Modal Logic



Propositional logic may be defined in a Hilbert style fashion

Propositional logic is a set H defined as smallest set X of formulas verifying the
following properties:

1.if A, B, C are formulas then X contains the formulas (called axioms)

P1 A—-(B—A)

P2 (A—(B—C))—((A—B)—(A—C))

P3 ((-B—-A)—=((-B—A)—B))

moreover

MP if AeX and A—BeX then BeX(modus ponens)

We write —H4 A to denote that AcH

If Q) is a finite set of formulas we write QQ 4 A to denote that 4 AQ - A

If Q) is an infinite set of formulas we write QQ 4 A to denote that there is a finite
subset Q,of Q s.t. Q,HA.




language of modal logic
alphabet:
(1) proposition symbols : po, p1, P2, - - -,
(i) connectives : —, L
(1ii) modal operator O
(iv) auxiliary symbols : (, ).

AT:{pO/ P1, P2, - - - /}U{J—}

The set WFF of (modal) formulas is the smallest set X
with the properties

(1) pi X (ieN), LeX,

(1i) A,BeX= (A—B)eX,

(lii))AeX =(~A)eX

(iv) AcX =(0A)eX




Let Z be a set o formula.

The normal modal logic L[Z] is defined as smallest set X of formulas verifying the
following properties:

1. Zc X

2. if A, B, C are formulas then X contains the formulas (called axioms)
P1 A—-(B—A)
P2 (A—(B—C))—((A—B)—~(A—C))
P3 ((-B—-A)—((-B—A)—B))
P4 O(A—B)»(O0A—0OB)
. moreover
MP if AeX and A—BeX then BeX(modus ponens)

NEC if AeX then O0AeX (necessitation)

We write |—L[z] A to denote that AcL[Z]

If Q is a finite set of formulas we write Q +- . Ato denote that - Aq - A

If QQ is an infinite set of formulas we write QQ — A to denote that there is a finite

L[Z]
subset Qg of Q) s.t. Qo |—L[Z] A.




L[2] is called minimal normal modal logic and
L[2] is denoted simply by K

Abbreviations

The usual abbreviations of classical logic plus
QA =-0-A

If N1,..,Nkx are names of schemas of formula
the sequence N1..Nk is the set
N1*u...uN1*, where

Ni* ={A: A is an instance of the schema N}

some schema some modal logic
D.OA-OA T := L[T]

T O0A—A S4 = L[T4]

S5 = L[T4B]
KT = L[T]
K4:= L[4]

4. OA—OO0A
B.AOOA



Possible world semantics

o] g
Kripke semantics




Let Prop be the set of propositional symbols.

A structure F =(U,R), where U is a nonempty set and R € UxU is
called frame (& is a graph).

A valuation on a frame F=(U,R) is a function V : U—2Prop,

A (Kripke) model M is a frame plus a valuation V, M =(U,R,V>



Let M =(U,R,V) a model,
the satisfiability relation M = ¢ UXWFF

is defined as
1. M ,we=AABe M,w =EA AND M,w =B

M ,w EAvBe M,w A OR M,wE=B
3. MwE A e M,w A,
4. M,w EA—-Be (M,w EA= M,w E=B),

. M,w EO0Ae v u (WRu =M,u = A)

. M,weQAe 3 u (WRu AND M,u E A)

.M ,wW L
. M ,wE piff peV(w)




let M be a model, M = A iff for each uw € U we have M,u = A

let M be a model and let > be a set of formulas, M = > iff for each
AeX ME=A

— A iff for each model M we have M = A.

let F' be a frame, F' = A iff for each valuation V, (F,V) = A

let F' be a frame, F,w = A iff for each valuation V', (F, V), w

let M be a model, Th(M) ={A: M
let F'bea, Th(F)={A:F = A}

Md(A) ={M : Mis a model, M
Md(%) ={M : Mis a model, M
Fr(A)={F : Fis a frame, F
Fr(3) ={F : Fis a model, F




Theorem 1.2.2 (soundness) Let ¥ be a set of formulas and let M €

Md(X) (F € Fr(X)) then for each theorem A €L|X] we have that M = A
(FEA).




