
Chapter 6

MATLAB Programs

Linguaggio Programmazione Matlab-Simulink (2017/2018)

Types of Functions
 Categories of functions:

 functions that calculate and return one value

 functions that calculate and return more than one value

 functions that just accomplish a task, such as printing,
without returning any values

 They are different in:

 the way they are called

 what the function header looks like

 All are stored in code files with the extension .m

Generic Function Definition
 All function definitions consist of:

 The function header

 The reserved word function

 Output arguments and the assignment operator (only if the
function returns value(s)

 Function name and input arguments

 A block comment describing the function

 The body of the function which includes all statements,
including putting values in all output arguments, if
there are any

 end

Functions that Return >1 Value
 General form of a function that returns more than one

value; it has multiple output arguments in the header

 The output arguments are separated by commas

function [output arguments] = functionname(input arguments)
% Comment describing the function
Statements here; these must include putting values in all
of the output arguments listed in the header
end

functionname.m

Calling the function
 Since the function is returning multiple values

through the output arguments, the function call
should be in an assignment statement with
multiple variables in a vector on the left-hand side
(the same as the number of output arguments in
the function header) in order to capture all of
them

 Otherwise, some will be lost

Example Function Call
 For example, if the function header is:

function [x,y,z] = fnname(a,b)

 This indicates that the function is returning 3 things, so a
call to the function might be (assuming a and b are
numbers):

[g,h,t] = fnname(11, 4.3);

 Or using the same names as the output arguments (it
doesn’t matter since the workspace is not shared):

[x,y,z] = fnname(11, 4.3);

 This function call would only get the first value returned:
result = fnname(11, 4.3);

A function tworan that returns two
random integers, each in the range from
10 to 20

function [ranx, rany] = tworan

ranx = randi([10,20]);

rany = randi([10,20]);

end

tworan.m

Example Function call:

[x, y] = tworan

A function tworanb that receives two
integer arguments a and b and returns
two random integers, each in the range
from a to b

function [ranx, rany] = tworanb(a,b)

ranx = randi([a,b]);

rany = randi([a,b]);

end

tworanb.m

Example Function call:

[x, y] = tworanb(5, 50)

Functions that do not return anything
 A function that does not return anything has no

output arguments in the function header, nor does it
have the assignment operator

 The statements in the body would typically display or
plot information from the input arguments

function functionname(input arguments)
% Comment describing the function
statements here

end

functionname.m

Calling a function with no output
 Since no value is returned, the call to such a function is

a statement

 For example, if this is the function header:
function fnname(x,y)

 A call to the function might look like this:
fnname(x,y)

 This would NOT be a valid call; since the function is
not returning anything, there is no value to assign:

result = fnname(x,y); % Invalid!

A function prttworan that prints two
random integers, each in the range
from 10 to 20

function prttworan

fprintf(‘One is %d\n’, randi([10,20]))

fprintf(‘The other is %d\n’, randi([10,20]))

end

prttworan.m

Example Function call:

prttworan

A function prttworanb that receives two
integer arguments a and b and prints
two random integers, each in the range
from a to b

function prttworanb(a,b)

fprintf(‘One is %d\n’, randi([a,b]))

fprintf(‘The other is %d\n’, randi([a,b]))

end

prttworanb.m

Function call:

prttworanb(5,50)

Notes on Functions
 You do not always have to have input arguments to a function. If

you do not, you can have (both in the function header and in the
function call) empty (), or you can just leave them out

 The function header and function call have to match up:

 the name has to be the same

 the number of input arguments must be the same

 the number of variables in the left-hand side of the assignment
should be the same as the number of output arguments

 if there are no output arguments, the function call is a statement

 Functions that return values do not normally print them, also –
that is left to the calling function/script

Subfunctions
 When one function calls another, the two functions can be stored in

the same code file with the same name as the primary function

 The subfunction can only be called by the primary
function

primary function header

primary function body includes call to subfunction

end

subfunction header

subfunction body

end

primary.m

Example: Modular outline
 In a modular program, a script calls functions

 Given the following script (where x,y,z are 3 things)

[x,y,z] = getinputs;

result = calcstuff(x,y,z);

displayit(x,y,z, result)

 With just that information, we can write the
corresponding function headers (not the definitions,
just the headers)

Example function headers
 function [x,y,z] = getinputs

 function result = calcstuff(x,y,z)

 function displayit(x,y,z, result)

