Feature extraction

Outline

Basic feature extraction

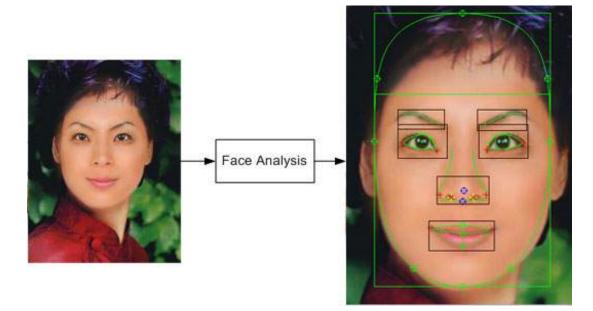
- ▶ Points, lines and edges
- ► How to compute *derivatives of images*
- ► *First* and *second-derivatives* approaches
- ► Formulation as *spatial filters*

More advanced examples

- Canny edge detector
- Lines and circles by voting procedures
- ► *Known* shapes/objects

What is feature extraction?

Recognize and extract specific features of an image from the raw data that can be used as input to a learning algorithm



Here we focus on low level feature extraction

- Basic features that can be extracted without any shape information
 - e.g. *previous example* requires prior information on the objects to extract
- ► Features of interest: *points, lines* and *edges*
- Such features will be then used as input to more advanced segmentation algorithms

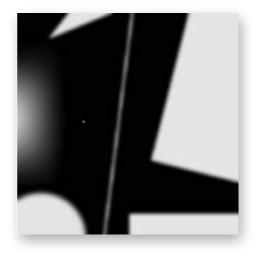
Features of interest

(1/2)

We are interested in three basic types of image features:

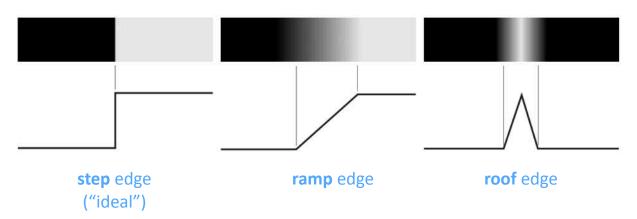
Edges

- Pixels at which the intensity of an image changes abruptly
- Lines
 - May be seen as 1-pixel-thick edges
- Isolates points
 - Line whose *length* and *width* are equal to 1 pixel



Note: all characterized by *sharp, local changes* in intensity

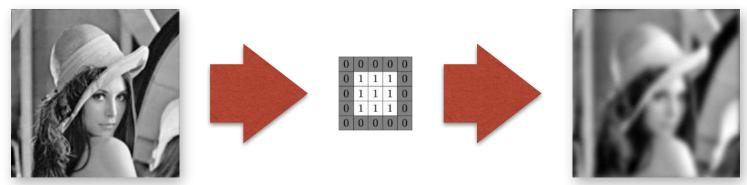
Typical edges found in images



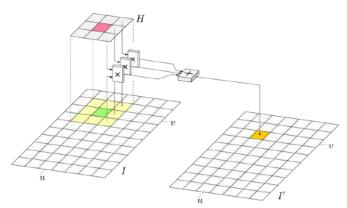
Features of interest

How to extract these features? Analogy with local averaging

► Local averaging *smooths* an image



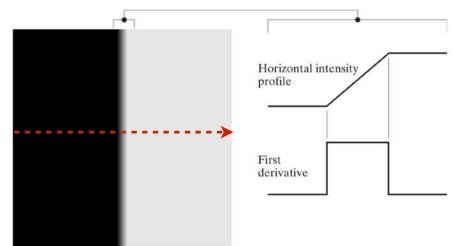
Averaging is analogous to integration



No surprise that *abrupt, local changes* in intensity can be **detected using derivatives!**

Image features and derivatives

Analyze a single line in a typical image i.e. 1D signal



1st derivative, f'(x)

- ► zero in areas of constant intensity
- positive at the onset of the ramp and positive on the ramp

• Magnitude of f'(x) may be used to identify edge pixels

▶ NB: an edge is detected with "<u>thick</u>" responses

Image features and derivatives

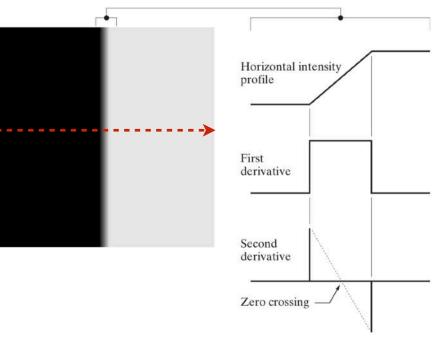
Analyze a single line in a typical image i.e. 1D signal

2nd derivative, f''(x)

- zero in areas of constant intensity and zero on the ramp
- positive at the onset of the ramp but negative at the end (double-edge effect and zero-crossing point)

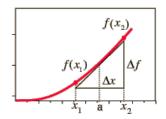
Sign change of f''(x) can be used to identify edge pixels

- ▶ NB: an edge is detected with "<u>much thinner</u>" responses
- Higher sensitivity to finer details



For a **continuous 1D function**, the first-order derivative is

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$



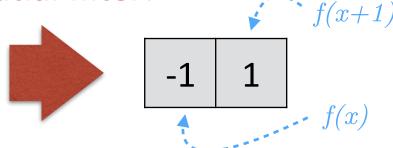
For **discrete functions**, it can be approximated with *finite differences* $df = f(x + \Delta x) - f(x)$

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

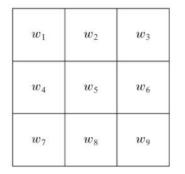
- Δx is dictated by the discretization step (sampling) in x
- ► NB: Δx = 1 pixel

It can be implemented as a linear spatial filter!

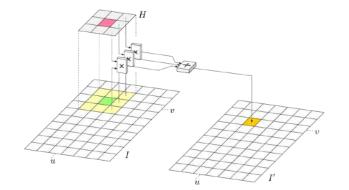
$$f'(x) = \frac{df}{dx} \approx f(x+1) - f(x)$$



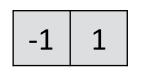
Recall the definition of *spatial filtering*

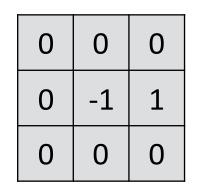


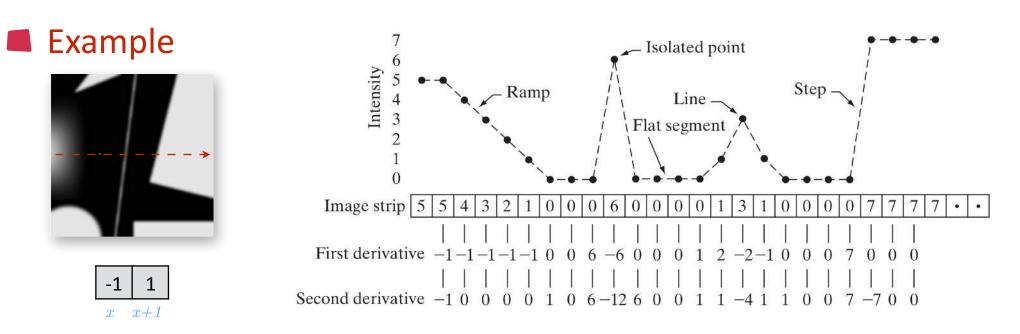
$$R = w_1 z_1 + w_2 z_2 + \dots + w_9 z_9$$
$$= \sum_{k=1}^9 w_k z_k$$