Modal definability



First order translation

“Let us assume a modal language with a denumerable set Prop of propositional

symbols.
¢ Let us consider a first order language L, with a denumerable set I of unary

predicate symbols, and a binary predicate symbol R.
“Let 1:Prop—1 a bijective map
¢Let Form be the set of first order formula formulas in the language L.

Given a fixed variable x, we define an injective mapping
STx: WFF—Form

1. STx(p) = P(x) for p eProp and P = t(p);
2. STx("A)=_ISTx(A)
4. STx(OA) = vy(xRy—{STx(A)}[x/y]) where y does no occur in ST(A).




definability



Let A (2) be a formula (a set of formulas), we say that A (%) defines
a first/second order property @ in the language with (R, =), if for
each F (F € Fr(A) (FeFr(2)) <=F= ©0)

If the set 2 defines the condition ® then we say also that the logic
L[] defines O.

formula name formula first order property
OA-CA Vaedy.z Ry
T O0A"A Vo.x Rz
4 DA-O0A  Vayz. (zRyAyRz-xRz)
B OCOA-A Vavy.(xRy-yRx)
G COA~OCA Vayz.((rRyArRz) -»Fw(yRwAzRw))




Proposition 1.3.7 Oa-00a defines transitivity Veyz.(r RyAyRz-xRz)

PROOF




Proposition 1.3.7 Oa-00a defines transitivity Voyz.(r RyAyRz-xRz)

Proof.

1. ' =Voyz.(rRyAyRz-xRz) = F = Oa-00a. Let F,w = Oa, and
w', w” s.t. wRwW', w' Rw” then by transitivity we have that wRw"” and
therefore I, w” = a; namely F,w' = Oa and F,w = O0«.

2. F E Oa~00a = F E Vayz.(xRyAyRz-xRz). Let us suppose that
F,w = Oa-00q; we fix the following assignment V(a) = {v|lwRv}.
We have that F,V,w = Oa and by hypothesis F,V,w = OO«a. Now
for a generic v € V(a) let w” s.t. vRw”. As F,V,w" &= «, we must
have that R is transitive.




Proposition 1.3.8 COa-00a defines directness:
dir = Vryz((t RyAxRz)- Ju(yRunzRu))




Proposition 1.3.8 COa-0OCa defines directness:
dir = Veyz((rRyAxRz) - Ju(yRuAzRu))

Proof
1. F =Veyz((xRyAzRz)»Ju(yRunzRu)) = F = OOa~»O0x
Let w € W and F,w = OOa then Jw’, wRw's t. Vw"w' Ruw" = w" E «.

As dir holds we have that Vow Rvdsw’Rs, vRs as F, s = « and therefore
FowE OO

. FE<OO0aD0Ca = F = Veyz((xRyAxRz) »3u(yRuAzRu))
Let w,w’, w” s.t. wRw', wRw" and let V the assignment s.t. V(«a) =

{s:w'Rs}

We have that F,w' &= O« and that F,w' = COa. As F' = G we have
that F,w = OO« and therefore VowRv = FtFt Ea =1t € V(a) =
F = dir




R is a preorder }
. R is an equivalence }




COMPLETENESS




L[Z] is defined as smallest set X of formulas verifying the following properties:
1. Zc X
2. if A, B, C are formulas then X contains the formulas (called axioms)
P1 A—-(B—A)
P2 (A—~(B—C))—((A—B)—~(A—C))
P3 ((-B—-A)—((-B—~A)—B))
P4 o(A—B)»(OA—OB)
3. Lis closed w.r.t. the following operation
MP if AeX and A—BeX then BeX(modus ponens)
NEC if AeX then OAeX (necessitation)

Given a set Z of modal fomulas the modal logic L[Z] is defined by means of the following
axioms and inference rules plus a notion of derivation.
axioms
1. if A, B, C are formulas then the following are axioms
P1 A—(B—A)
P2 (A—(B—C))—((A—B)—~(A—C))
P3 ((-B—-A)—((-B—A)—B))
P4 O(A—B)—»(O0A—0OB)
2. if AeZ then Ais an axiom
Inference rules

A A-B

MP

B

A
NEC

OA
Derivations
A derivation is a finite sequence A1, . . ., An of formulas s.t. for each i € [1, n]

Aj is an axiom; or
Ai=Band3j,k<ist Aj=A Ak=A— B;
Aj= 0OAand 3k <is.t. Ak = A;

We write '_L[Z] A to denote that there is a derivation Ay,...,A, with A, =A




The construction of the canonical model



A set I of WFF is consistent if
[ L.
A set I of WFF is inconsistent if
[ L.

