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Approximations with pursuits 

•  To optimize non-linear signal approximations, one can adaptively choose 
the basis depending on the signal 

•  The set of orthogonal bases is much smaller than the set of non-orthogonal 
bases that could be constructed by choosing N linearly independent vectors 
from these  P.  

•  To improve the approximation of complex signals such as music recordings, 
we study general non-orthogonal signal decompositions. 

•  Consider the space of signals of size  N. Let  

•  be a redundant dictionary of P>N vectors which includes at least N linearly 
independent vectors 

D = gp{ }0≤p<P



Approximations with pursuits 

•  For M≥1, an approximation fM of f can be calculated with a linear 
combination of any M dictionary vectors 

•  The freedom  of choice opens the door to a considerable combinatorial 
explosion. 

•  For general dictionaries of P > N vectors, computing the approximation f~ 
that minimizes ||f – fM ll is an NP hard problem.  

–  This means that there is no known polynomial time algorithm that can solve this 
optimization. 

•  Pursuit algorithms reduce the computational complexity by searching for 
efficient but non-optimal approximations.  



Basis pursuits 

•  A basis pursuit formulates the search as a linear programming problem, 
providing remarkably good approximations with 0(N3.5log23.5N) 
operations.  

•  For large signals, this remains prohibitive. Matching pursuits are faster 
greedy algorithms that make the problem tractable 

•  We study the construction of a “best” basis B, not necessarily 
orthogonal, for efficiently approximating a signal f 

•  The N vectors of the basis  

•  are selected with a pursuit. 



Basis pursuit 

•  Let us decompose f in the basis 

•  A basis pursuit searches for a basis that minimizes 

Minimizing the l1 norm  of the decomposition coefficients avoids diffusing the 
energy of f among many vectors. It reduces cancellations between the vectors 
a[pm]gpm, that decompose f, because such cancellations increase |a[pm]| and  
thus increase the cost.  

The minimization of an l1 norm is also related to linear programming, which 
leads to fast computational algorithms. 



Linear programming 



Linear programming 

•  It can be shown that the solution has at most N non zero coefficients 

•  In the non degenerate cases, which are most often encountered, the non 
zero coefficients correspond to N indicis {pm}0≤m<M such that 

•  are linearly independent. 

•  This is the best basis of RN that minimizes the cost.                                                 



Matching pursuit 

•  Despite the linear programming approach, a basis pursuit is computationally 
expensive because it minimizes a global cost function over all dictionary 
vectors. 

•  The matching pursuit introduced by Mallat and Zhang [259] reduces the 
computational complexity with a greedy strategy. 

•  Let                                    be a dictionary of P>N vectors having unit norm. 

•  This dictionary includes N linearly independent vectors that define a basis of 
the space CN of signals of size N.  

•  A matching pursuit begins by projecting  f on a vector                  and 
computing the residue Rf 



Matching pursuit 



Matching pursuit 

(9.89) 



Matching pursuit 



Theorem 



Matching pursuit 

•  The convergence rate X decreases when the size N of the signal space 
increases.  

•  In the limit of infinite dimensional spaces, Jones' theorem proves that  the 
algorithm still converges but the convergence is not exponential [230,259].  

•  Observe that even in finite dimensions, an infinite number of iterations is 
necessary to completely reduce the residue.  

•  In most signal processing applications, this is not an issue because many 
fewer than N iterations are needed to obtain sufficiently precise signal 
approximations. 



Fast network calculations 

•  A matching pursuit is implemented with a fast algorithm that computes 

                            from                          with a simple updating formula 

 

 

 

•  To reduce the computational load, it is necessary to construct dictionaries 
with vectors having a sparse interaction. This means that each gγ has non-
zero inner products with only a small fraction of all other dictionary vectors 

•  Dictionaries  are designed so that non-zero weights                     can be 
retrieved from memory or computed with O( 1) operations 

Rm+1 f ,gγ Rm f ,gγ

Rm+1 f ,gγ = Rm+1 f ,gγ − Rm+1 f ,gγm gγm ,gγ

gα,gγ



Matching pursuit 

•  A matching pursuit with a relative precision ε is implemented as follows 

(9.102) 



Matching pursuit 

•  If D is highly redundant, computations at steps 2 and 3 are reduced by 
performing the calculation on a subdictionary Ds 

•  The sub-dictionary Ds is constructed  so that  

•  then there exists                      which minimizes (9.102) and whos         is 
close to         

•  The index           is found by a local search 

•  This is done in time-frequency dictionaries where a sub-dictionary can be 
sufficient to indicate a time-frequency region where an almost best match is 
located. 

γm
γm
γm



Translation invariance 

•  Decompositions  in orthogonal bases lack translation invariance and are 
thus difficult to use for pattern recognition. 

•  Matching pursuits are translation invariant if calculated  in translation 
invariant dictionaries 

•  A dictionary is translation invariant if for any  

•  Suppose that the matching decomposition of f in D is 

gγ ∈ D and n ∈ 0,N −1[ ]→ gγ n− p[ ]∈ D



Translation invariance 



Gabor dictionaries 

•  A time and frequency translation invariant Gabor dictionary is constructed 
by Qian and Chen [287] as well as Mallat and Zhong [259], by scaling, 
translating and modulating a Gaussian window.  

•  Gaussian windows are used because of their optimal time and frequency 
energy concentration, proved by the uncertainty Theorem 



Gabor dictionaries 



Gabor dictionaries 



Orthogonal MP 

•  The approximations of a matching pursuit are improved by orthogonalizing 
the directions of projection, with a Gram-Schmidt procedure  

•  The resulting orthogonal pursuit converges with a finite number of iterations, 
which is not the case for a non-orthogonal pursuit. 

•  The price to be paid is the important computational cost of the Gram-
Schmidt orthogonalization. 



Orthogonal MP 



Orthogonal MP 



Orthogonal MP 



Orthogonal MP 



Orthogonal MP 

•  During the first few iterations, the pursuit often selects nearly orthogonal 
vectors, so the Gram-Schmidt orthogonalization is not needed.  

•  The orthogonal and nonorthogonal pursuits are then nearly the same.  

•  When the number of iterations increases and gets close to N, the residues 
of an orthogonal pursuit have norms that decrease faster than for a non-
orthogonal pursuit. 