- ► A *filter H* is defined as a 3x3 matrix
- The values w_k define the function implemented by the filter
- Response of the filter (R) at the central pixel computed by weighted average
- According to our *previous conventions*, the filter for f'(x) can be written as







Similarly for the second-order derivative

$$f''(x) = \frac{df'(x)}{dx} = f'(x+1) - f'(x)$$

$$\approx f(x+2) - f(x+1) - f(x+1) + f(x)$$

NB: this expansion is about point x+1, we need to center it at x

$$f''(x) = \frac{d^2 f}{d^2 x} \approx f(x+1) - 2f(x) + f(x-1)$$
 1 -2 1

With discrete functions, left and right derivatives don't match

Forward differences
 $\Delta_+ f(x) = f(x+1) - f(x) \quad (right slope)
 f(x)$ Backward differences
 $\Delta_- f(x) = f(x) - f(x-1) \quad (left slope)$

Solution: take the average

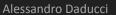
► Central differences

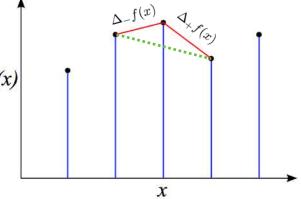
$$\Delta f(x) = \frac{1}{2} \left(\Delta_{+} f(x) + \Delta_{-} f(x) \right) = \frac{1}{2} \left(f(x+1) - f(x-1) \right)$$

(average slope)

Central differences as spatial filter

$$H = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$
 $f(x+1)$ $f(x-1)$





Derivatives of images

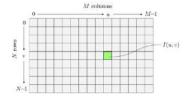
- Images have two dimensions
- We can take derivatives of I(u,v) with respect to u or v

derivative along u

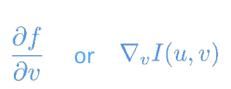
derivative along v

NB: the results are <u>two images</u>

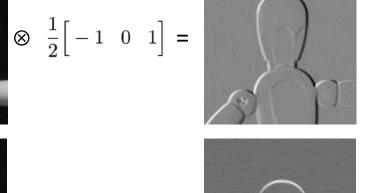
► The *value in each pixel* is the corresponding partial derivative



 $rac{\partial f}{\partial u}$ or $abla_u I(u,v)$

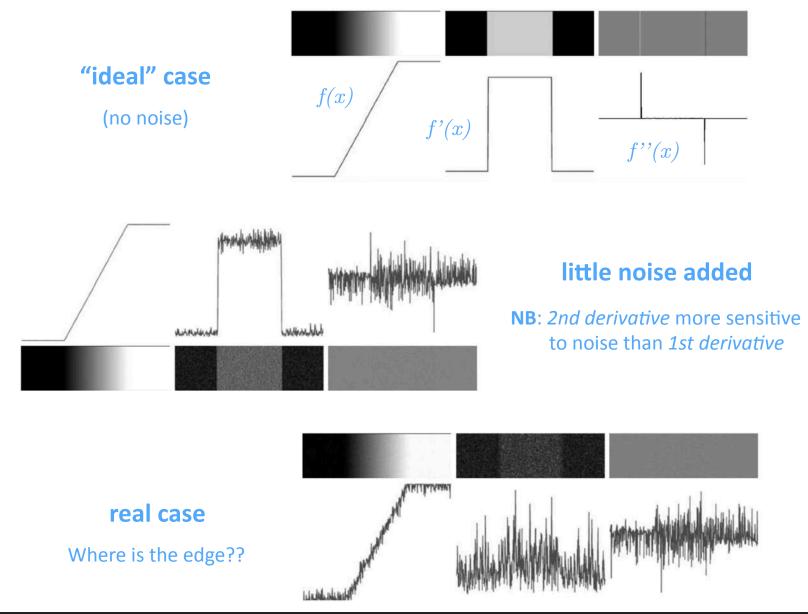


 $\otimes \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T =$



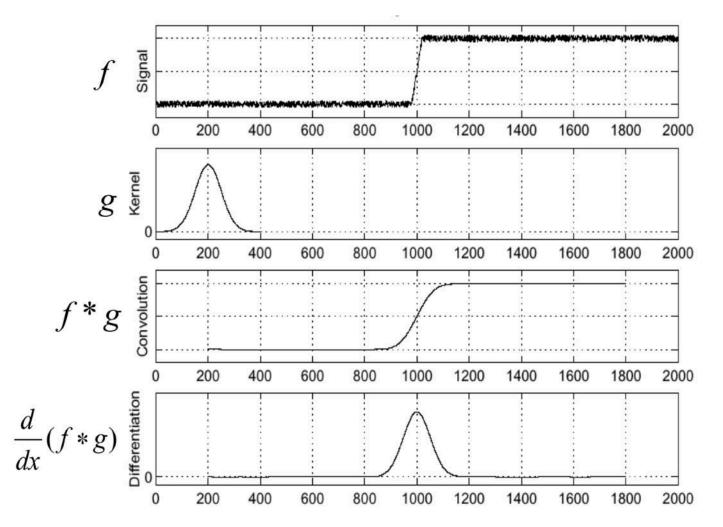
Effects of noise

Finite difference filters respond strongly to noise



Effects of noise

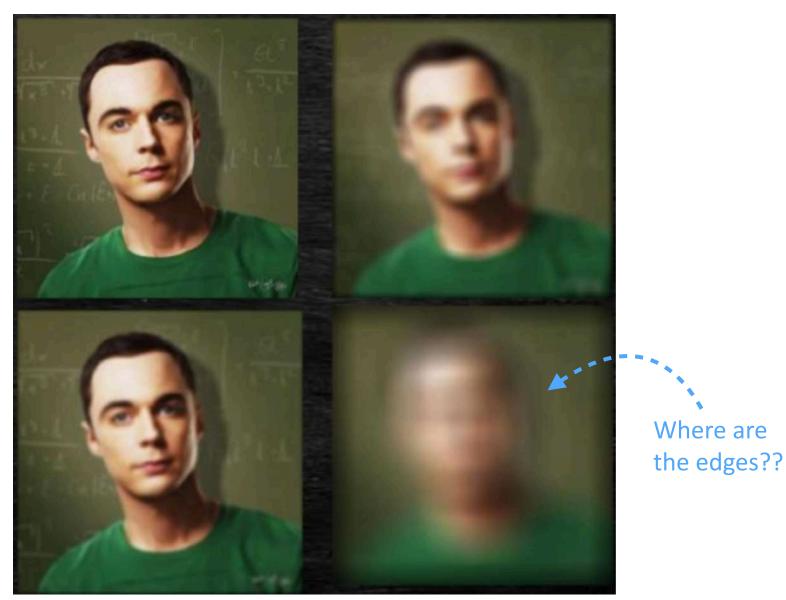
Very important: smooth the image before detecting edges



► To find edges, we **look for peaks** in the derivative images

Effects of noise

NB: do not exaggerate!



Isolated points are very small features...