A set [ is maximally consistent iff
(a) I' Is consistent,

(b) T < and I’ consistent ==l"".

If I is maximally consistent, then I' is closed under
derivability (i.e. [ —@=cl).




Theorem:
Each consistent set ' is contained in a maximally
consistent set ™

1) enumerate all the formulas
Do, ©1, P2, .....

2) define the non decreasing sequence:
[o=I
Thu{dn}if [n u{dn}is consistent,

['n otherwise

rn+1: 3

3) define




Propositional logic:

If I is consistent, then there exists a CANONICAL valuation such that [¢] = 1 for all
Yel.

Let L be a normal modal logic, a model M =(U,R,V) is called

canonical iff
1. U ={w : wis maximal consistent}
2. R={(u,v) : {A:O0Aecu}cv

3. ueV(p) & peu




A logic L is called canonical if, taken the canonical model <U,R,V>,
we have (U,R) € Fr(L).

Theorem CM
Let (U,R,V) the canonical model of L

—La < UR,V)Ea




A normal modal logic L is said to be model complete if for each
formula A:

L AeVMeMd(L) M=A

Theorem
Each normal modal logic is model complete
Proof

(=)
. A=VMeMd(L)ME=A by soundness
(<)

In order to prove
vMeMd(L)M=A =+ A we use the canonical model.

It vM € Md(L) M=A we have in particular that taken the canonical
model <(U, R, V) we have that (U, R, V) = A, and applying theorem
CM we conclude.




A normal modal logic L(2) is said to be frame complete if for each
formula A:

L AeVFeFr(Z) F=A

Theorem The logics K, KD, KT, S4, S5, are frame complete.
Proof

Let Le{K, KD, KT, S4, S5}, it is sufficient to show that if (U,R,V) is
the canonical model of L then the frame (U,R)eFr(L).




Let 2 be a set of formulas, and let ¢ € Fr(2) a set of frames; the

modal logic L[2] is said to be Z-complete (complete w.r.t. the

class ¢ of frames) if
AclL(2)eVFeC,F=A

Theorem

1. The logics K (KD) is complete with respect to the class of
denumerable frames with irreflexive, asymmetric and
intransitive (total) accessibility relation.

2. The logic S4 is complete w.r.t. the set of denumerable partial
order.




Modal logic and intuitionism

Let us consider the following translation function []* from
propositional formulas to modal ones.

p* =0p (p is a propositional symbol)

[AAB]™ = [A]*A[B]”

[AvB]*= [A]*V[B]*
[A—=B]" = O([A]" = [B]")
[=A]" =0(=[A])




Lemma

Let (W,R,V) be an intuitionistic model and (W,R,Vsa) be a partial
order model of S4 s.t. for each propositional symbol p,

W I-i p iff w i=s4 O,
then for each propositional formula A, w I A Iff w =4 A”

Lemma

Let Mi=(W,R,V;) be an intuitionistic model and Mss=(W,R,Vs4) be a
partial order model of S4 s.t. for each propositional symbol p,

W I p Iff w i=s4 0P,
then for each propositional formula A, Mil-i A iff Mss =s4 A*

Theorem
—i A @54 A*




natural deduction?



TEMPORAL LOGIC



LTL: Linear Temporal Logic



timeline/computation/fullpath
Kripke frame is Nat=(l\, o, <)
(as usual o(n) will be written as n+1)

each natural number identifies an temporal instant

A Linear Time Kripke model M (or, simply, a model) is a
frame plus a valuation of propositional symbols, namely

M= (Nat, V.N-»>2Prop)

O induces the accessibility relation
AC NXN

NnA'm < m=n+1




language of linear temporal logic
alphabet:
(i) proposition symbols : po, p1, P2, - - -,
(i) connectives : —, L
(iii) modal operator O, %,

(iv) auxiliary symbols : (, ).

