UNIVERSITY OF MICHIGAN
DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
LECTURE NOTES FOR EECS 661
CHAPTER 1: INTRODUCTION TO DISCRETE EVENT
SYSTEMS

Stéphane Lafortune

September 2004

@ECS 661 - Chapter 1

References for Chapter 1: Textbook, Chapter 1: Section 1.3

Discrete Event Systemsl

A Multidisciplinary Area:

Operations
Research

Computer
Science

Systems & Control

What:

e Discrete State Space (logical, symbolic variables)
e Fvent-driven Dynamics

Why:
e Technological Systems, Computer Control

— Large, Complex Systems: they need to be analyzed, diagnosed, controlled, and optimized

QLafortune - Last revision: September 2004

B

@ECS 661 - Chapter 1 \

Where:

e Inherently Discrete Systems:
computer systems, communication networks, automated manufacturing systems (cell and
factory levels), software systems.

e Systems with Continuous and Discrete Variables (hybrid systems), modeled as DES at a
certain level of abstraction, e.g., for the higher level control logic:
process control, automated manufacturing systems (machine and cell levels); intelligent
transportation systems, air traffic systems.

o [‘mbedded systems ; networked systems.
How:

e Mathematical Modeling, Analysis, Verification, Diagnosis, Controller Design,
Optimization, Simulation

QLafortune - Last revision: September 2004 y

@ECS 661 - Chapter 1

Conceptual Control
System Architecture:

QLafortune - Last revision: September 2004

SUPERVISORY CONTROLLER

COORDINATION

sl

REAL-TIME
CONTROL

DIAGNOSTICS

FAILURE
RECOVERY

Commands

Observable events

Y

INTERFACE

\ /

EQUIPMENT
CONTROLLERS

CONTROLLER

4

SYSTEM

@ECS 661 - Chapter 1 \

Some Examples

The Heating System of a Heating, Ventilation, and Air Conditioning (HVAC)

Unit

FAN HTG. COIL.—

— —
VALVE
PUMP
 /

BOILER CONTROLLER

g ——

e The operation of the unit is monitored by a set of sensors.
e The issue of interest: Fault Diagnosts.
e Specifically: diagnose occurrence of “sharp” faults during the on-line operation of the unit.

e Eixamples of faults: stuck failures of valves, on-off failures of pumps, controllers, sensors,
ete.

e Implementation: diagnostics module in the control logic.

QLafortune - Last revision: September 2004 y

@ECS 661 - Chapter 1

Models .@ e
of the Components of 8N

FOFF BOFF

the HVAC System: FAN BOILER

CONTROLLER

QLafortune - Last revision: September 2004

@CS 661 - Chapter 1

Part of the Diagnoser
for the Heating System
(HVAC Unit)

F1: SO

F2: SC

F3: CFON

F4. CFOFF

QLafortune - Last revision: September 2004

7N 8F1 oF2 | SSPL NF>

o]

<FON, NF >

4N 5F1 6F2

37F3 38 FIF3 39F2F3

34F3 35F1F3 36F2F3

85F4 86F1F4 87F2F4

¢< OV, NF >

10 N 11F1 12F2
40F3 41F1F3 42F2F3

¢<PON, F>

13N 14F1
43F3 44 F1F3

¢< BON, F >

16N 17F1
46F3 47 F1F3

¢< SPD, F >

<FON,NF> A

19N 20F1
58F3 59F1F3

/\kcv,ms

22N
A

< POFF, NF >

25N 27F2

<BOFF, NF >

28N 29F1 30F2

K SPI, NF > <FOFF, NF >

|7N 8FL 9F2| |1N 2F1 3|=2|—

10N 11F1 12F2
13N 14F1

N, F >

16N 17F1

SPD, F >

19N 20F1

CV,NF >

450

<BON, k>

82F4 83FLF4 BAF2F4

<FON, NF >

<SPD, NF > ¢ E

1N 2F1 3F2
79F4 80FlF4 8l1F2F4

28N 29F1 30F2
49F3 S50F1F3 51F2F3
88F4 B89FLF4 90F2F4

< FOFF, NF >

<QV, NF > ¢

|52F3 53FLF3 54F2F3 |
<PON, F> ¢

55F3 56FLF3

<BON, F>

67F3 68FLF3
I, F>

K SPI,

70F3 71F1F3
73F3 T7AFL1F3

K PON, F >

76F3 T77F1F3

58F3 59F1F3
61F3 62F1F3
64 F3 65 FLF3

<PON, NF >

57 F2F3

<BON, NF >

69 F2F3

SPI, NF >

72 F2F3

N, NF >

60 F2F3

63 F2F3

_NF >

66 F2F3

@ECS 661 - Chapter 1

A “Small” Telephone System

JO) JO}

O}

e The network has screening, forwarding, and multi-way calling capabilities.
e The issue of interest: Feature Interactions.