Types of Errors
 Syntax errors: mistakes in language e.g. missing quote

at the end of a string

 Run-time (or execution-time) errors: errors that are
found during execution of a script or function, e.g.
referring to an element in a vector that does not exist

 Logical errors: mistakes in reasoning e.g. using an
expression like (0 < x < 10)

Debugging Methods
 There are several methods that can be used to find

errors:
 Tracing: using the echo statement which will show all

statements as executed

 Using MATLAB’s Editor/Debugger

 Set breakpoints so values of variables/expressions can be
examined at various points
 dbstop sets a breakpoint

 dbcont continues execution

 dbquit quits debug mode

Code Cells and Publishing
 Code in scripts can be broken into sections called code

cells

 You can run one code cell at a time

 Code cells are created with comments that start with
two %%

 Code in code cells can also be published in HTML
format with plots embedded and with formatted
equations

 Do this from the Publish tab in the Editor

Programming Style Guidelines
 If arguments are passed to a function in the function

call, do not replace these values by using input in the
function itself.

 Functions that calculate and return value(s) will not
normally also print them.

 Functions should not normally be longer than one
page in length

 Do not declare variables in the Command Window
and then use them in a script, or vice versa.

 Pass all values to be used in functions to input
arguments in the functions.

Exercises
 Write a function perimarea that calculates and returns

the perimeter and area of a rectangle. Pass the length
and width of the rectangle as input arguments.

 Write a function that receives a vector as an input
argument and prints the individual elements from the
vector in a sentence format.

 Write a function that will prompt the user for a string
of at least one character, loop to error-check to make
sure that the string has at least one character, and
return the string.

Exercises
 For a right triangle with sides a, b, and c, where c is the

hypotenuse and θ is the angle between sides a and c,
the lengths of sides a and b are given by:

a = c * cos(θ)

b = c * sin(θ)

Write a script righttri that calls a function to prompt the
user and read in values for the hypotenuse and the angle
(in radians), and then calls a function to calculate and
return the lengths of sides a and b, and a function to
print out all values in a sentence format.

Exercises
 Modify the readradius function to error-check the

user’s input to make sure that the radius is valid. The
function should ensure that the radius is a positive
number by looping to print an error message until the
user enters a valid radius.

Exercises
 The following script is bad code in several ways. Use

checkcode first to check it for potential problems,
and then use the techniques described in this section
to set breakpoints and check values of variables.

debugthis.m

for i = 1:5

i = 3;

disp(i)

end

for j = 2:4

vec(j) = j

end

Chapter 7

String Manipulation

Linguaggio Programmazione Matlab-Simulink (2017/2018)

Strings: Terminology
 A string in MATLAB consists of any number of characters and is

contained in single quotes

 strings are vectors in which every element is a single character

 A substring is a subset or part of a string

 Characters include letters of the alphabet, digits, punctuation
marks, white space, and control characters
 Control characters are characters that cannot be printed, but

accomplish a task (such as a backspace or tab)

 White space characters include the space, tab, newline, and
carriage return

 Leading blanks are blank spaces at the beginning of a string,

 Trailing blanks are blank spaces at the end of a string

 Empty string is a string with length 0, e.g. ''

String Variables
 String variables can be created using

 assignment statements

 input function (with ‘s’ as the second argument)

 Since strings are vectors of characters, many built-in functions
and operators that we’ve seen already work with strings as well
as numbers – e.g., length to get the length of a string, or the
transpose operator

 You can also index into a string variable to get individual
characters or to get subsets of strings, or in other words,
substrings

String Concatenation
 There are several ways to concatenate, or join, strings

 To horizontally concatenate (creates one long string):
 Using [], e.g.

>> ['hello' 'there']

ans =

hellothere

 Using strcat, e.g. strcat(‘hello’, ‘there’)
>> strcat('hello', 'there')

ans =

hellothere

 There is a difference: if there are leading blanks, using []
will retain them whereas strcat will not

Vertical Concatenation
 Vertically concatenating strings creates a column

vector of strings, which is basically a character matrix
(a matrix in which every element is a single character)

 There are 2 ways to do this:
 Using [] and separating with semicolons

 Using char

 Since all rows in a matrix must have the same number
of characters, shorter strings must be padded with
blank spaces so that all strings are the same length ;
the built-in function char will do that automatically

Character Matrices
 Both [] and char can be used to create a matrix in

which every row has a string:
>> cmat = ['Hello';'Hi '; 'Ciao '];