AT:{pO/ p1/ p2/ o o o /}U{J—}

The set WFF of (modal) formulas is the smallest set X
with the properties

(1) pi X (ieN), LeX,

(1i) A,BeX= (A—B)eX,

(lii))AeX =(~A)eX
(iv) AeX =(OA)eX
(v) A,BeX= (A % B)eX,

abbreviations:
OA = (—L)%A

A = —|Q—|A




Let M= (Nat, V) a model,
the satisfiability relation M = ¢ NxXWFF

Is defined as
1. M ,n=EAABe M,n EA & M,n =B

2. M ,n=AvBe M,n =A OR M,nE=B

3. M,nE-=A e M,n A,

4. M,n EA—-B& (M,n EA= M,n =B),

5. M\,n FAZB& 3 m(n<m & (M,m = B & vj(je[n,m-1]=M,j EA)))
6. M,n =E0Ae vm(nhs=m=M,mE A)

7. \,n =ECAe Im (n<m & M,m = A)

8. M,n eEOA=s M,n+1E=A)

O. M ,n KEL
10.M ,n = p iff peV(n)




M,n =EAZB< 3 m=n M;m = B & vje[h,m-1] M,] A




Sometimes in literature a model is given by

K=(T,s:N—T, V)

where

T is a denumerable set of temporal instants

S is a bijection and

V:T—2Prop s a valuation

these models are completely equivalent to the models previously
introduced.




Let K=(T,s:N—T, V),
the satisfiablility relation K= ¢ TxWFF
Is defined as

M,sk EA—Be (M,sk =EA= M,sk =B),

M,snh EAZB< 3 m(h=sm & (M,sm = B & vj(je[n,m-1]=M,s;=A)))

M,Sn |=©A(i) M,Sn+1 = A)

M ,Sn ¥ L
M ,sn E p iff peV(sn)




MEA < vn M,n=A

A<= VM. MEA



AO All temporal instances of propositional classical tautologies.
A1 o(A—B)—(cA—0B)
A2 —|OA—>O—|A

A3

A4

A5

A6

A7

A8 AA

(A=B)=(

A—A

A —

A

A—0A

A— o0

A

(A—0A)—

vp A A—B

Gen

Geno

B

A

A

A—

B)




temporal induction

AAO(A—0A)—OA

O= AAO(A—0cA)—OA
=
(0=A & vn(n=A = n+1=A)) =Vn (n=A)

Let a(x) be the property x=A

O= AAO(A—0cA)—OA
—
(a(0) & vn(a(n) = a(n+1))) =Vn (a(n))

ke AAO(A—0A)—OA
—
(a(k) & vn=k(a(n) = a(n+1))) =Vn=k (a(n))




A = A

(A simple induction on derivations: exercise)|

COMPLETENESS

A = A

Difficult: the canonical kripke model is not a temporal model




BRANCHING TIME



INTUITIVE IDEA: TREES/GRAPHS instead of COMPUTATIONS

v =for each next time; 3= there exists a next time such that

vO= for each computation and for each state in it
vy = for each computation there exists a state in it such that

30 = there exists a computation such that for each state in it
3{> =there exists a computation and a state in it such that

= v()Q
=3 s A30p




language of UB

alphabet:

(1) proposition symbols : po, p1, P2, - - -,
(i) connectives : —, 1

(iii) modal operator vO,vO,v<O

(iv) auxiliary symbols : (, ).
AT={po, P1, P2, - - - JU{Ll}
The set WFF of (modal) formulas is the smallest
set X with the properties

(1) pi X (ieN), LeX,
(ii) A,BeX= (A—B)eX,

(ii)AeX =(-A)eX
(iv) AeX =(vO A), (vO A), (vO A) eX

abbreviations:
30 A =avO-A

3O A= avO- A
3OA =-vO-A




Semantics

an (UB-)frame is a graph
(S,N)
where N € SxS is total (vs3s’ sNs’)

An s-branch/s-computation is a sequence
Ds=(Si)i<w S.t. S=So0 & V i€N SiNS;.1

if bs=(Si)i<w With bs[K] we denote sk and with
s’e bs we mean that 3k s.t. s’= bg[K]

an (UB-)model is a pair
(F,\V)

where F is a frame

and V:S—2FProp

IS a valuation




Let M= (5,N,V) a model,

the satisfiability relation M = ¢ SXWFF
is defined as

1.

