
Chapter 4

Selection Statements

Linguaggio Programmazione Matlab-Simulink (2017/2018)

If Statement
 The if statement is used to determine whether or not a statement

or group of statements is to be executed
 General form:

if condition

action

end

 the condition is any relational expression
 the action is any number of valid statements (including, possibly,

just one)
 if the condition is true, the action is executed – otherwise, it is

skipped entirely

Representing true/false concepts
 Note: to represent the concept of false, 0 is used.

To represent the concept of true, any nonzero
value can be used – so expressions like 5 or ‘x’
result in logical true

 This can lead to some common logical errors

 For example, the following expressions are always true
(because the “relational expressions” on the right, 6
and ‘N’, are nonzero so they are true; therefore, it does
not matter what the results of the others are):

number < 5 || 6

letter == ‘n’ || ‘N’

If-else Statements
 The if-else statement chooses between two actions

 General form:
if condition

action1

else

action2

end

 One and only one action is executed; which one
depends on the value of the condition (action1 if it is
logical true or action2 if it is false)

Throwing an error
 MATLAB has an error function that can be used to

display an error message in red, similar to the error
messages generated by MATLAB

if radius <= 0

error('Sorry; %.2f is not a valid radius\n', radius)

else

% carry on

end

Nested if-else Statements
 To choose from more than two actions, nested if-else

statements can be used (an if or if-else statement as the action
of another)

 General form:
if condition1

action1
else

if condition2
action2

else
if condition3

action3
% etc: there can be many of these
else

actionn % the nth action
end

end
end

The elseif clause
 MATLAB also has an elseif clause which shortens the code (and

cuts down on the number of ends)
 General form:

if condition1
action1

elseif condition2
action2

elseif condition3
action3

% etc: there can be many of these
else

actionn % the nth action
end

The switch Statement
 The switch statement can frequently be used in place of a nested if

statement

 General form:
switch switch_expression

case caseexp1

action1

case caseexp2

action2

case caseexp3

action3

% etc: there can be many of these

otherwise

actionn

end

 this can be used when comparing the switch_expression to see if it is equal to
the values on the case labels (the otherwise clause handles all other possible
values)

The “is” functions
 There are many “is” functions in MATLAB that

essentially ask a true/false question, and return logical
1 for true or 0 for false

 isletter returns 1 or 0 for every character in a string –
whether it is a letter of the alphabet or not

 isempty returns 1 if the variable argument is empty, or
0 if not

 iskeyword returns 1 if the string argument is a
keyword, or 0 if not

 isa determines whether the first argument is a
specified bype

Programming Style Guidelines
 Use indentation to show the structure of a script or

function. In particular, the actions in an if statement
should be indented.

 When the else clause isn’t needed, use an if statement
rather than an if-else statement

Chapter 5

Loop Statements & Vectorizing Code

Linguaggio Programmazione Matlab-Simulink (2017/2018)

for loop
 used as a counted loop

 repeats an action a specified number of times

 an iterator or loop variable specifies how many times
to repeat the action

 general form:

for loopvar = range

Action

end

 the range is specified by a vector

 the action is repeated for every value of the loop
variable in the specified vector

for loop examples
 Loop that uses the iterator variable:

>> for i = 1:3

fprintf('i is %d\n', i)

end

i is 1

i is 2

i is 3

 Loop that does not use the iterator variable:
>> for i = 1:3

disp('Howdy')

end

Howdy

Howdy

Howdy

Preallocating a Vector
 Preallocating sets aside enough memory for a vector to

be stored

 The alternative, extending a vector, is very inefficient
because it requires finding new memory and copying
values every time

 Many functions can be used to preallocate, although it
is common to use zeros

 For example, to preallocate a vector vec to have N
elements:

vec = zeros(1,N);

for loop uses
 calculate a sum

 initialize running sum variable to zero

 calculate a product
 initialize running product variable to one

 input from user
 can then echo print the input

 sum values in a vector
 can also use built-in function sum for this

 other functions that operate on vectors: prod,
cumsum, cumprod, min, max,cummin, cummax

For loop application: subplot
 The subplot function creates a matrix (or vector) in a

Figure Window so that multiple plots can be viewed at
once

 If the matrix is m x n, the function call subplot(m,n,i)
refers to element i (which must be an integer in the
range from 1 to m*n)

 The elements in the FW are numbered row-wise

 It is sometimes possible to use a for loop to iterate
through the elements in the Figure Window

Subplot Example
 For example, if the subplot matrix is 2 x 2, it may be

possible to loop through the 4 elements to produce the
4 separate plots

for i = 1:4

subplot(2,2,i)

% create plot i

end

Plot 1 Plot 2

Plot 3 Plot 4

Nested for loops
 A nested for loop is one inside of (as the action of) another for

loop

 General form of a nested for loop:

for loopvarone = rangeone outer loop

% actionone:

for loopvartwo = rangetwo inner loop

actiontwo

end

end

 The inner loop action is executed in its entirety for every
value of the outer loop variable

while loop
 used as a conditional loop

 used to repeat an action when ahead of time it is not known how
many times the action will be repeated

 general form:
while condition

action

end

 the action is repeated as long as the condition is true

 an infinite loop can occur if the condition never becomes false
(Use Ctrl-C to break out of an infinite loop)