>> cmat = char('Hello', 'Hi', 'Ciao’);

 Both of these will create a matrix cmat:

 Shorter strings are padded with blanks, e.g.
cmat(2,:) is 'Hi '

H e l l o

H i

C i a o

The sprintf function
 sprintf works just like fprintf, but instead of printing,

it creates a string – so it can be used to customize the
format of a string

 So, sprintf can be used to create customized strings to
pass to other functions (e.g., title, input)

>> maxran = randi([1, 50]);

>> prompt = sprintf('Enter an integer from 1 to %d: ', maxran);

>> mynum = input(prompt);

Enter an integer from 1 to 46: 33

 Any time a string is required as an input, sprintf can
create a customized string

String Comparisons
 strcmp compares two strings and returns logical 1 if

they are identical or 0 if not (or not the same length)

 For strings, use this instead of the equality operator ==

 variations:

 strncmp compares only the first n characters

 strcmpi ignores case (upper or lower)

 strncmpi compares n characters, ignoring case

Find and replace functions

 strfind(string, substring): finds all occurrences of
the substring within the string; returns a vector of the
indices of the beginning of the strings, or an empty
vector if the substring is not found

 strrep(string, oldsubstring, newsubstring): finds
all occurrences of the old substring within the string,
and replaces with the new substring

 the old and new substrings can be different lengths

The strtok function
 The strtok function takes a string and breaks it into

two pieces and returns both strings

 It looks for a delimiter (by default a blank space) and
returns a token which is the beginning of the string up
to the delimiter, and also the rest of the string, including
the delimiter

 A second argument can be passed for the delimiter

 So – no characters are lost; all characters from the
original string are returned in the two output strings

 Since the function returns two strings, the call to strtok
should be in an assignment statement with two variables
on the left to store the two strings

Examples of strtok
>> mystring = 'Isle of Skye';

>> [first, rest] = strtok(mystring)

first =

Isle

rest =

of Skye

>> length(rest)

ans =

8

>> [f, r] = strtok(rest, 'y')

f =

of Sk

r =

ye

The eval function
 The eval function evaluates a string as a function call

or a statement

 Usually used when the contents of the string are not
known ahead of time; e.g., the user enters part of it
and then a customized string is created

 For example:
>> x = 1:5;

>> fn = input('Enter a function name: ', 's');

Enter a function name: cos

>> eval(strcat(fn, '(x)'))

ans =

0.5403 -0.4161 -0.9900 -0.6536 0.2837

eval example
This is a very common application: a series of

experiments has been run, resulting in files with the
same name except for consecutive integers at the end
of the name. We will write a for loop that will load
files named ‘file1.dat’, ‘file2.dat’, … ‘file5.dat’
(assuming that they exist)

for i = 1:5

eval(sprintf('load file%d.dat',i))

end

“is” & String/Number Functions
 “is” functions for strings:

 isletter true if the input argument is a letter of the alphabet

 isspace true if the input argument is a white space character

 ischar true if the input argument is a string

 isstrprop determines whether the characters in a string are in
a category specified by second argument, e.g. ‘alphanumeric’

 Converting from strings to numbers and vice versa:
 int2str converts from an integer to a string storing the integer

 num2str converts a real number to a string containing the
number

 str2num (and str2double) converts from a string containing
number(s) to a number array

 (Note: different from converting to/from ASCII equivalents)

Common Pitfalls
 Trying to use == to compare strings for equality,

instead of the strcmp function (and its variations)

 Confusing sprintf and fprintf. The syntax is the
same, but sprintf creates a string whereas fprintf
prints

 Trying to create a vector of strings with varying lengths
(the easiest way is to use char which will pad with
extra blanks automatically)

 Forgetting that when using strtok, the second
argument returned (the “rest” of the string) contains
the delimiter.

Programming Style Guidelines
 Trim trailing blanks from strings that have been stored

in matrices before using

 Make sure the correct string comparison function is
used; for example, strcmpi if ignoring case is desired

Exercises
 Prompt the user for a string. Print the length of the

string and also the first and last characters in the
string. Make sure that this works regardless of what
the user enters.

 In a loop, create and print strings with file names
“file1.dat”, “file2.dat”, and so on for file numbers 1
through 5.

 Create an x vector. Prompt the user for ‘sin’, ‘cos’, or
‘tan’ and create a string with that function of x (e.g.,
‘sin(x)’ or ‘cos(x)’). Use eval to create a y vector using
the specified function.