...thus, 2nd derivative should be an appropriate choice (recall previous discussion)

 $\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ Laplacian of f(x, y)

Compute the **partials about pixel** (x,y) as described before

$$\frac{\partial^2 f(x, y)}{\partial x^2} = f(x + 1, y) + f(x - 1, y) - 2f(x, y)$$

$$\frac{\partial^2 f(x, y)}{\partial y^2} = f(x, y + 1) + f(x, y - 1) - 2f(x, y)$$

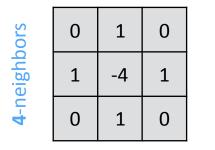
-2 1

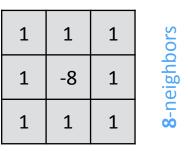
The Laplacian is then

$$\nabla^2 f(x, y) = f(x + 1, y) + f(x - 1, y) + f(x, y + 1)$$
$$+ f(x, y - 1) - 4f(x, y)$$

Written as a spatial filter

- Measures the weighted differences between a pixel and its 4-neighbors
- ► This formulation can be *extended* to include the *diagonal terms*





NB: coefficients *sum to zero* \rightarrow response R=0 in constant areas

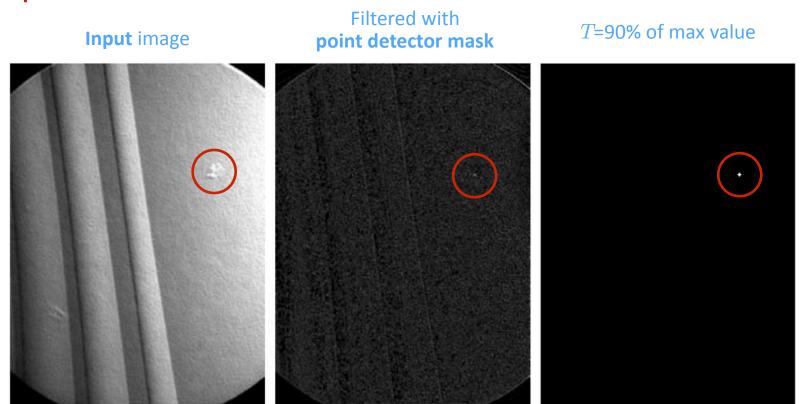
Intuition: intensity of isolated point is *quite different from its neighbors* → this filter will have **high response at that point**

Usually a threshold T is used to claim that a feature, e.g. point, has been detected at pixel (x,y)

$$g(x, y) = \begin{cases} 1 & \text{if } |R(x, y)| \ge T \\ 0 & \text{otherwise} \end{cases}$$

R is the response to the detector mask

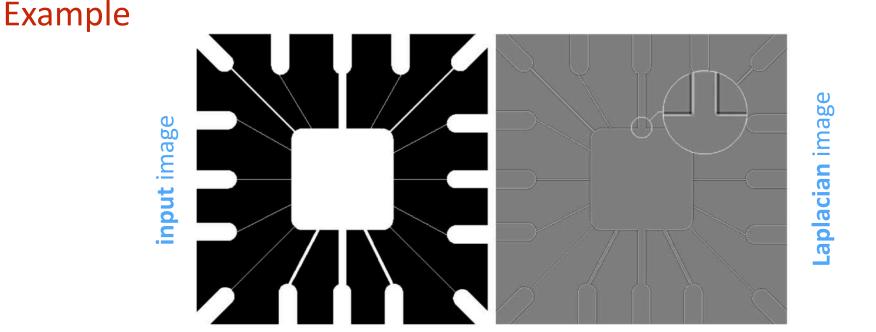
Example



Detecting lines

As lines are very small features (i.e. 1 pixel wide) we could use again the Laplacian mask

Laplacian of f(x,y)



<u>R=0</u> in areas of *constant intensity*, and <u> $R\neq0$ </u> close to *lines* (and *thin edges*)

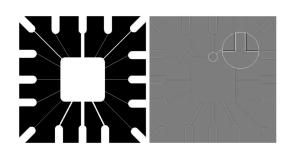
 $\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

Detecting lines

(2/4)

How to handle positive/negative values?

- ► Taking the **absolute value** (*left*) → *thick* lines
- ► Keeping **positive values** (*right*) → *thinner* lines



oositive values

Note: when the lines are wide w.r.t. mask size, lines are separated by a "zero valley"

- lmagine a 3x3 mask in a white region at least 5 pixels wide \rightarrow R=0
- Line detection assumes thin lines (otherwise they are edges)

absolute value

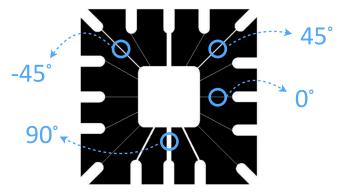
Detecting lines

The Laplacian mask is isotropic

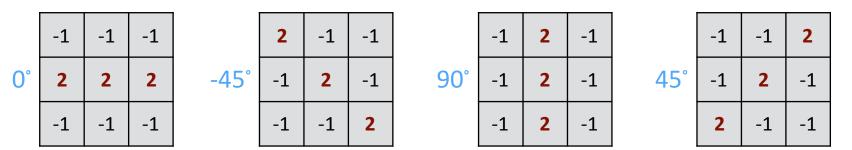
▶ i.e. insensitive to *line direction*

1	1	1	
1	-8	1	
1	1	1	

Often, it is interesting to detect lines in specified directions

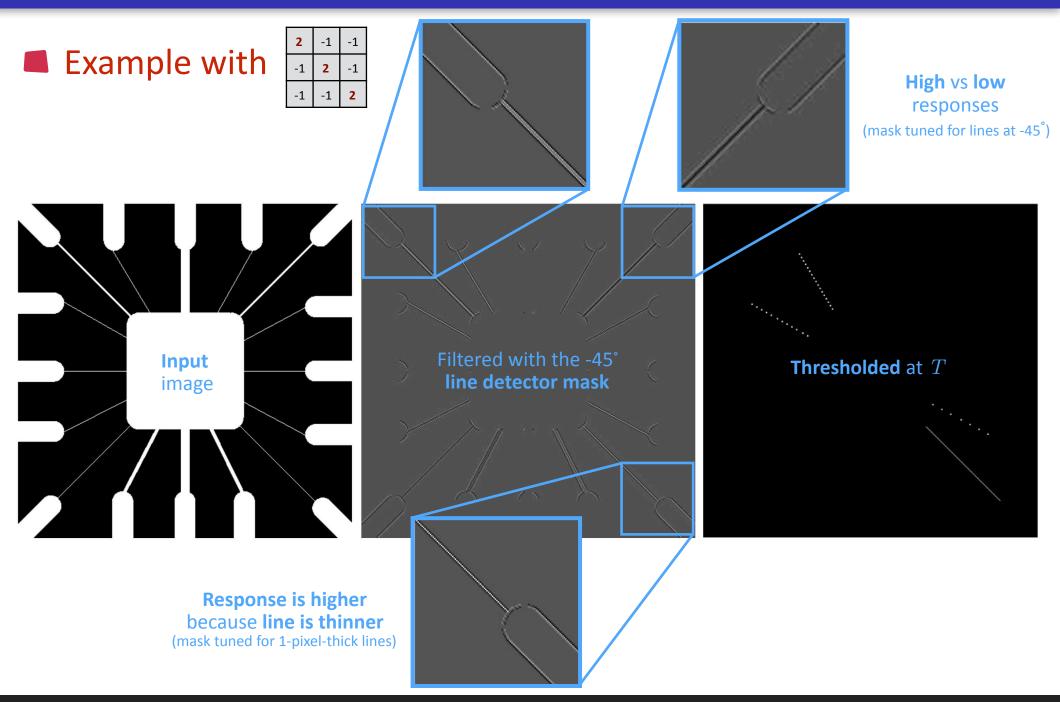


To achieve this, we can filter the image with specialized masks



▶ The **response of each filter** is maximum when line is aligned with it

Detecting lines



Basic edge detection

 $\nabla f = \left[0, \frac{\partial f}{\partial u}\right]$

Based on the image gradient

• The **discrete gradient** of I(u, v) is the 2D vector

$$\nabla I(u,v) = \begin{bmatrix} \nabla_u I(u,v) \\ \nabla_v I(u,v) \end{bmatrix}$$

