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References for Chapter 1: Textbook, Chapter 1: Section 1.3

Discrete Event Systems

A Multidisciplinary Area:

Systems & Control

DES

Operations
Research

Computer
Science

What:

• Discrete State Space (logical, symbolic variables)

• Event-driven Dynamics

Why:

• Technological Systems, Computer Control

−→ Large, Complex Systems: they need to be analyzed, diagnosed, controlled, and optimized
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Where:

• Inherently Discrete Systems:

computer systems, communication networks, automated manufacturing systems (cell and

factory levels), software systems.

• Systems with Continuous and Discrete Variables (hybrid systems), modeled as DES at a

certain level of abstraction, e.g., for the higher level control logic:

process control, automated manufacturing systems (machine and cell levels); intelligent

transportation systems, air traffic systems.

• Embedded systems ; networked systems.

How:

• Mathematical Modeling, Analysis, Verification, Diagnosis, Controller Design,

Optimization, Simulation
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Conceptual Control

System Architecture:

COORDINATION

REAL-TIME

CONTROL
DIAGNOSTICS

FAILURE
RECOVERY

SUPERVISORY  CONTROLLER

INTERFACE

EQUIPMENT

CONTROLLERS
CONTROLLER

SYSTEM

Commands Observable events
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Some Examples

The Heating System of a Heating, Ventilation, and Air Conditioning (HVAC)

Unit

FAN HTG. COIL

PUMP

BOILER
CONTROLLER

VALVE

• The operation of the unit is monitored by a set of sensors.

• The issue of interest: Fault Diagnosis.

• Specifically: diagnose occurrence of “sharp” faults during the on-line operation of the unit.

• Examples of faults: stuck failures of valves, on-off failures of pumps, controllers, sensors,

etc.

• Implementation: diagnostics module in the control logic.
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Models

of the Components of

the HVAC System:
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Part of the Diagnoser

for the Heating System

(HVAC Unit)
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A “Small” Telephone System

1 2

0

1 2

0

• The network has screening, forwarding, and multi-way calling capabilities.

• The issue of interest: Feature Interactions.

• Specifically: detection and resolution of logical conflicts (interactions) between options

(features).

• Implementation: correct design of the (modular) software programs that run at the

switches.
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Model of User 0 in a Telephone System:
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A Control Architecture for

Approaching this

Problem:
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Other examples:

Railway Connections and Time Tables1

• The network of railway connections is closed and each line has a fixed number of trains.

The inter-station travel times are known and deterministic.

• The objective is to design “satisfactory” time tables for the trains.

• Specifications include: certain trains have to wait for one another to allow change overs.

• Constraints: want system to operate fast, but also want perturbations to completely

disappear in finite time.

• Issues of interest: how do perturbations to the time table propagate, what limits the

minimum operation time, where would it be helpful to add trains, etc.

• Approach: write equations for the departure times of the trains, using “maximum” and

“addition.”

1Example due to G. J. Olsder
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Dispatching Control in an Elevator System2

• Events: hall call, car call, car arrives at floor i, etc.

• States: position of car k, number of passengers waiting at floor i, etc. (very large state

space!)

• Control problem: which car to send where so as to achieve “satisfactory”

performance?

• Performance measures: average waiting time (until car comes), average service time (until

car delivers to desired floor), fraction of passengers waiting more (on average) than one

minute, etc.

• Probabilistic formulation: passenger arrival rates at floors, probability distribution for

destination floors, load times and travel times, etc.

• Common solution: threshold-based control, i.e., hold a car until a threshold is reached.

→ The issue is then to determine this threshold and “automatically” adjust it in

real-time, based on observed passenger arrival rates.