O ® N U bk WN

M,S KEL

M ,s &= p iff peV(s)

M ,s =EAABe M,s EA & M,s =B

M ,s EAvBe M,s =EA OR M,s=B
M,sE-Ae M,s A,

M,s EA—-Be (M,s EA= M,s =B),
M,s EvO Ae vbsvs'ebs M,s" = A
M,s evO Ae vbsas’ebs M,s’ = A
M,s =30 A& 3bsvs’ebs M,s" = A

10.M,s 3 Ae 3bsas’ebs M,s’ = A

11.M,s evO A& vs' (sNs'= M,s’ = A)
12.M,s =30 Ae 3s’ (sNs’' & M,s’ = A)




AXIOMATIZATION (% -free fragment)

A0 All temporal instances of propositional classical tautologies.
(A1) vO(A—B)>(vOA—vOB)

(A2) VO(A—B)>(VOA—-VvOB)

(A3) VOA— ( AAvVOvVvOA)

(A4) AA VvO(A-VvOA)—VIOA)

(E1) vO(A—B)>(3oA—30B)

(E2)

(

(

E2) 30 A— (AA 3030A)
E3) vOA— 30A
E4) AAvO(A—30A) = 30A

A A-B

MP
B




A = A

(A simple induction on derivations: exercise)|

COMPLETENESS

A = A

Difficult: the canonical kripke model is not an UB-model




The Logic CTL
CTL= UB+% s




language of CTL
alphabet:

(i) proposition symbols : po, p1, P2, - - - »
(if) connectives : —, 1 AT={po, p1, P2, - - - JU{L}

(iii) modal operator vO,v¥%, 3%

(iv) auxiliary symbols : (, ).

The set WFF of (modal) formulas is the smallest
set X with the properties

(i) pi €X (ieN), LeX,

(i) A,BeX= (A—B)eX,

(iiAeX =(-A)eX
(

iv) A,BeX =(VO A), (A v% B) eX

abbreviations:
A0OA = avO-A

30A=vO-A vOA=—-3O-A 30a = true I A vOA = true v A




NOTATION: if bs=(si)i<w With bs[k] we denote sk

M,s =B A% A

=

Hbs Hk ( M,bs[k] = A & VjE[O,k'1] bs[]] = B

M,s =EB V% A

=

vbs 3k ( M,bs[k] = A & vje[0,k-1] bs[j] = B




in order to axiomatize CTL we add to the axioms od UB
the following
vO(C—=(-BA(A—=vOC))—(C—-(AJd%B))

v (C—(-BA3OC))—(C—-(AV%B))




The  four  most
widely used CTL
operators are illus-
trated here.

Each computation
tree has the state sg
as Its root.




A = EA

(A simple induction on derivations: exercise)l

COMPLETENESS

A = A

Difficult: the canonical kripke model is not CTL-model




CTL*®




The computation tree logic CTL* (pronounced “CTL star”) combines
both branching-time and linear-time operators.

In this logic a path quantifier can prefix an assertion composed of
arbitrary combinations of the usual linear-time operators.

1. Path quantifiers:

» A — “for every path”
» E — "“there exists a path”

2. Linear-time operators:

» Xp — p holds true next time.

» Fp — p holds true sometime in the future
» Gp — p holds true globally in the future
» pUqg — p holds true until g holds true

For a path m = (sg, s1,...), state sq is considered to be at the present time.



The syntax of state formulas is given by the following rules:
f p is an atomic proposition, then p is a state formula.
f f and g are state formulas, then —=f and f V g are state formulas.
f f is a path formula, then E(f) and A(f) are state formulas.

Two additional rules are needed to specify the syntax of path formulas:

» If f is a state formula, then f is also a path formula.

(A state formula f is true for a path 7 if the f is true in the initial
state of the path .)

» If f and g are path formulas, then =f, fvg, Xf, Ff, Gf, and
f U g are path formulas.




If f is a state formula, the notation | M, s means that f holds at

state s in the Kripke structure M.