Important geometrical property: it points in the direction of most rapid increase in intensity

The gradient magnitude is

$$||\nabla I(u,v)|| = \sqrt{(\nabla_u I(u,v))^2 + (\nabla_v I(u,v))^2}$$

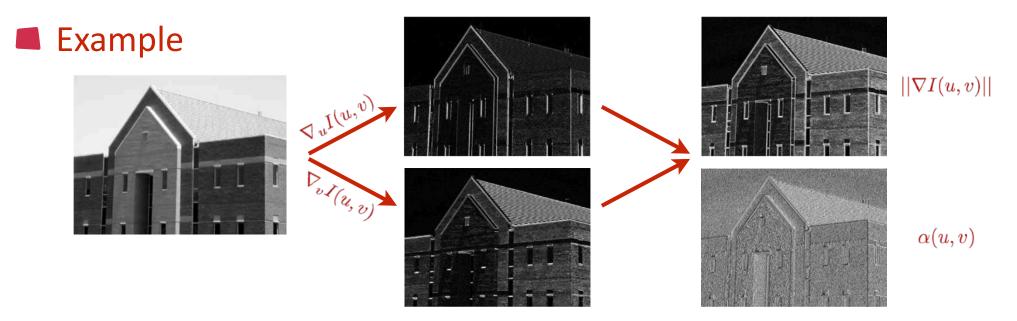
The **gradient direction** is

$$\alpha(u,v) = \tan^{-1} \left[\frac{\nabla_v I(u,v)}{\nabla_u I(u,v)} \right]$$

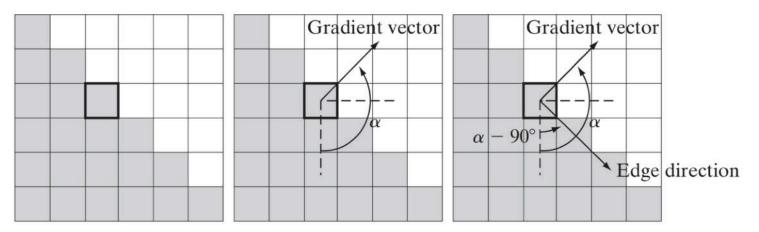
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

 $\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$

Basic edge detection



Direction of an edge at an arbitrary point (x,y) is orthogonal to the direction of the gradient vector at the point, i.e. $\alpha(x,y)$



Prewitt gradient operator

- We know that finite differences are *very sensitive to noise*
- More robust estimates by averaging in the neighborhood $\nabla_u I(u, v) = \frac{1}{6} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}^T$ $\nabla_v I(u, v) = \frac{1}{6} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}^T$

$$\nabla_u I(u, v) = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$
 $\nabla_v I(u, v) = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$

Sobel gradient operator

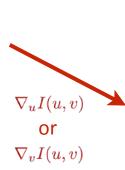
Similar to Prewitt, but averaging is *stronger in central pixel*

$$\nabla_u I(u,v) = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}^T$$
$$\nabla_v I(u,v) = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}^T$$

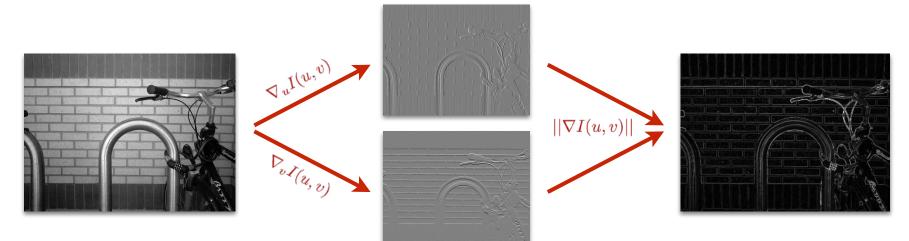
(2/4)

Which is $\nabla_u I(u, v)$? And $\nabla_v I(u, v)$?

 $abla_u I(u,v)$ or $abla_v I(u,v)$



<u>Note 1</u>: **magnitude** is used to *highlight edge pixels*



<u>Note 2</u>: both filters implicitly **perform smoothing**

Prewitt $H = \frac{1}{6} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$ derivative averaging Sobel $H = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$

derivative

Comparison

- Very similar performances
- May vary depending on specific applications
- ► In practice, try both and choose

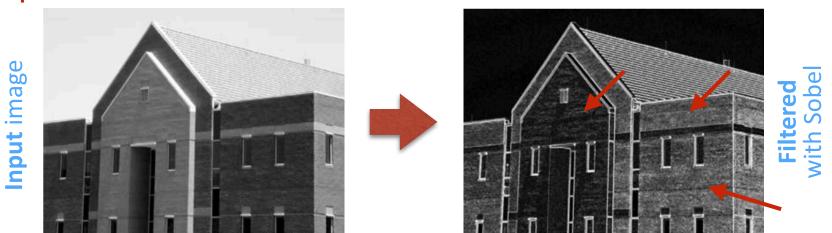
Prewitt

Image details and edge detection

Sometimes the level of fine detail is undesirable in edge detection because it tends to act as noise

- ► *Fine details are enhanced* by derivative computations
- Complicates detection of the principal edges in an image
- Which are the true edges?

Example



► Contribution to image detail by the **wall bricks** is significant → this in **<u>undesired</u>**

Idea: smooth the image prior to edge detection

Image details and edge detection

Comparison



5x5 average filter

Based on the 2nd derivatives

▶ NB: more sensitive to noise than 1st derivatives → need to smooth the image

The Marr-Hildreth algorithm

$$\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}$$

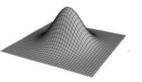
Combines the Laplacian operator

$$abla^2 f(x, y) = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

1	1	1	
1	-8	1	
1	1	1	

with Gaussian filtering

$$G(x, y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$



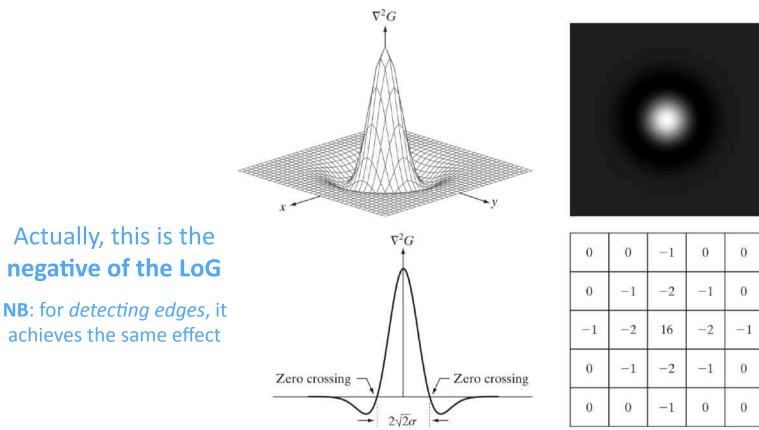
- ► Also called Laplacian of Gaussian (LoG) filter
- The parameter σ is called "space constant"