2Example due to C. Cassandras

S. Lafortune - Last revision: September 2004 11& %



' $
EECS 661 - Chapter 1

S. Lafortune - Last revision: September 2004 12& %



' $
EECS 661 - Chapter 1

S. Lafortune - Last revision: September 2004 13& %



' $
EECS 661 - Chapter 1

The Three Levels of Abstraction in Modeling DES

Sample Paths of Discrete Event Systems
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Describe this sample path by the timed sequence of events that it contains:

st
e = (e1, t1)(e2, t2)(e3, t3)(e4, t4)(e5, t5)(e6, t6)(e7, t7)
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The behavior of a given DES is described as follows:

• Timed Language: set of all timed sequences of events that the DES can

generate/execute

• Stochastic Timed Language: a timed language with a probability distribution

function defined over it

• Language: a timed language where the timing information has been deleted, i.e., it is a

set of sequences, or traces, of events.

se = e1e2e3e4e5e6e7

Formal language theory:

– Finite set of events E : {e1, e2, . . . , en}

– Set of all finite strings of event in E: E∗ - Kleene-closure

– A language L is a subset of E∗: L ⊆ E∗
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This leads to the three complemetary levels of abstraction at which DES are studied.

• Logical level: the language model is used to study properties that concern event

ordering only; e.g., consider the telephone system example, as well as the HVAC unit

example (diagnosis).

Priorities, mutual exclusion, deadlock, livelock, occurrence of unobservable events, etc.

• Temporal level: the timed language model is used to study properties that concern the

timing of the events; e.g., consider the railway network example.

Deadlines, cycle times, effect of perturbations, etc.

• Stochastic level: the stochastic timed language model is used to study properties that

concern the expected behavior of the system under the given statistical information; e.g.,

consider the elevator example.

Average delay, throughput, and other relevant performance measures.

N.B.: Discrete Event Simulation usually refers to the stochastic level.

Question: How to represent [(stochastic) timed] languages?
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Discrete Event Modeling Formalisms

• Formal classes of models that represent [(stochastic) timed] languages

• “State-based” formalisms: define a state space and specify the state transition structure

(i.e., (out state, event, in state) triples) that represents the language.

Automata (or State Machines) and Petri Nets are widely used.

• “Trace-based” formalisms: use (recursive) algebraic equations on the events to represent

the traces in the language (i.e., no explicit “state”). Often referred to as Process Algebras.

Communicating Sequential Processes (CSP) is a well-know formalism in this category.

• We will study:

– (untimed and timed) automata [modeling, analysis, diagnosis, supervisory control]

– (untimed and timed) Petri nets [modeling, analysis, some control]

– timed event graphs, a special case of timed Petri nets [analysis using max-plus

algebra]

→ We illustrate the above modeling formalisms for the (familiar) example of the dining

philosophers.
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Automaton models of two philosophers (P 1, P 2) and two forks (F 1, F 2)
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Composition of the four automata: P 1||P 2||F 1||F 2
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Petri net model of one philosopher and two forks

holding fork 1

fork 2 available

fork 1 available

eating

if1 if2

if

if2 if1

holding fork 2

thinking
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Petri net model of two philosophers and two forks

fork 1 available
philosopher 1 philosopher 2

1f1 1f2

1f

1f2 1f1

2f12f2

2f

2f22f1

fork 2 available

S. Lafortune - Last revision: September 2004 21& %



' $
EECS 661 - Chapter 1

Recursive equation model of two philosophers and two forks

P 1 = (1f1 → 1f2 → E1 | 1f2 → 1f1 → E1)

E1 = (1f → P 1)

P 2 = (2f1 → 2f2 → E2 | 2f2 → 2f1 → E2)

E2 = (2f → P 2)

F 1 = (1f1 → 1f → F 1 | 2f1 → 2f → F 1)

F 2 = (1f2 → 1f → F 2 | 2f2 → 2f → F 2)

SY STEM = P 1||P 2||F 1||F 2

In general, we get a set of equations of the form:

X = f(X)

Y = g(X)

where X is a vector of processes and f must contain →.
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How to Compare Modeling Formalisms?

Descriptive Power: Language complexity or class of languages that a (finite) model can

represent.

• Finite-state automata: Regular Languages R

• Labeled Petri Nets: PNL ⊃ R.

Algebraic Structure: Formal operations that permit to build complex systems by

interconnecting simple systems and that allow to “manipulate” a model for analysis and

synthesis purposes.

• R has nice properties: closed under union, concatenation, intersection, parallel

composition, complementation w.r.t. E∗.

These operations can be “implemented” using finite-state automata.

• PNL does not enjoy such nice properties.

However, Petri nets have intrinsically modular structure: e.g., system decomposition

by means of place-bordered Petri nets.
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