(submit your solutions during the lecture on December 18, 2014)

Exercise 1. Let K be a field.

- (a) Given the quiver $Q: 1 \longrightarrow 2 \longrightarrow 3$ (no relations), compute ¹ the representations S_2 , I_2 , I_1 and their transposes $\text{Tr}S_2$, $\text{Tr}I_2$, $\text{Tr}I_1$.
- (b) Given the quiver $Q: 1 \longrightarrow 2 \longleftarrow 3$ (no relations), compute τI_i for i = 1, 2, 3. (10 points)

Exercise 2. Let *K* be a field and *Q* the quiver $\begin{array}{c} 2 \\ & & \\ & & \\ & & \\ 1 \end{array}$ (no relations).

- (a) Determine all indecomposable projective representations and their radicals.
- (b) Determine all indecomposable injective representations and their socles.
- (c) Determine the minimal projective resolutions of the simple representations.
- (d) Compute the representation $\nu(S_1)$.
- (e) Compute the representation $\tau(S_1)$.

Exercise 3. Let Q be the quiver $1 \xleftarrow{\alpha}{\beta} 2$. Compute minimal projective resolutions

of the simple representations S_1 and S_2 of the bound quiver (Q, I), where

- (a) $I = \langle \beta \alpha \rangle$,
- (b) $I = \langle \alpha \beta, \beta \alpha \rangle$

(hint: in case (b) show that the minimal projective resolutions are

$$\cdots \to P_2 \to P_1 \to P_2 \to P_1 \to P_2 \to P_1 \to S_1 \to 0$$

$$\cdots \to P_1 \to P_2 \to P_1 \to P_2 \to P_1 \to P_2 \to S_2 \to 0$$

thus KQ/I has infinite global dimension).

(10 points)

(10 points)

¹All computations should be done in terms of representations (given by vector spaces and linear maps).