Commonly called "Mexican hat" filter

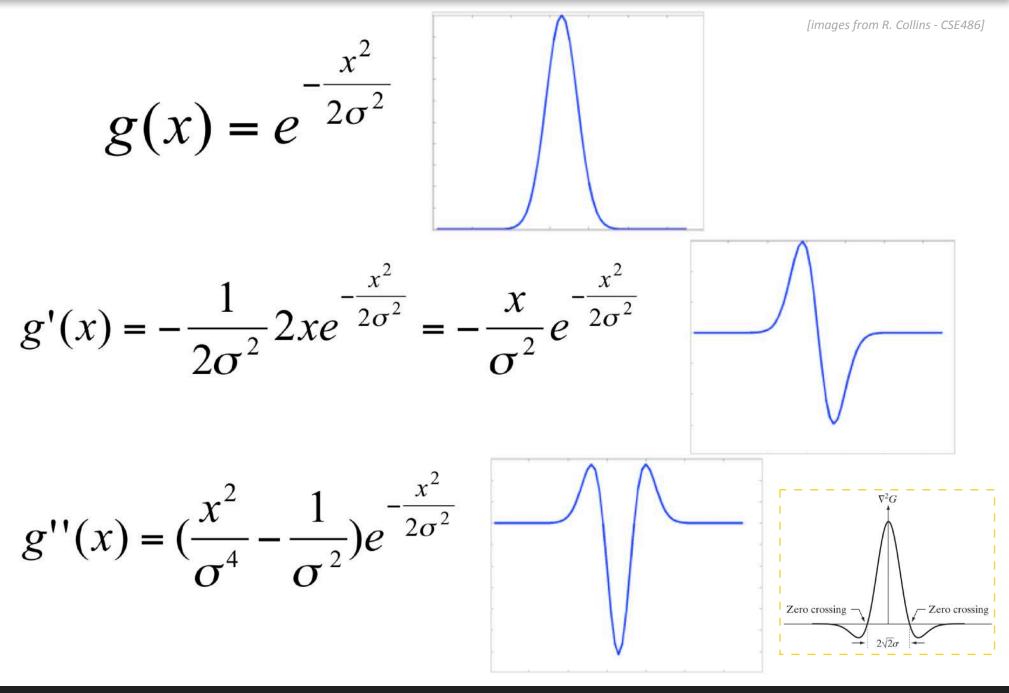
From the previous equation, we can *derive the following expression*:

$$\nabla^{2}G(x, y) = \left[\frac{x^{2} + y^{2} - 2\sigma^{2}}{\sigma^{4}}\right]e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

► Which *looks like* this:



Elaborazione di segnali e immagini per bioinformatica



Edge-detector algorithm

1) Filter the input image f(x,y) by convolving with LoG filter

 $g(x, y) = [\nabla^2 G(x, y)] \bigstar f(x, y)$

2) Find the zero crossings of the resulting image g(x,y) to determine the locations of edges in f(x,y)

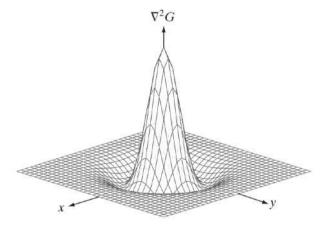
NB: the operations involved are linear

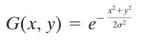
i.e. Gaussian filtering and Laplacian

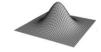
$$[\nabla^2 G(x, y)] \bigstar f(x, y) = \nabla^2 [G(x, y) \bigstar f(x, y)]$$

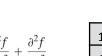
Equivalent algorithm

- 1) Filter the input image f(x,y) with Gaussian lowpass filter
- 2) **Compute the Laplacian** of the resulting image
- 3) Find the zero crossings





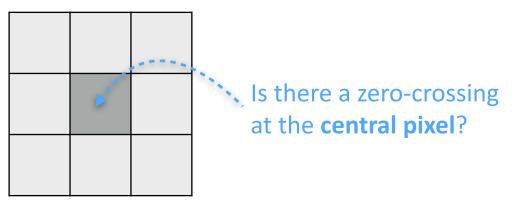




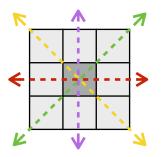
(5/8)

How to find the zero crossings?

- Attempting to find the coordinates (x,y), such that g(x,y) = 0 is impractical (e.g. because of noise and computational inaccuracies)
- ▶ In practice, a 3x3 neighborhood is used



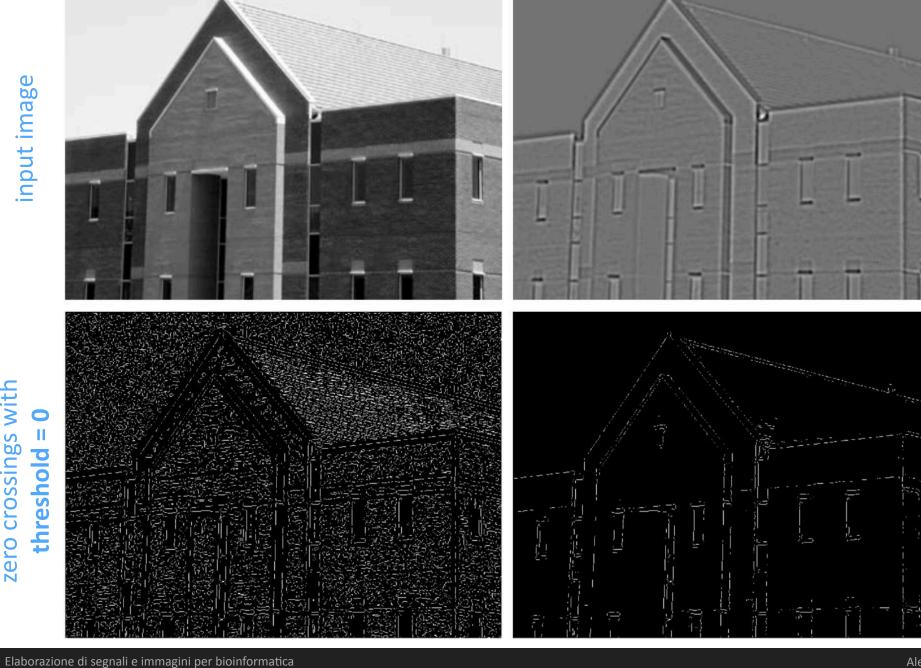
- ► IDEA: there's a zero crossing in the central pixel ⇔ the signs of at least two of its opposing neighboring pixels are different
- There are four cases to test
 - left/right, up/down, and the two diagonals
- A threshold is also typically used
 - Test the absolute value of their numerical difference



LoG filtered

input image

zero crossings with



Alessandro Daducci

threshold = 4% of max

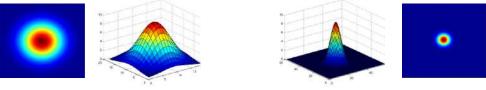
crossings with

zero

Second-order edge detectors

Note on parameter σ, i.e. standard deviation

► Controls the *width of the Gaussian blur*

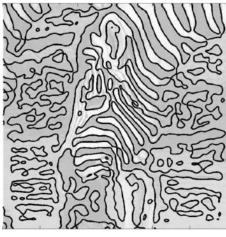


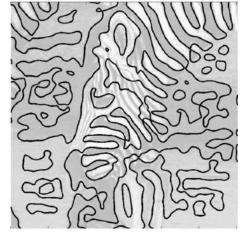
• Blur reduces the intensity of structures at scales smaller than σ

