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Chain Rules for Entropy
The entropy of a collection of random variables is the sum of conditional
entropies.

Theorem: Let X1, X2,…Xn be random variables having the mass probability
p(x1,x2,….xn). Then
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The proof is obtained by repeating the application of the two-variable expansion
rule for entropies.

Conditional Mutual Information
We define the conditional mutual information of random variable X and Y given
Z as:
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Mutual information also satisfy a chain rule:
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Convex Function
We recall the definition of convex function. 

A function is said to be convex over an interval (a,b) if for every x1, x2 ∈(a.b) 
and 0≤ λ ≤ 1,
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A function f is said to be strictly convex if equality holds only if λ=0 or λ=1.

Theorem: If the function f has a second derivative which is non-negative 
(positive) everywhere, then the function is convex (strictly convex).

Jensen’s Inequality
If f is a convex function and X is a random variable, then
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Moreover, if f is strictly convex, then equality implies that X=EX with
probability 1, i.e. X is a constant.
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Information Inequality
Theorem: Let p(x), q(x), x ∈χ, be two probability mass function. Then
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With equality if and only if
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Corollary: (Non negativity of mutual information): For any two random
variables, X, Y,
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With equality f and only if X and Y are independent

Bounded Entropy
We show that the uniform distribution over the range χ is the maximum entropy 
distribution over this range. It follows that any random variable with this range 
has an entropy no greater than log|χ|.

Theorem: H(X)≤ log|χ|, where|χ| denotes the number of elements in the 
range of X, with equality if and only if X has a uniform distribution over χ.

Proof: Let u(x) = 1/|χ| be the uniform probability mass function over χ and let
p(x) be the probability mass function for X. Then

Hence by the non-negativity of the relative entropy,
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Conditioning Reduces Entropy
Theorem:

with equality if and only if X and Y are independent.

Proof:

Intuitively, the theorem says that knowing another random variable Y can only
reduce the uncertainty in X. Note that this is true only on the average. 
Specifically, H(X|Y=y) may be greater than or less than or equal to H(X), but
on the average
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Example
Let (X,Y) have the following joint distribution

Then H(X)=(1/8, 7/8)=0,544 bits, H(X|Y=1)=0 bits and H(X|Y=2)=1 bit. We
calculate H(X|Y)=3/4 H(X|Y=1)+1/4 H(X|Y=2)=0.25 bits. Thus the 
uncertainty in X is increased if Y=2 is observed and decreased if Y=1 is
observed, but uncertainty decreases on the average.

Y

X

1           0   3/4
2         1/8  1/8

1    2
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Independence Bound on Entropy
Let X1, X2,…Xn are random variables with mass probability p(x1, x2,…xn ). Then:

With equality if and only if the Xi are independent.

Proof: By the chain rule of entropies:

Where the inequality follows directly from the previous theorem. We have
equality if and only if Xi is independent of X1, X2,…Xn for all i, i.e. if and only if
the Xi’s are independent.
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Fano’s Inequality
Suppose that we know a random variable Y and we wish to guess the value
of a correlated random variable X. Fano’s inequality relates the probability
of error in guessing the random variable X to its conditional entropy
H(X|Y). It will be crucial in proving the converse to Shannon’s channel
capacity theorem. We know that the conditional entropy of a random variable X 
given another random variable Y is zero if and only if X is a function of Y.
Hence we can estimate X from Y with zero probability of error if and only if
H(X|Y) = 0.

Extending this argument, we expect to be able to estimate X with a
low probability of error only if the conditional entropy H(X|Y) is small.
Fano’s inequality quantifies this idea. Suppose that we wish to estimate a
random variable X with a distribution p(x). We observe a random variable
Y that is related to X by the conditional distribution p(y|x). 
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Fano’s Inequality
From Y, we calculate a function g(Y) = X^ , where X^ is an estimate of X and 
takes on values in X^. We will not restrict the alphabet X^ to be equal to X, and 
we will also allow the function g(Y) to be random. We wish to bound the 
probability that X^ ≠ X. We observe that X → Y → X^ forms a Markov chain. 
Define the probability of error: Pe = Pr{X^ = X}.

Theorem: 

The inequality can be weakened to:

Remark: Note that Pe = 0 implies that H(X|Y) = 0 as intuition suggests.
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