1_0(\Omega; \mathbb{R}) : \| \nabla v - \nabla q \|_{L^2(\Omega; \mathbb{R}^d)} \le 1 \}.$$

Consider the problem

$$\inf_{u \in \mathscr{C}} \int_{\Omega} \frac{|u(x)|^2}{2} \, dx.$$

- (1) Prove that the problem admits a unique solution.
- (2) Formulate the problem in the whole space in the form $\mathscr{F}(u) = F(u) + G \circ \Lambda(u)$, where $F : X \to] \infty, +\infty]$, $G : Y \to] \infty, +\infty]$, and $\Lambda : X \to Y$, carefully precising the functional spaces *X*, *Y* and discuting the regularity of *F*, *G*, Λ .
- (3) Write the dual problem and the extremality relations. Establish if the dual problem admits an unique solution.

Exercise 2.3.

- (1) Prove that the two marginals of a convex functions $\Phi : X \times Y \to \mathbb{R} \cup] \infty, +\infty]$ are convex.
- (2) Let Ω_1, Ω_2 be nonempty convex subsets of a Banach space *X*. We say that Ω_1, Ω_2 are an *extremal* system if for every $\varepsilon > 0$ there exists $a \in X$, $||a|| \le \varepsilon$ such that $(\Omega_1 + a) \cap \Omega_2 = \emptyset$. Prove that Ω_1, Ω_2 are an extremal system if and only if $0 \notin int(\Omega_1 \Omega_2)$ where $\Omega_1 \Omega_2 := \{x_1 x_2 : x_i \in \Omega_i = 1, 2\}$.
- (3) Let $f : \mathbb{R}^2 \to \mathbb{R} \cup \{+\infty\}$ be defined as $f(x_1, x_2) = (3x_1 + 4x_2)^3$ if $3x_1 + 4x_2 > 0$ and $f(x_1, x_2) = +\infty$ if $3x_1 + 4x_2 \le 0$. Prove that f is convex and compute f^* and f^{**} .
- (4) Let *C* be a closed nonempty convex subset of \mathbb{R}^d with int $C \neq \emptyset$. Prove that $C = \overline{\operatorname{int} C}$.
- (5) Discuss the continuity properties of convex functions defined on a Banach space, proving some relevant results.