e Specifically: detection and resolution of logical conflicts (interactions) between options
(features).

e Implementation: correct design of the (modular) software programs that run at the
switches.

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1

Model of User 0 in a Telephone System:

nocon0

nocon0

noconO

QLafortune - Last revision: September 2004

Model of User 1 at Switch 0 in Telephone
System:

REQ
conl0
noconl10 reql0
fwd101 =
fwd102
[NOT_REQ D fhl
dfhl
onhl offhl

INIT

@CS 661 - Chapter 1

A Control Architecture for
Approaching this
Problem:

QLafortune - Last revision: September 2004

SPOTS-4

@ECS 661 - Chapter 1

Other examples:

Railway Connections and Time Tables!

e The network of railway connections is closed and each line has a fixed number of trains.

The inter-station travel times are known and deterministic.

e The objective is to design “satisfactory” time tables for the trains.

e Specifications include: certain trains have to wait for one another to allow change overs.

e Constraints: want system to operate fast, but also want perturbations to completely
disappear in finite time.

e [ssues of interest: how do perturbations to the time table propagate, what limits the
minimum operation time, where would it be helpful to add trains, etc.

e Approach: write equations for the departure times of the trains, using “maximum” and
“addition.”

I'Example due to G. J. Olsder

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1 \

Dispatching Control in an Elevator System?

e Events: hall_call, car_call, car_arrives_at_floor_i, etc.

e States: position of car k, number of passengers waiting at floor i, etc. (very large state
space!)

e Control problem: which car to send where so as to achieve “satisfactory”
performance?

e Performance measures: average waiting time (until car comes), average service time (until
car delivers to desired floor), fraction of passengers waiting more (on average) than one
minute, etc.

e Probabilistic formulation: passenger arrival rates at floors, probability distribution for
destination floors, load times and travel times, etc.
e Common solution: threshold-based control, i.e., hold a car until a threshold is reached.

— The issue is then to determine this threshold and “automatically” adjust it in
real-time, based on observed passenger arrival rates.

2Example due to C. Cassandras

QLafortune - Last revision: September 2004 9

@CS 661 - Chapter 1

AN INEFFICIENT WAY TO SCHEDULE

| A few minutes later... |

Long queue [No elevators.. j
at the lobby... V\
$1f Yy
%X

Xx kiR

My

C.G. Cassandras, ECC 9/95

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1

AN OBVIOUSLY BETTER WAY...

(Hold until K passengers in)

(Keep doors closecﬂ

| A few minutes later... |

[Keep doors closed j

C.G. Cassandras, ECC 9/95

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1

The Three Levels of Abstraction in Modeling DESl

Sample Paths of Discrete Event Systems

X(t)

X5 —_—

%5

4

X3

%

el
t t, tg t, ts tg ty t
A N A O
1 o8 & & & °

Describe this sample path by the timed sequence of events that it contains:

s, = (e1, t1)(ea, ta) (€3, 3)(eq, ta)(es, t5) (€6, o) (€7, t7)

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1 \

The behavior of a given DES is described as follows:

e Timed Language: sect of all timed sequences of events that the DES can
generate/execute

e Stochastic Timed Language: a timed language with a probability distribution
function defined over it

e Language: a timed language where the timing information has been deleted, i.e., it is a
set of sequences, or traces, of events.

Se = €1€92€3€4€5CE7

Formal language theory:

— Finite set of events E : {e1,eq,...,e,}
— Set of all finite strings of event in £: E* - Kleene-closure
— A language L is a subset of £*: L C E*

QLafortune - Last revision: September 2004 y

@ECS 661 - Chapter 1 \

This leads to the three complemetary levels of abstraction at which DES are studied.

e Logical level: the language model is used to study properties that concern event
ordering only; e.g., consider the telephone system example, as well as the HVAC unit
example (diagnosis).

