
Data-intensive
computing systems

Introduction

Universtity of Verona
Computer Science Department

 Damiano Carra

 2

Acknowledgement and contacts

!  Credits

–  Part of the course material is based on slides provided by the following

authors

•  Pietro Michiardi, Jimmy Lin

!  Contacts

–  Office hours (" Ca’ Vignal 2, 1st floor, #82)

•  Thursday, 14.30 – 16.30 (check the website for last-minute changes)

•  Based on agreement (via email)

–  Email:

 3

Information and Background

!  Main source of information

–  course web site

•  Slides

•  Detailed course schedule

–  roughly: 2 hours (theory) + 2 hours (lab) per week

•  Note that the schedule may change, so keep checking it!

!  Background

–  Necessary: Java programming

–  Suggested: Basic Database course

 4

Exam

!  Based on a project
–  Design and implementation of solutions to analyze different data sets

–  Focus on the efficiency and the performance of the proposed solution

!  The project output will be
–  The implementation (source code)

–  A technical report with

•  implementation details of the solution

•  results of the analysis of the data sets

•  performance analysis
–  varying cluster size or system parameters

" The code will probably be used on a real cluster of machines… still working on that, so stay
tuned

 5

Course material

!  The principal textbooks for this course are:
–  Jimmy Lin, Chris Dyer: “Data-Intensive Text Processing with MapReduce”

•  The pdf can be downloaded here: http://lintool.github.io/MapReduceAlgorithms/ed1n.html

–  Tom White: “Hadoop: The Definitive Guide”
•  A copy will be available at the library

–  A. Rajaraman, J. Leskovec, J.D. Ullman: “Mining of Massive Datasets”
•  Not necessary, it covers many other topics, but some chapters are interesting

•  The pdf can be downloaded here: http://infolab.stanford.edu/~ullman/mmds.html

!  Readings from other sources will be pointed during the classes.

!  IMPORTANT: The slides are a reference to the topics covered during the
course
–  Their content has much less information than the textbooks

 6

Introduction and motivations

 7

A lot of keywords…

!  After this course, these keywords (and much more) will have, hopefully, a
meaning

!  Let’s start with… Big data

Hadoop

MapReduce

Big data

NoSql
Cloud computing

Data center

 8

How much data?

!  Google # 20 PB/day (2008)

!  Facebook # 90 TB/day (2010)

!  LSST # 3 TB/day of image data

!  LHC # 10/15 PB/year

!  and much more…

–  Amazon, NYT, DNA sequencing

!  Is a lot of data enough for big data?

–  Volume, Velocity, Variety

 9

Challenges

!  Traditional parallel supercomputers are not the right fit for many problems
(given their cost)

–  Optimized for fine-grained parallelism with a lot of communication

–  Cost does not scale linearly with capacity

" Clusters of commodity computers

–  Even more accessible with pay-as-you-go cloud computing

 10

Parallel computing is hard!

Different programming models

•  Message passing
•  Shared memory

Different programming constructs
mutexes, conditional variables, barriers, …

masters/slaves, producers/consumers, work queues, …

Fundamental issues
scheduling, data distribution, synchronization,
inter-process communication, robustness, fault

tolerance, …

Common problems
livelock, deadlock, data starvation, priority inversion…

dining philosophers, sleeping barbers, cigarette smokers, …

Architectural issues
Flynn’s taxonomy (SIMD, MIMD, etc.),

network typology, bisection bandwidth
UMA vs. NUMA, cache coherence

The reality: programmer shoulders the burden of managing concurrency…

 11

How to process big data?

