
Mean Shift: theory and applications 
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Fundamentals 
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• A technique for finding modes in a set of 
data samples, manifesting an underlying 
probability density function (PDF) in RN 

 

•  The samples (and the related PDF) can 
represent and characterize different objects 
features: 

–  Position 

–  Color 

–  ... 

 

What is Mean Shift ? 



Preliminaries: Parzen Windows  



Non-Parametric Density Estimation 

Assumption : The data points are sampled from an underlying PDF 

Assumed Underlying PDF Real Data Samples 

Data point density 

 implies PDF value ! 



Assumed Underlying PDF Real Data Samples 

Non-Parametric Density Estimation 



Assumed Underlying PDF Real Data Samples 

Non-Parametric Density Estimation 



Kernel Density Estimation 
Parzen Windows - General Framework 

Kernel Properties: 

 

• See the Parzen Windows properties… 

Kernel K(  ): function of some finite number  

of data points x1…xn 

Data 

. . 



Kernel Density Estimation  
Parzen Windows - Function Forms 

In practice one uses the forms: 

or 

Same function on each dimension  Function of vector length only 

Kernel K(  ): function of some finite number  

of data points x1…xn 

. 

The 1D function k is called profile of the kernel   



Kernel Density Estimation 
Various Kernels 

Examples: 

 
• Epanechnikov Kernel 

 

 

 

• Uniform Kernel 

 

 

 

• Normal Kernel 

Kernel K(  ): function of some finite number  

of data points x1…xn 

. 



Mean Shift  



Kernel Density Estimation 

Gradient 

Give up estimating the PDF ! 

Estimate ONLY the gradient 

Using the 

Kernel form: 

We get : Size of window 



Kernel Density Estimation 

Gradient 

Computing The Mean Shift 



Computing The Mean Shift 

Yet another Kernel  

density estimation ! 

Simple Mean Shift procedure: 

• Compute Mean Shift vector 

 

 

 

 

 

 

•Translate the Kernel window by m(x) until convergence (m(x)<thresh) 



Mean Shift Mode Detection 

Updated Mean Shift Procedure: 

• Find all modes using the Simple Mean Shift Procedure 

• Prune modes by perturbing them (find saddle points and plateaus) 

• Prune nearby – take highest mode in the window 

 

What happens if we 

reach a saddle point  

? 

Perturb the mode position 

and check if we return back 



Mean Shift Properties 

• Automatic convergence speed – the Mean Shift   

  vector size depends on the gradient itself. 

 

• Near maxima, the steps are small and refined 

 

• Convergence is guaranteed for infinitesimal   

  steps only  infinitely convergent  

  (therefore set a lower bound on the minimal distance     

  covered after a step) [Comaniciu 2002, Chong 1995]. 

 

• For Uniform Kernel (      ), convergence is achieved in 

  a finite number of steps [Comaniciu 2002]. 

 

• Normal Kernel (        ) exhibits a smooth trajectory, but  

  is slower than Uniform Kernel (      ) [Comaniciu 2002]. 

Adaptive 

Gradient  

Ascent 

90°<α<135° 

α 



Facts - Real Modality Analysis 

Tessellate the space  

with windows 
Run the procedure in parallel 



Facts - Real Modality Analysis 

The blue data points were traversed by the windows towards the mode 



Facts - Data Analysis 

Each point xi generates a trajectory formed by y1...yC  

xi=y0 

y1 

y2 

y3 y4 

y5 

yC 



Real Modality Analysis 
An example 

Window tracks signify the steepest ascent directions 



Remarks - Parzen Windows vs Mean Shift 

Non-parametric 

Density Estimation 

Non-parametric 

Density GRADIENT Estimation  

 (Mean Shift) 

Data 

Discrete PDF Representation 

PDF Analysis 

Parzen Windows 

Mean Shift 



Mean Shift Strengths & Weaknesses 

Strengths : 

 

• Application independent technique 

 

• Suitable for real data analysis 

 

• Does not assume any prior shape 

  (e.g. elliptical) on data clusters 

 

• Can handle arbitrary feature 

   spaces 

 

• Only ONE parameter to choose 

- h (window size) 

Weaknesses : 

 