Assume f; and fy are state formulas and g is a path formula. The
relation M,s = f is defined inductively as follows:

atomic proposition p Is true in s .

s = f1-

s = f1 or s = fs.

g holds true for some path 7 starting with s
g

nolds true for every path 7 starting with s




If f is a path formula, the notation | M, 7m = f | means that f holds true

for path 7 in Kripke structure M.

Assume g1 and gy are path formulas and f is a state formula. The
relation M, m = f is defined inductively as follows:

s iIs the first state of m and s = f.
~ g1
— (1 Or m = (@go2.
— J1.
— ¢ for some k > 0
— g1 for every £ > 0
there exists a £ > 0 such that
k= gy and 7/ =gy for 0 < j < k.

T 00Y

. T
. T
. T
. T
. T
. T
. T

Recall: For m = (sg, s1,...), we write 7 to denote the suffix starting with s;.




Notice that Fp, FFp, FFFp, etc., hold true for a path m even if p holds

true at only the initial state in the path .




Note the following:

() = ~E(~f)
» Ff = (trueU f)

(Recall: m = g1 Ugy < there exists a k > 0 such that
k

s :ggandwj:glfor0§j<k.)

> Gf — —|F—|f

So, given any CTL* formula, we can rewrite it without using the
operators A, F, or G.




EF(Started A ~Ready): It is possible to get to a state where
Started holds but Ready does not hold.

AG(Req — AF Ack): If a request occurs, then it will be eventually
acknowledged.

AG(AF Device Enabled): The proposition DeviceEnabled holds
infinitely often on every computation path.

AG(EF Restart): From any state it is possible to get to the Restart
state.

A(GF enabled = GF executed): if a process is infinitely-often
enabled, then it is infinitely-often executed.

Note that the first four formulas are CTL formulas.




2|

COMPLETENESS

2977




It can be shown that the three logics discussed in this section have
different expressive powers.

For example, there is no CTL formula that is equivalent to the LTL
formula A(FGp).

Likewise, there is no LTL formula that is equivalent to the CTL formula
AG(EF p).

The disjunction A(FGp) V AG(EF p) is a CTL* formula that is not
expressible in either CTL or LTL.




Model Checking
Given a model M and a formula A
M=A ?

model checking is important for verification of properties of
concurrent and distribute systems.

M represent the computational space and A the property to be
verified

Theorem

The model checking problem for CTL is in deterministic
polynomial time

Theorem

The model checking problem for LTL
is PSPACE-complete




Modal Deductive Systems



NORMALIZATION



we consider a logic without the absurdum

connective, and with propositional connective
only implication and conjunction













[PAD]
P
xX— @

((pAO) (prO) = (x— @)

xX—=Q







conversions

Redex/cut: sequence —|, —E



hpD> Chp D+






DD (D 1-step reduces to D*): D™ is obtained by applying a
conversion to a subderivation of &

D>D* (D reduces to D*): 1 D1..Dnst. D=D1, D" =D, D1—.. 2Dy
» is the reflexive and transitive closure of —

9 is in normal form (irreducible) if @»9* implies that ="
9 is in normal form (irreducible) if there is no @* s.t. —+D*

Theorem (weak normalisation)
for each 9 there is 9* s.t. D->D* and D* is in normal form




cut formula

conversion with cut formula y—@




d(¢p)= size of ¢

¢ Is maximal in a derivation 9 |if:

1. ¢ is a cut formula
2. d(d)=max{d(d): d is a cut formula in &}




Theorem (weak normalisation)
for each 9 there is 9* s.t. D»>D* and D* is in normal form

d=max{d(d): d is a cut formula in &}

n=#{d : & is an occurrence of a maximal cut}

Let call R(99) the pair (d,n) of 9.

Let us assume the lexicographic well order < for pairs of natural numbers:
(d,n) < (d’,n’) iff d <d’ or d=d’ and n< n’.

The proof is by induction on R(9).

Base: if R(2)=(0,0) then & is in normal form;

Induction step: let us suppose that R(<)=(d,n).

Make a reduction with a maximal cut formula &: 9 -9, with R(2™)=(d*,n*)
Now observe that (d*,n*)<(d,n) (if n>1 then d*=d and n*=n-1, if n=1, then d*<d)
By induction hypothesis &*-» 9°

Since 9—-D* and D*-»D° we have the thesis.