Can be tuned to **extract edges at any desired scale**

- ► *Large operators* can be used to detect blurry edges
- Small operators to detect sharply focused fine detail

zero-crossings with $\sigma=2$



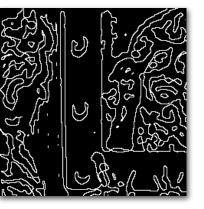


zero-crossings with **σ**=4

zero-crossings with σ =8

Second-order edge detectors

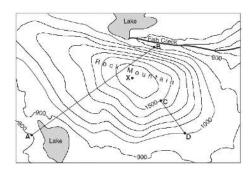
Q: why do zero-crossings
 form closed contours?
 (NB: in case of *threshold = 0*)

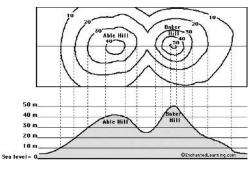


A little digression...

► The **level set** of a real-valued function *f* is:

 $L_c(f) = \{(x_1, \cdots, x_n) \ | \ f(x_1, \cdots, x_n) = c\}$





NB: they form closed contours

A: in our case, the "heigh map" is a LoG filtered image

- ► It's a surface with both *positive and negative "elevations"*...
- ...and zero-crossings are contours with elevation = 0!

More advanced examples

(1/9)

Developed by John F. Canny in 1986

- More complex than any edge detectors discussed thus far
- Performance is much better than any other

Based on four basic objectives

- 1) All edges should be found
- 2) There should be **no spurious responses**
- 3) The edges located must be **as close as possible** to the true edges
- 4) The detector should return only **one point for each true edge point**

Essence of Canny's work: express these criteria mathematically

- Difficult (or impossible) to find a closed-form solution
- Canny attempted to find an optimal solution (NB: using numerical optimization with 1D step edges corrupted by additive white Gaussian noise)

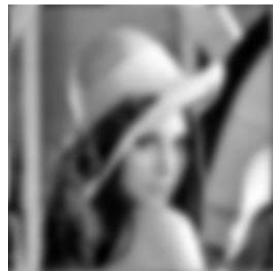
Algorithm

- 1) Smooth input image with a Gaussian filter
- 2) Compute the **gradient** (*magnitude* and *angle*) of the image
- 3) Thin edges by applying non-maxima suppression to the gradient magnitude
- 4) Detect edges by using **double thresholding**

Step 1: Gaussian smoothing

f(x, y)

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$



 $f_s(x, y) = G(x, y) \star f(x, y)$

Step 2: compute the gradient

$$\nabla I(u,v) = \begin{bmatrix} \nabla_u I(u,v) \\ \nabla_v I(u,v) \end{bmatrix}$$

- Recall: points in the *direction of most rapid increase* in intensity
- ► Magnitude image

$$||\nabla I(u,v)|| = \sqrt{(\nabla_u I(u,v))^2 + (\nabla_v I(u,v))^2}$$

► **Direction/angle** image

$$\alpha(u,v) = \tan^{-1} \left[\frac{\nabla_v I(u,v)}{\nabla_u I(u,v)} \right]$$

Notes

- ► Any basic edge detectors previously seen can be used, e.g. Prewitt, Sobel...
- M(x,y) and $\alpha(x,y)$ have the same size as the input image

alternative notation

$$M(x, y) = \sqrt{g_x^2 + g_y^2}$$
$$g_x = \partial f_s / \partial x \qquad g_y = \partial f_s / \partial y$$
$$\alpha(x, y) = \tan^{-1} \left[\frac{g_y}{g_x} \right]$$

M(x,y)

with Sobel

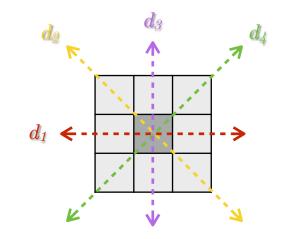
Step 3: thin edges with non-maxima suppression

• M(x,y) typically contains wide borders around real edges

Thus, next step is to thin those edges

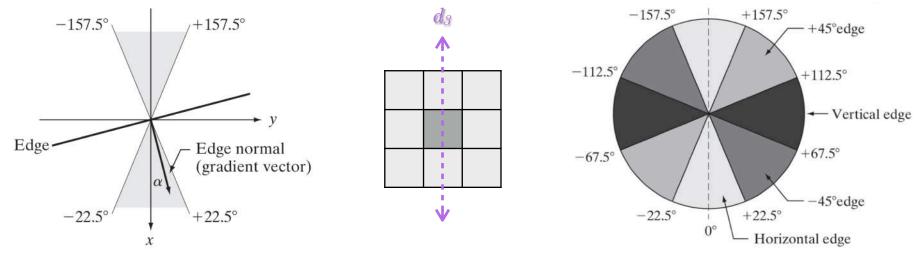
Based on a discretization of gradient directions

- Example: 3x3 neighborhood
- Let d₁, d₂, d₃, and d₄ denote the four basic edge directions available in such a neighborhood
- ▶ NB: can be extended to bigger sizes



IDEA

- Find direction d_k that is closest to lpha(x,y)
- Remember that gradient is *perpendicular to edge*

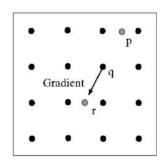


• If M(x,y) larger than two neighbors along direction d_k

let $g_N(x,y) = M(x,y)$ (i.e. keep the edge pixel) otherwise

let
$$g_N(x,y) = 0$$

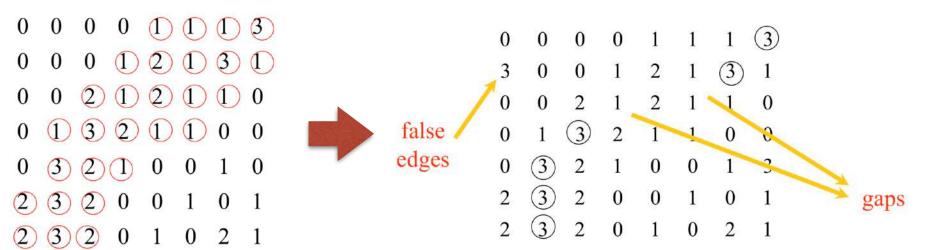
(i.e. suppression of a non-maxima)



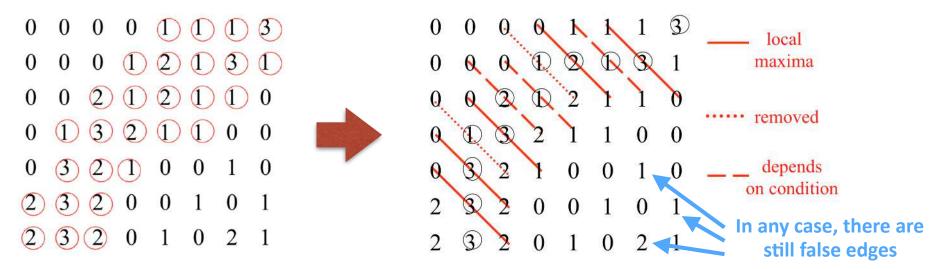
NB: if we don't discretize directions, interpolation is needed