 Note: since the condition comes before the action, it is possible
that the condition will be false the first time it is evaluated and
therefore the action will not be executed at all

while loop application: error-
checking
 with most user input, there is a valid range of values

 a while loop can be used to keep prompting the user, reading
the value, and checking it, until the user enters a value that is in
the correct range

 this is called error-checking

 general form of a while loop that error-checks:

prompt user and input value

while value is not in correct range

print error message

prompt user and input value

end

use value

Example: Prompt for radius
radius = input('Enter the radius of a circle: ');

while radius <= 0

radius = input('Invalid! Enter a positive radius: ');

end

area = pi * radius ^ 2;

fprintf('The area is %.2f\n', area)

While loop example (Practice 5.6)
% Error checks until the user enters n positive integers

n = 4;

for i = 1:n

inputnum = input('Enter a positive integer: ');

num2 = int32(inputnum);

while num2 ~= inputnum || num2 < 0

inputnum = input('Invalid! Enter a positive integer: ');

num2 = int32(inputnum);

end

fprintf('Thanks, you entered a %d \n',inputnum)

end

for loops and vectors
 for loops can be used to accomplish the same task for

every element in a vector

 general form of for loop that iterates through a vector:

for i = 1:length(vectorvariable)

do something with vectorvariable(i)

end

 if the purpose of the loop is to create a vector variable,
it is much more efficient to preallocate the variable
before the loop (note: the length must be known)

Nested for loops and matrices
 nested for loops can be used to accomplish the same task for every

element in a matrix
 one loop is over the rows, and the other is over the columns
 general form of nested for loop that iterates through a matrix:

[r c] = size(matrixvariable)
for row = 1:r

for col = 1:c
do something with matrixvariable(row,col)

end
end

 Note: this nested loop iterates through the matrix row-by-row; by
reversing the for statements it would instead iterate column-by-
column

Use MATLAB wisely!!
 Using for loops with vectors and matrices is a very

important programming concept, and is necessary
when working with many languages

 However… Although for loops are very useful in
MATLAB (e.g., for the subplot function), they are
almost NEVER necessary when performing an
operation on every element in a vector or matrix!

 This is because MATLAB is written to work with
matrices (and therefore also vectors), so functions on
matrices and operations on matrices automatically
iterate through all elements – no loops needed!

Vectorizing
 The term vectorizing is used in MATLAB for re-

writing code using loops in a traditional programming
language to matrix operations in MATLAB

 For example, instead of looping through all elements
in a vector vec to add 3 to each element, just use scalar
addition:

vec = vec + 3;

Efficient Code
 In most cases, code that is faster for the programmer to

write in MATLAB is also faster for MATLAB to execute

 Keep in mind these important features:

 Scalar and array operations

 Logical vectors

 Built-in functions

 Preallocation of vectors

Preallocation Question
 Preallocation can speed up code, but in order to

preallocate it is necessary to know the desired size.
What if you do not know the eventual size of a vector
(or matrix)? Does that mean that you have to extend it
rather than preallocating?

Preallocation Answer
 If you know the maximum size that it could possibly

be, you can preallocate to a size that is larger than
necessary, and then delete the “unused” elements. In
order to do that, you would have to count the number
of elements that are actually used. For example, if you
have a vector vec that has been preallocated, and a
variable count that stores the number of elements that
were actually used, this will trim the unnecessary
elements:

 vec = vec(1:count)

Operations on Vectors & Matrices
 Can perform numerical operations on vectors and

matrices, e.g. vec + 3

 Scalar operations e.g. mat * 3

 Array operators operate term-by-term or element-by-
element, so must be same size

 Addition + and subtraction -

 Array operators for any operation based on
multiplication require dot in front .* ./ .\ .^

Useful Efficient functions
 Keep in mind these useful functions:

 sum, prod, cumsum, cumprod, min, max

 any, all, find

 diff

 “is” functions including isequal

 checkcode: can check code in both scripts and
functions for inefficiencies; same as information in
Code Analyzer Reports

Timing Code
 The functions tic and toc are used to time code

 Be careful; other processes running in the background will have an effect so
should run multiple times and average
>> type fortictoc

tic
mysum = 0;
for i = 1:20000000

mysum = mysum + i;
end
toc

>> fortictoc
Elapsed time is 0.090699 seconds.
>>

 There is also a Profiler that will generate detailed reports on execution
times of codes

Common Pitfalls
 Forgetting to initialize a running sum or count variable

to 0 or a running product to 1

 Not realizing that it is possible that the action of a
while loop will never be executed

 Not error-checking input into a program

 Forgetting that subplot numbers the plots rowwise
rather than columnwise.

 Not taking advantage of MATLAB; not vectorizing!

Programming Style Guidelines
 Use loops for repetition only when necessary

 for statements as counted loops

 while statements as conditional loops

 Do not use i or j for iterator variable names if the use
of the built-in constants i and j is desired.

 Indent the action of loops

 Preallocate vectors and matrices whenever possible
(when the size is known ahead of time).

 If the loop variable is just being used to specify how
many times the action of the loop is to be executed,
use the colon operator 1:n

Exercises
 Write a for loop that will print a column of five *’s.

 Write a function mymatmin that finds the minimum
value in each column of a matrix argument and returns
a vector of the column minimums.

 Write a script avenegnum that will repeat the process
of prompting the user for negative numbers, until the
user enters a zero or positive number. Instead of echo-
printing them, however, the script will print the
average (of just the negative numbers). If no negative
numbers are entered, the script will print an error
message instead of the average.

Exercises
 Write a function that imitates the cumprod function.

Use the method of preallocating the output vector.
(Hint: use help cumprod first).

 Create a function matrowsum to calculate and return a
vector of all of the row sums of a matrix, instead of
column sums (sum function in Matlab returns the
column sums)

 Implement vectorized versions of the previous
functions and scripts that includes tic toc commands
to test the efficency of the code.