There is no general way of giving a

proof theory for modal logics.

The case of S4







C ehp D < C has the shape either OB or =) B



faillure of normalisation




faillure of normalisation




The solution proposed by Prawitz




'=hp of the derivation,

#M=max{i: a'cl’}

7>#1
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Arithmetic in a Natural deduction setting

Language Lo:
one unary function symbol S
two binary function symbol +, e

two predicate symbols =, <




[A(X)]
9D

A(0) A(5(x))

A(t)

Xe¢FV(hp(¥)-{A(X)}



the variable x does not occur free in any of the undischarged
assumptions on which the deduction of A(x) depends.

vl can be reformulated by saying that A(x) does not interact, with respect to

the variable x, with any of the undischarged assumptions on which the
deduction of A(x) depends.



A does not interact with any of the undischarged assumptions on which the deduction
of A depends

???7?




the basic idea is to add a component to a
propositional modal formula: a space position s

We write Asto say that formula A has (is in) position s. We call Asa
position formula

positions allow a clear denition of modal interaction between
formulas




Only modal operators and an
induction rule can change the
position of a formula




The nature of positions and the treatment of modal operators



As already said, a position is a space coordinate

a position

is an ordered pair N ,S> where n is a natural number and S is a nite set of
tokens

We intuitively think of <n + 1; S) as the successor position of (n; S)




In analogy with the first-order case, we say that formula 4V interacts with formula
B™T) with respect to the token x if xeSNT.

with the restriction that xS and x does not occur

in any of the undischarged assumptions on which
the deduction of An;S) depends.



with the restriction that xeS and x does not occur
in any of the undischarged assumptions on which

the deduction of A(n;S)> depends.




VxA(x)
A(?)

with the restriction that term ¢ 1s free for variable x mn A(x).

Intuitively, after the elimination of from AS, formula A can be in any
position that
IS “reachable” from position s.

Reachable positions from s = (n; S) are those obtained by “adding” an
arbitrary position to s, namely those of the form <(n+ m; Su T ), where
(m;T) is any position.













INDUCTION

(ANDO(A — o0A)) — OA.

[A(x)]

A0) A(x+1)
A(t)




[A(x)]

A0) A(x+1)
A(t)

[A<n,SU{x}>]

A(n,S} A(IH—I,SU{x})

An+m,SUT)

(IND)

with the restriction that x does not occur in S or in any of the assumptions on which the

deduction of A"TLSYUNN) depends, with the exception of the discharged assumptions
A{n,SU{x})




Modal formulas have an alphabet consisting of:
denumerably many proposition symbols py, pi,...,
the symbol L for absurdum,

the propositional connectives V, N\, —,

the modal operators o,0,¢, and

the auxiliary symbols ( and ).




Definition 2.1. The set of modal formulas is the least set that contains 1, the proposi-

tion symbols and is closed under applications of the prepositional connectives and the
modal operators.

Definition 2.2. The set of positions is the set of all pairs (n,S) where n is a natural
number and S is a finite set of tokens from a denumerable set 7' = {xo,x1,...}.

Definition 2.3. A position formula (briefly: formula) is an expression of the form A°,
where A4 1s a modal formula and s 1s a position.

Let s=(n,S) and t= (m, T) be positions. For sake of simplicity we introduce the
following notation:
e st for (n+m,SUT),
o if 7= we write s®m for s D,
o if t=(0,{x}) we write s B x for sB¢,

C(n+m,(S\{xHUT) if xS,
o we let s[t/x] =«

B otherwise.



A B |
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N B
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T (AME)
B (A2E)
. [4°] [B’]
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A3®1 04’
(ol) ~o1 (of)

oA*
AP 0A°
— (0l) —®i (OF)

In the rule o/ the token x does not occur in s or in the set of assumptions on which
A*®* depends.



4]

AP oA° C!
o D Ct

In the rule ©F the token x does not occur in s,7 or in the set of assumptions on
which C’ depends, with the exception of the discharged assumptions A4*%~.

(OF)

4]

A5 AS@(I,}C)

i (IND)

In the rule IND, the token x does not occur in s or in any of the assumptions on
which 4*®(1L%) depends, with the exception of the discharged assumptions 45®~.



