Università degli Studi di Verona Corso di Laurea Magistrale in Matematica Applicata

Prof. Marco Squassina Some exercises of functional analysis - A.A. 2013/14 - N.4

Pb 1. Prove that $C = \{f \in L^2(0,1) : \|f\|_{L^2(0,1)} \le 1\}$ is *not* a compact set of $L^2(0,1)$.

Pb 2. Let p > 1, E a subset of \mathbb{R}^N of finite lebesgue measure, $f_n : E \to \mathbb{R}$ a sequence of measurable functions bounded in $L^p(E)$ which converges pointwise to a function $f : E \to \mathbb{R}$. Prove that (f_n) converges to f in $L^q(E)$ for every $q \in [1, p)$.

Pb 3. Prove that

$$C = \left\{ f \in C([0,1]) : f(0) = 0 \text{ e } |f(x) - f(y)| \le |x - y| \text{ per ogni } x, y \in [0,1] \right\},\$$

is a compact set in C([0, 1]), when endowed with the superior norm.

Pb 4. Let $f : [0, +\infty) \to \mathbb{R}$ be a continuous function such that $f(x) \to 0$ as $x \to +\infty$. Prove that if $f \in L^1(0, +\infty)$, then $f \in L^p(0, +\infty)$, for every p > 1.

Pb 5. Detect a norm on C([0,1]) such that Tf = f(0) + 2f(1) is continuous. Detect a norm on $C^{1}([0,1])$ such that Tf = f(0) + f'(1) is continuous. Estimate the norms of these operators.

Pb 6. Let for every $j \in \mathbb{N}$

 $C_j = \big\{ f \in C([0,1]) : \text{ there exists } x \text{ such that } |f(x) - f(y)| \le j|x-y| \text{ for every } y \in [0,1] \big\}.$

Prove that each C_j is closed in C([0,1]), and that setting $A_j = C([0,1]) \setminus C_j$ if $f \in \bigcap_{j \in \mathbb{N}} A_j$, than f is *nowhere* differentiable.

Pb 7. Let, for all $j \ge 1$

$$C_j = \left\{ f \in L^2(0,1) : \int_0^1 |f|^2 \le j \right\}.$$

Prove that there exists j_0 such that C_{j_0} has *nonempty* interior.

Pb 8. Let, for all $j \ge 1$

$$Q_j = \left\{ f \in L^2(0,1) : \int_0^{\frac{1}{j}} |f|^2 \ge 1 \right\}.$$

Is it $\bigcap_{j=1}^{\infty} Q_j \neq \emptyset$ or $\bigcap_{j=1}^{\infty} Q_j = \emptyset$?

Pb 9. Let $\varphi \in L^{3/2}([0,1])$ and $\psi \in L^m([0,1])$ for m > 1. Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of measurable functions such that $|f_n| \leq \varphi \psi$ and $f_n \to f$ as $n \to \infty$ pointwise. For which values of m can one conclude that $\int_0^1 f_n \to \int_0^1 f$ as $n \to \infty$.

Pb 10. Let $\varphi \in C_c^{\infty}(\mathbb{R})$. Compute $\int_{\mathbb{R}} \sin(nx)\varphi(x)$ as $n \to \infty$. And if $\varphi \in L^2(0,1)$?

Pb 11. Let

$$c_0 = \Big\{ x = (\xi_1, \dots, \xi_n, \dots) : \xi_j \in \mathbb{C}, \ \xi_j \to 0 \text{ per } j \to \infty \Big\}.$$

Prove that c_0 is closed in ℓ_{∞} ,

$$\ell_{\infty} = \Big\{ x = (\xi_1, \dots, \xi_n, \dots) : \xi_j \in \mathbb{C}, \ \|x\|_{\infty} = \sup_{j \in \mathbb{N}} |\xi_j| < \infty \Big\}.$$

when endowed with the norm $\|\cdot\|_{\infty}$.

Pb 12. Let

$$c_{00} = \left\{ x = (\xi_1, \dots, \xi_n, \dots) : \xi_j \in \mathbb{C}, \exists K = K(x) : \xi_j = 0 \text{ per } j \ge K \right\}$$

Prove that c_{00} is not complete when endowed with the norm $\|\cdot\|_{\infty}$.

Pb 13. Let X, Y be normed spaces with X reflexive and $T : X \to Y$ linear such that $Tx_j \to 0$ as $j \to \infty$ if $x_j \to 0$ as $j \to \infty$. Show that T is continuous.

Pb 14. Let *X* be a reflexive Banach space and let $(T_j) \subset X'$. Suppose that T_j converges to *T* weakly* and that $x_j \to x$ in *X* as $j \to \infty$. Prove that $\langle T_j, x_j \rangle \to \langle T, x \rangle$ as $j \to \infty$.

Pb 15. Suppose that $(\alpha_n) \subset \mathbb{R}$ is a sequence such that

$$\sum_{n=1}^{\infty} |\beta_n \alpha_n| < +\infty$$

for every sequence $(\beta_n) \subset \mathbb{R}$ converging to zero. Then

$$\sum_{n=1}^{\infty} |\alpha_n| < +\infty$$

Pb 16. Let X be a Banach space, Y be a normed space, $\mathcal{T} \subset \mathcal{L}(X, Y)$ such that

$$\sup_{T \in \mathcal{T}} |\langle \varphi, Tx \rangle| < +\infty, \qquad \forall x \in X, \ \varphi \in X'.$$

Prove that \mathcal{T} is bounded in $\mathcal{L}(X, Y)$.

Pb 17. Let *X* be a Banach space and let $B : X \times X \to \mathbb{R}$ be a bilinear form such that the maps $x \mapsto B(x, y)$ and $y \mapsto B(x, y)$ are continuous. Prove that *B* is continuous.

Pb 18. let $L: \ell^2 \to \ell^2$ be the left shift operator, that is

$$Lx = (x_2, x_3, \dots), \qquad x = (x_1, x_2, x_3, \dots)$$

and the right shift, namely

$$Rx = (0, x_1, x_2, \dots), \qquad x = (x_1, x_2, x_3, \dots).$$

Study the kernel and the image of *L* and *R*. Prove that *R* is an isometry, while *L* is not.

Verona, 13 novembre 2013