[images from Euripides G.M. Petrakis]

Keeping large values of gradient



Using non-maxima suppression



Step 4: threshold $g_N(x,y)$ to reduce false edge pixels

Single threshold

- If threshold too low, there will still be some false edges (false positives)
- If threshold too high, actual valid edge pixels will be eliminated (false negatives)

Hysteresis threshold

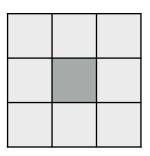
- $^-\,$ Define a low threshold, $T_{\rm L}$, and a high threshold, $T_{\rm H}$
- Create two additional images

$$g_{NL}(x, y) = g_N(x, y) \ge T_L$$
$$g_{NH}(x, y) = g_N(x, y) \ge T_H$$

"weak" edge pixels

"strong" edge pixels

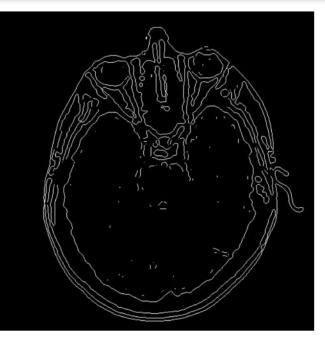
- **NB**: $g_{NH}(x,y)$ has fewer nonzero pixels than $g_{NL}(x,y)$ All nonzero pixels in $g_{NH}(x,y)$ are contained in $g_{NL}(x,y)$
- Edge-tracking algorithm
 - If a value lies above $T_{\rm H}$ \clubsuit immediately <code>accepted</code>
 - $^{-}$ If a value lies below $T_{\rm L}$ \clubsuit $% T_{\rm L}$ immediately rejected
 - $^{-}$ If $T_{\rm L}$ \leq value $\leq T_{\rm H}$, it's accepted if connected to strong pixels
 - NB: use a 8-connectivity mask

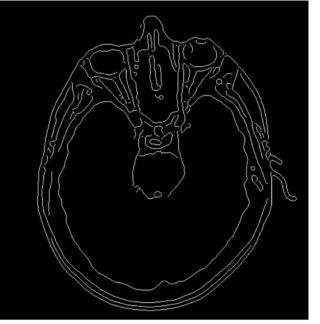




Sobel

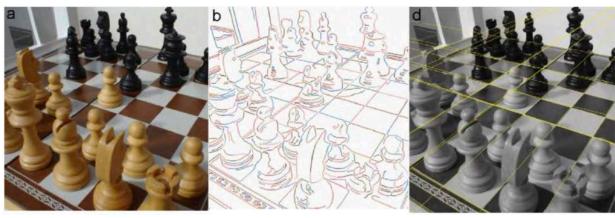
Canny





Canny

So far we've **identified only "edge pixels"**, not really edges



► How do we realize that such pixels **lie on specific geometrical objects**? e.g. *lines*

Goal: find objects within a certain shape

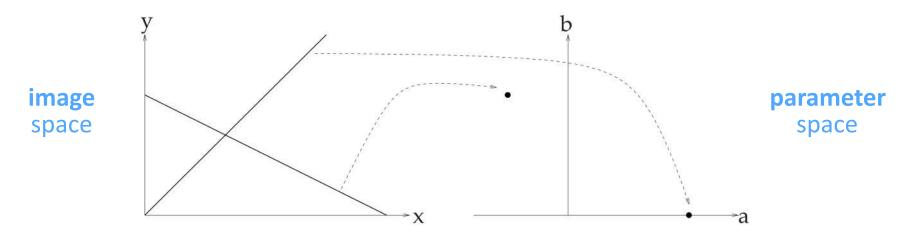
- Shapes can be described in **parametric form**, e.g. lines y=ax+b
- Extract characteristic features of such objects from the image
- Identify shapes by using a voting scheme

In this course, we'll focus on the Hough transform for lines

► The algorithm **can be extended** for the identification of **arbitrary shapes**

Basic idea

- Transform image from (x,y) space into a parameter space suited for describing lines
- ▶ Line *y*=*ax*+*b* has **two params**: by varying *a* and *b*, we can model any line in the image
- ► Each line in the image is therefore **represented by a dot** in (*a*,*b*) space



(x,y) space \rightarrow (a,b) space

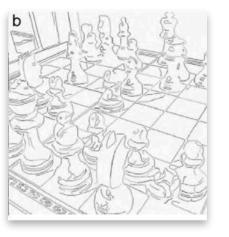
- Create an empty image H (called accumulator)
- ► For each pixel that may be part of a line
 - Determine which pairs (a,b) create a line y=ax+b that passes through that pixel
 - Increase *H*(*a*,*b*) for those pairs (*a*,*b*)

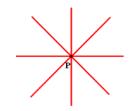
This algorithm is not very practical

- There are infinite lines passing through a pixel
- A more practical algorithm examines only a discrete number of pairs (a,b)

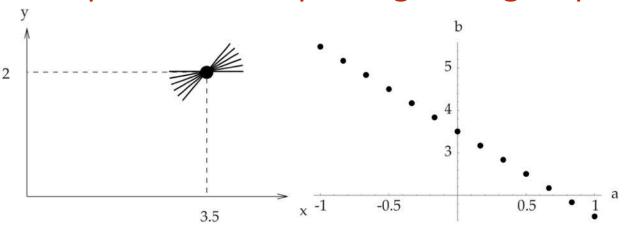
Hough transform algorithm

- ► Select a set of discrete values for *a* and *b* e.g. *a* ∈ {0,0.1,...,100}, *b* ∈ {0,1,...1000}
- ► Create the empty image *H*
- Run an edge detector on the input image
- ► For each "edge pixel" *p*
 - For each discrete value a_i
 - Compute corresponding b that forms a line y=a_ix+b that passes through p
 - Round b to the nearest discrete value b_j
 - $H(a_i, b_j) = H(a_i, b_j) + 1$





Example: some possible lines passing through a pixel *p*

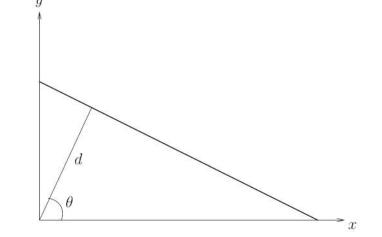


In practice, (a,b) parametrization is not very efficient

- Equidistant discretization of *a* corresponds to lines with **not equidistant angles**
 - e.g. $a \in \{1, 2, 3, 4, 5, 6\}$ \rightarrow lines have approximate angles of $\{45, 63, 72, 76, 79, 81\}$ degrees
- ► For vertical lines, *a* is infinite