• The window size (bandwidth  

   selection) is not trivial 

- Inappropriate window size can 

  cause modes to be merged,  

  or generate additional “shallow” 

  modes   Use adaptive window 

  size 



Mean Shift applications: Clustering 



Clustering 

Attraction basin : the region for which all trajectories 

           lead to the same mode  

Cluster : All data points in the attraction basin of a mode 



Clustering 
Synthetic Examples 

Simple Modal Structures 

Complex Modal Structures 



Clustering 
Real Example 

Initial window 

centers 

Modes found 
Modes after 

pruning 

Final clusters 

Feature space: 

L*u*v representation 



Clustering 
Real Example 

L*u*v space representation 



Clustering 
Real Example 

From the 

attraction basin 

points depart 

and reach 

different modes 

2D (L*u) 

space 

representation 

Final clusters 



Mean Shift applications:  

Discontinuity Preserving Smoothing 



Discontinuity Preserving Smoothing 

xs1 

xs2 

xr 

The image gray levels… 

… can be viewed as data points 

in the xs, xr space (joined spatial 

And color space) 

xs1=x xs2=y 

xr=ldg 



Discontinuity Preserving Smoothing 

Feature space : Joint domain = spatial coordinates + color space 

Meaning : treat the image as data points in the spatial and gray level domain 

Image Data 

(slice) 

Mean Shift 

vectors 

Smoothing 

result 



Discontinuity Preserving Smoothing 

xs2 

xr 
Algorithm: 

1) For each pixel, run the MS 

procedure generating in the joint 

spatial-chromatic domain a 

trajectory  

    x0 = y0, y1, ..., yC 
 

  

2) assign to each pixel the gray 

level of the mode reached  

x0=y0 

y1 
yC 

... yrC 

ysC 

yr0 

ys0 

yrC 

x0=y0 

y1 

... yC 



Discontinuity Preserving Smoothing 

The effect of  

window size 

in spatial and 

range spaces 



Discontinuity Preserving Smoothing 
Example 

Original After smoothing 



Discontinuity Preserving Smoothing 
Example 

Original After smoothing 



Mean Shift applications:  

2D Segmentation 



Algorithm: 

• Run Filtering (discontinuity preserving 

smoothing) 

 

 

 

 

 

 

 

 

 

 

• Cluster the clusters which are closer than      

  window size 

Segmentation 

Image Data  (slice) Mean Shift vectors 

Segmentation result 

Smoothing result 



Segmentation 
Example 
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Segmentation 
Example 

…when feature space is only  

gray levels… 



Segmentation 
Example 



Segmentation 
Example 



Mean Shift applications:  

N-D Segmentation 



N-D segmentation 

Feature space : Joint domain = 3D spatial coordinates + curvature + ...  

Problem : How to choose the kernel bandwidths! 

... 

Proposed Solution : A data driven stability criteria [Fukunaga 1990] 

3D points 



Stability criteria  

• 1. Separate choice of the best bandwidth:  
– for each sub-domain, perform MS clustering, using 

different increasing values of h.  

– After that, choose as best bandwidth value h(best) the 
center of the largest operating range over which the 
same number of partitions are obtained for the given 
data. 

• 2. Final clustering:  
– perform the mean shift clustering in the joint domain 

(position + curvature + etc.) using the kernel formed 
by concatenating the optimal sub-domain bandwidth 
values obtained in step 2) 
          

   h(best) = [h(p,best) h(c,best) ... h(etc, best) ] 



Stability criteria - example  

1) Standardization 

• Input: a set of data samples xi=[xi,s,xi,n,xi,c] 

– xi,s : spatial coordinates  

– xi,n: normal coordinates  

– xi,c: curvature coordinates  

 

• Proposed algorithm: 



Stability criteria - example  

3) Final clustering 

2) 
Separate  

choice  

of the best  

bandwidth 



Stability criteria - real data results  

Original  

(Angel, 

 Minolta dataset) 

Result  



Stability criteria - real data results  

Original  

(Acquired with  

echoscope  

sensor) 

Result  



Stability criteria - real data results  



Another field of application: Medical-Imaging 

The problem 

MANUALLY LABELED 

AREA!!! 

GOAL:  

Automatize  

this process  

with Automatic  

Mean Shift 



Another field of application: Medical-Imaging 

Input Result 



Conclusions  

• A robust modes estimation technique has been 
presented 

• The technique is adaptive and non parametric 

– several applications 

– Only one tuning parameter to set is the kernel bandwidth 

• We propose a data driven stability technique, that 
works well for N-D segmentations 

• Application of our technique to other fields are 
currently under development (f.e. biomedical imaging)  
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END! (and thanks to Denis Simakov) 

http://www.wisdom.weizmann.ac.il/%7Edeniss/