Priorities, mutual exclusion, deadlock, livelock, occurrence of unobservable events, etc.

e Temporal level: the ttmed language model is used to study properties that concern the
timing of the events; e.g., consider the railway network example.
Deadlines, cycle times, effect of perturbations, etc.

e Stochastic level: the stochastic timed language model is used to study properties that

concern the expected behavior of the system under the given statistical information; e.g.,
consider the elevator example.

Average delay, throughput, and other relevant performance measures.

N.B.: Discrete Event Simulation usually refers to the stochastic level.
Question: How to represent [(stochastic) timed| languages?

QLafortune - Last revision: September 2004 y

@ECS 661 - Chapter 1

Discrete Event Modeling Formalisms

e Formal classes of models that represent [(stochastic) timed] languages

e “State-based” formalisms: define a state space and specify the state transition structure
(i.e., (out_state, event, in_state) triples) that represents the language.

Automata (or State Machines) and Petri Nets are widely used.

e “Trace-based” formalisms: use (recursive) algebraic equations on the events to represent
the traces in the language (i.e., no explicit “state”). Often referred to as Process Algebras.

Communicating Sequential Processes (CSP) is a well-know formalism in this category.

e We will study:
— (untimed and timed) automata [modeling, analysis, diagnosis, supervisory control]

— (untimed and timed) Petri nets [modeling, analysis, some control]

— timed event graphs, a special case of timed Petri nets [analysis using max-plus
algebral
— We illustrate the above modeling formalisms for the (familiar) example of the dining

philosophers.

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1

Automaton models of two philosophers (P1, P2) and two forks (F'1, F2)

SPEOW O™

_»1\ 1f @ _»4 of @

1f2 @/m{ 22 2f1
Fl 1f1,2f1 e 12,212
~® O (=)
1 of 1f,2f

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1

Composition of the four automata: P1||P2||F1||F2

1f
(1T,2T,1A.2A) 12
1f1
@\ (=
_/
¢ 162 ¢2f1 (1E,2T,1U,2U)
2f1
12
>© (112,211,1U,2U)
2 2f2
2f 2f2

1f1
— (111,212,1U,2V)
¢ 2

(1T,2E,1U,2U)

O

QLafortune - Last revision: September 2004

@CS 661 - Chapter 1

Petri net model of one philosopher and two forks

_ fork 2 available
if2

holding fork 2

thinking -

if1

_>

rf holding fork 1 /® fork 1 available

if2‘

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1

Petri net model of two philosophers and two forks

fork 2 available

1f2 1f1 ° 2f1 22

O

-~

-

1f

~(~

RN

r(m 12 /@\ 2f2 2f1‘j

OF | O——=C

2f

O~

&/

»

philosopher 1

QLafortune - Last revision: September 2004

fork 1 available philosopher 2

@ECS 661 - Chapter 1

Recursive equation model of two philosophers and two forks

Pl = (1fl—=1f2—> FE1|1f2— 1f1 — E1)
FEl1 = (1f — P1)

P2 = (2f1 - 2f2 — E2|2f2 — 2f1 — E2)
E2 = (2f — P2)

F1 = (1fl=1f— F1]|2f1 - 2f — F1)

F2 = (1f2—=1f > F2|2f2—2f — F2)
SYSTEM = P1||P2||F1||F2

In general, we get a set of equations of the form:

X = f(X)
Y = g(X)

where X is a vector of processes and f must contain —.

QLafortune - Last revision: September 2004

@ECS 661 - Chapter 1

How to Compare Modeling Formalisms?

Descriptive Power: Language complexity or class of languages that a (finite) model can
represent.

e Finite-state automata: Regular Languages R

e Labeled Petri Nets: PNL D R.

Algebraic Structure: Formal operations that permit to build complex systems by
interconnecting simple systems and that allow to “manipulate” a model for analysis and
synthesis purposes.

e R has nice properties: closed under union, concatenation, intersection, parallel
composition, complementation w.r.t. £*.

These operations can be “implemented” using finite-state automata.

e PN L does not enjoy such nice properties.

However, Petri nets have intrinsically modular structure: e.g., system decomposition
by means of place-bordered Petri nets.

QLafortune - Last revision: September 2004