!  We are looking at newer

–  Programming models

–  Supporting algorithms and data structures

•  More data leads to better accuracy

•  With more data, accuracy of different algorithms converges

!  NSF refers to it as �data-intensive computing� and industry calls it �big-
data� and �cloud computing�

 12

How to process Big-data? Main Ideas

!  Scale “out”, not “up”

!  Assume failures are common

–  Probability of “no machine down” decreases rapidly with scale…

!  Move processing to the data

–  Bandwidth is scarce

!  Process data sequentially

–  Seeks are *very* expensive

!  Hide system-level details from the application developer

 13

Big-Data: Targeted problems

!  Embarrassingly parallel problems

–  Simple definition: independent (shared nothing) computations on fragments of
the dataset

–  It’s not easy to decide whether a problem is embarrassingly parallel or not

!  Batch processing of data-intensive workloads

–  Involving (mostly) full scans of the dataset

–  Generally not processor demanding
•  E.g., read and process the whole Internet dataset from a crawler

–  Relevant datasets are too large to fit in memory

 14

This course

!  We will study current BigData solutions

–  Systems challenges

–  Programming models

–  Dealing with failures

!  We will look at some applications

–  Information retrieval, data mining, graph mining, traffic processing, …

!  Possibly

–  Identify shortcomings, limitations

–  Address these!

 15

Basic example: Word count

!  Assume to have a large collection of texts

–  e.g., Web pages from the whole Internet

!  We would like to count how many times each word is mentioned all
over the collection

–  it represents the basis for more complex computations, such as
frequencies, pairings, etc

!  Assuming that the collection is distributed among N machines, how
would you proceed?

 16

Basic example: Word count

!  In a single machine, the solution is trivial
•  final output: [(fog, 3), (winter, 2), (and, 4), …]

 17

Basic example: Word count

!  In a single machine, the solution is trivial
•  final output: [(fog, 3), (winter, 2), (and, 4), …]

!  With multiple machines

1.  Use the solution for the single machine in each machine

•  intermediate output: [(fog, 3), (winter, 2), (and, 4), …]

2.  Join the results collected from the different machines and produce the
final output

•  final output: [(tree, 8), (fog, 13), (cold, 3), (winter, 6), (and, 22), …]

 18

Divide and Conquer

“Work”!

w1! w2! w3!

r1! r2! r3!

“Result”!

worker! worker! worker!

Partition!

Combine!

 19

Parallelization Challenges

!  How do we assign work units to workers?

!  What if we have more work units than workers?

!  What if workers need to share partial results?

!  How do we aggregate partial results?

!  How do we know all the workers have finished?

!  What if workers die?

What’s the common theme of all of these problems?!

 20

Common Theme?

!  Parallelization problems arise from:

–  Communication between workers (e.g., to exchange state)

–  Access to shared resources (e.g., data)

!  Thus, we need a synchronization mechanism

 21

Managing Multiple Workers

!  Difficult because

–  We don’t know the order in which workers run

–  We don’t know when workers interrupt each other

–  We don’t know when workers need to communicate partial results

–  We don’t know the order in which workers access shared data

!  Thus, we need:

–  Semaphores (lock, unlock)

–  Conditional variables (wait, notify, broadcast)

–  Barriers

!  Still, lots of problems:

–  Deadlock, livelock, race conditions...

–  Dining philosophers, sleeping barbers, cigarette smokers...

!  Moral of the story: be careful!

 22

In summary

!  Concurrency is difficult to reason about

!  Concurrency is even more difficult to reason about

–  At the scale of datacenters and across datacenters

–  In the presence of failures

–  In terms of multiple interacting services

!  Not to mention debugging…

!  The reality:

–  Lots of one-off solutions, custom code

–  Write you own dedicated library, then program with it

–  Burden on the programmer to explicitly manage everything

 23

Parallel computing: Concerns

!  A parallel system needs to provide:

–  Data distribution

–  Computation distribution

–  Fault tolerance

–  Job scheduling

 24

Parallel computing: Concerns

!  A parallel system needs to provide:

–  Data distribution

–  Computation distribution

–  Fault tolerance

–  Job scheduling

$  The execution framework should hide these system-level details

–  Separate the what from the how

 25

A final thought