We write -A°to say that there exists a deduction of A®in the

system whose (undischarged) assumptions belongs to .
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Towards Strong Normalisation
(intuitionistic system)
Very Diftticult

Proposition 2.4. Let 'ty A°, where N is PNK or PNJ. Then there exists a deduction
of A° from I' in the system N such that

1. each proper token is the proper token of exactly one instance of ol or ¢ E or IND
rule;

2. the proper token of any instance of 0l rule occurs only in the sub-derivation above
that instance of the rule;

3. the proper token of any instance of OE or IND rule occurs only in the sub-
derivation above the minor premiss of that instance of the rule.

We denote by II[t/x] the tree obtained by replacing each position s in a deduction
I1 with s[t/x].
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The system is strong normalising !!!
(10 pagine di dimostrazione)






2. Frames

Frames are tree—like triples S = (.5, <, D) where

(1) S is a nonempty set (elements of S will be called time instants or nodes);
(2) < is a discrete strict partial ordering on S that satisfies the following:
(a) for all s € S there exists s’ € S such that s < ¢'.
(b) for all s,s" € S, the set {x € §:s <x < s’} is finite and linearly ordered.
(3) D C “S satisfies the property that, for each (s;)ic € D, s;11 is an immediate
successor of s;, for all i € w. Elements of D will be called (time)-directions.
(4) D is
(a) suffir—closed, namely whenever (s;);c, € D, then (s;11)icw € D;
(b) fusion—closed, namely whenever (s;)ice, € D, (t;)icw € D and s, = t, for
some n, then (sg,..., Sy, tna1,tnio,...) € D.

Let d be a direction. The n-th node of direction d will be denoted by d,, (dy thus
being the initial instant of d). We denote by d™ the direction (d,,dy+1,-..). Notations
like d7 have the expected meaning: d;, = dp1m,.



SYNTAX

(1) a countable set V = {x; : i € w} of variables ranging over natural numbers, called
tokens. We shall use metavariables x, vy, z for tokens.

(2) a countable set A = {§; : i € w} of variables ranging over directions, called
path-variables. We shall shall use 7, 0, n as metavariables for path-variables.

(3) a countable set Vi of propositional variables (letters).

A position p is a finite (possibly empty) string of tokens and occurrences

of the digit 1 with the property that each token has at most one occurrence in p.

Intuitively, position p = p; ... p, stands for the algebraic expression Y p = > " p;.
We regard two positions p, q as equal if Y > p = > ¢ is an algebraic identity. So, formally
speaking, we deal with equivalence classes of positions. For better readability, we shall
abbreviate 1...1 with the natural number n. We denote by P the set of positions.

n times



Definition 2. The set X of strings is the least set X such that

(1) AUPUA{e} C X;
(2) if o € X then 00 € X for all 6 € A not occurring in o;
(3) if o € X then op € X for all p € P such that no token in p occurs in o.

Definition 3. The set I1 of terms is the collection of strings whose leftmost element is
a path-variable.

Definition 4. The set of pre—formulas is the least set X such that

(1) Le X and A € X whenever A is a propositional letter;
(2) (AN B) € X whenever A,B € X;

(3) (A — B) € X whenever A,B € X;

(4) (OA), (OA) and (VA) are in X whenever A € X.

We regard = A and JA as abbreviations for A — 1 and —V—A respectively.



Definition 5. A labelled temporal formula (briefly: formula) is a string of the form A™
where A is a pre—formula and 7w € II. Formula A™ 1s atomic when A is atomic.

Figure 1. Graphical representation of term 62xnyl-~y.
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A?TCE
(oA)"

Ol

where x does not occur in any of the assumptions on which the proof of the premiss
depends.

A7T1
1
o © (5)
A7 ATV ATY
11 12 |
vay U wam 'R war VB (6)

where v does not occur in any of the assumptions on which the proof of the premiss
depends.



(OA)"

- DF

when p is the empty position, we just write A™ in the conclusion.

(OA)7

Aﬂ'l O E




A™]

AT ATT 1
AT

IND (10)

where token x does not occur free in any of the assumptions different from A™ on which
the proof A™' depends.

AT
A7r5

At (11)

where A is a propositional letter.
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