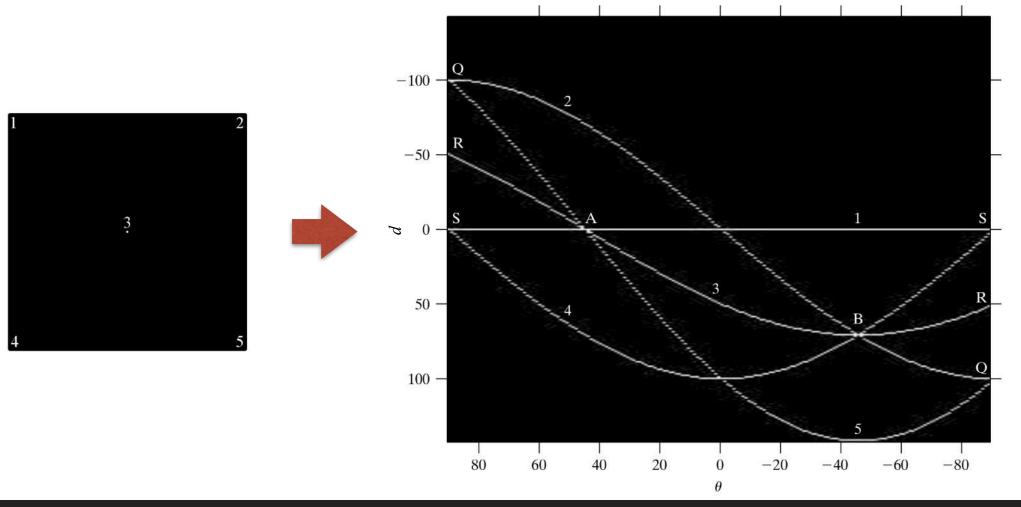
 $x\cos\theta + y\sin\theta = d$

- *d* : distance from origin
- θ : angle from the positive *x*-axis



Detecting lines in the original image = finding maxima in H

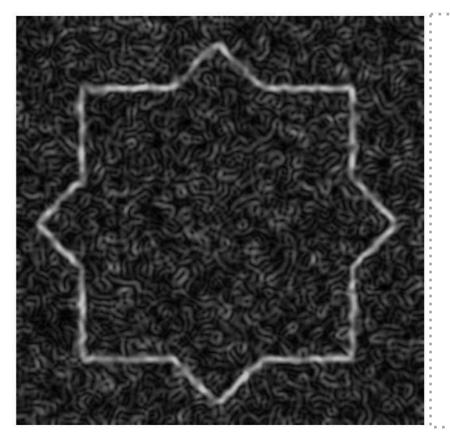
- All **pixels lying on a line** have identical values d and θ (or a and b)
- $H(d,\theta)$ has local maxima at points corresponding to lines in original image



(5/6)

It is a very robust technique

input image



Hough transform H

(6/6)

It is a very robust technique

input image

Hough transform *H*

Rather insensitive to noise, object occlusion, missing line parts ...

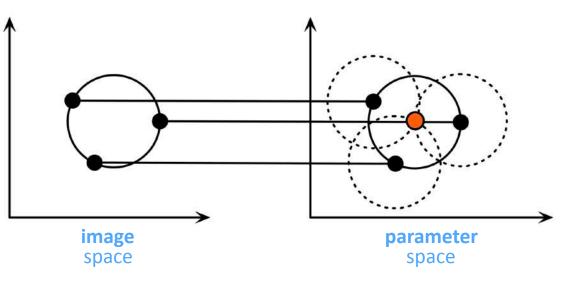
Extension of the Hough transform

- **Q**: how can we **detect circles** in an image?
- A: the algorithm is basically the same as for detecting lines, except now we have three parameters (i.e. accumulator is 3D)
 - ► Circle described completely by **center** (*a*,*b*) and the **radius** *R*

 $x = a + R \cos(\theta)$ $y = b + R \sin(\theta)$

Case 1: search for **known radius** *R*

- 2D search space
- For each edge pixel (x,y), define a circle in the parameter space centered at (x,y) with radius R
- The intersection of all such circles in the parameter space would correspond to the center point of the original circle

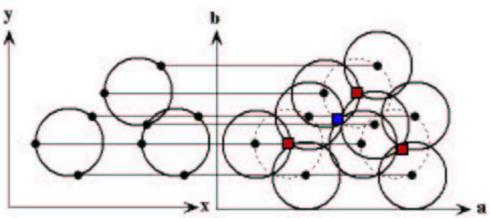


radius

center

Extension of the Hough transform

NB: multiple circles with same R can be recognized



Overlap of circles can cause spurious centers to be found (blue cell)

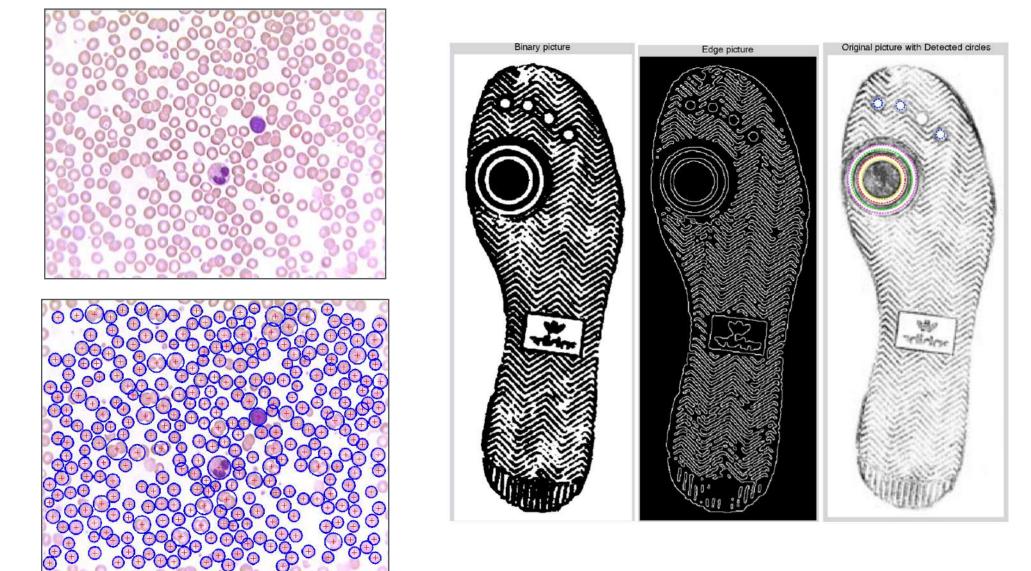
Case 2: search for unknown radius

- Iterate through all possible radii (discretized)
- ► For each radius, use the **previous technique**
- ► Find the maxima in the **3D accumulator**

Similar variations of the Hough transform allows us to detect all kinds of parametrized shapes

Extension of the Hough transform

Examples



Template matching

Template matching is one of the most fundamental means of **object detection** within an image

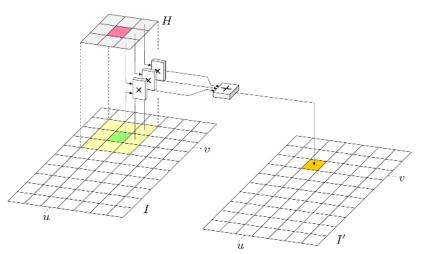
IDEA: find a given template/patch in an image

- A template/patch is a small image with certain features
- Search can b

earch can be done using *correlation*
$$I'(u,v) = \sum_{(i,j)\in\mathcal{N}} I(u+i,v+j) \cdot H(i,j)$$

template image H

source image I



 $(i,j) \in$

Template matching

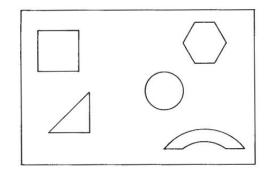
It is a very basic and straightforward approach

- We find the most correlating area
- Limitations
 - No scale invariant
 - No rotation invariant
- This basic method may be good enough for **basic applications** e.g. non scale and rotation changing input

Simple tricks that work in some applications

► Scale: thicken the edges

Rotation: try a discrete number of rotations



Template matching

More advanced approaches exist

Pattern recognition: branch of machine learning that focuses on the recognition of patterns and regularities in data

