
Modal Logic



Propositional logic may be defined in a Hilbert style fashion

Propositional logic is a set H defined as smallest set X of formulas verifying the 
following properties:
1. if A, B, C are formulas then X contains the formulas (called axioms)
P1 A→(B→A) 
P2 (A→(B→C))→((A→B)→(A→C)) 
P3 ((¬B→¬A)→((¬B→A)→B))
moreover
MP  if A∈X and A→B∈X then B∈X(modus ponens)  

We write ⊢H A to denote that A∈H

If Ω is a finite set of formulas we write Ω ⊢H A to denote that ⊢H ⋀Ω → A 
If Ω is an infinite set of formulas we write Ω ⊢H A to denote that there is a finite 
subset Ω0 of Ω s.t. Ω0 ⊢HA.



language of modal logic 
alphabet: 
(i) proposition symbols : p0, p1, p2, . . . , 
(ii) connectives : →,⊥
(iii) modal operator ☐
(iv) auxiliary symbols : ( , ).

The set WFF of (modal) formulas  is the smallest set X 
with the properties
(i) pi ∈X (i∈N), ⊥∈X,
(ii) A,B∈X⇒ (A→B)∈X, 
(iii)A∈X ⇒(¬A)∈X
(iv) A∈X ⇒(☐A)∈X

AT={p0, p1, p2, . . . ,}∪{⊥}



Let Z be a set o formula.
The normal modal logic L[Z]  is defined as smallest set X of formulas verifying the 
following properties:
1. Z⊆ X
2.  if A, B, C are formulas then X contains the formulas (called axioms)

P1 A→(B→A) 
P2 (A→(B→C))→((A→B)→(A→C)) 
P3 ((¬B→¬A)→((¬B→A)→B))
P4 ☐(A➝B)➝(☐A→☐B)

3. moreover
MP  if A∈X and A→B∈X then B∈X(modus ponens)  
NEC if A∈X then ☐A∈X (necessitation)

We write ⊢
L[Z] 

A to denote that A∈L[Z]

If Ω is a finite set of formulas we write Ω ⊢
L[Z]  

A to denote that ⊢
L[Z]  

⋀Ω → A 

If Ω is an infinite set of formulas we write Ω ⊢
L[Z]  

 A to denote that there is a finite 
subset Ω0 of Ω s.t. Ω0 ⊢L[Z]  

A.



L[∅] is called minimal normal modal logic and 
L[∅] is denoted simply by K

Abbreviations
The usual abbreviations of classical logic plus
♢A := ¬☐¬A

some schema 
D.☐A➝♢A 
T. ☐A→A
4. ☐A➝☐☐A 
B. A➝☐♢A

some modal logic
T := L[T]
S4 := L[T4]
S5 := L[T4B]
KT := L[T]
K4:= L[4]

If N1,..,Nk are names of schemas of formula
the sequence N1..Nk is the set 
N1*∪…∪N1*, where 
Ni* ={A: A is an instance of the schema Ni}



Possible world semantics
or

Kripke semantics



Let Prop be the set of propositional symbols. 

A structure F =⟨U,R⟩, where U is a nonempty set and R ⊆ UxU  is 
called frame (𝓕 is a graph).

A valuation on a frame F=⟨U,R⟩ is a function V : U→2Prop.

A (Kripke) model M is a frame plus a valuation V, M =⟨U,R,V⟩



Let M =⟨U,R,V⟩  a model, 

 the satisfiability relation M ⊨ ⊆ UxWFF 

is defined as   

1.  M ,w ⊨A∧B⇔ M,w ⊨A AND M,w ⊨B 

2.  M ,w ⊨A∨B⇔ M,w ⊨A OR M,w⊨B 

3.  M,w ⊨ ¬A ⇔ M,w ⊭ A, 

4. M,w ⊨A→B⇔ (M,w ⊨A⇒ M,w ⊨B),  

5. M,w ⊨☐A⇔  ∀ u (wRu ⇒M,u ⊨ A)   

6. M,w ⊨♢A⇔  ∃ u (wRu AND M,u ⊨ A) 

7. M ,w ⊭⊥ 

8. M ,w ⊨ p iff p∈V(w) 



The following are some modal logics currently used. To the left of the
sign = we have the historical name of the logic, to the right Lemmon’s code.

• T = KT

• S4 = KT4

• S5 = KT4B

• S4.1 = KT4M

• S4.2 =KT4G

• S4.3 = KT4H

1.2 Semantics

1.2.1 Possible world semantic

Definition 1.2.1 Let Prop be a set of propositional symbols; a structure
F =< U,R >, with U a set of worlds, R ⊆ U2 an accessibility relation, is
called frame.

A valuation on a frame F is a function and V : U → 2Prop.
A model M is a frame and a valuation, namely M =< U,R, V >; the

semantics of formulas in M is given by induction on the structure of the
formula A. With I, u |= A we mean that the formula A is true in the world
u of I.

• M,u |= A iff:

A ∈ Prop and A ∈ V (u)

A is ¬B and not M,u |= B

A is B⊃C and if M,u |= B then M,u |= C

A is ✷B and for each u′ ∈ U if uRu′ then M,u′ |= B

• let M be a model, M |= A iff for each u ∈ U we have M,u |= A

• let M be a model and let Σ be a set of formulas, M |= Σ iff for each
A ∈ Σ M |= A

• |= A iff for each model M we have M |= A.

• let F be a frame, F |= A iff for each valuation V , ⟨F, V ⟩ |= A

• let F be a frame, F,w |= A iff for each valuation V , ⟨F, V ⟩, w |= A
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• let F be a frame and let Σ be a set of formulas, F |= Σ iff for each
A ∈ Σ F |= A

• let Σ be a set of formulas, A a formula:

– Σ |=m A iff for each model M , M |= Σ ⇒ M |= A

– Σ |=f A iff for each frame F , F |= Σ ⇒ F |= A

– let M be a model, Th(M) = {A : M |= A}
– let F be a , Th(F ) = {A : F |= A}
– Md(A) = {M : M is a model,M |= A}
– Md(Σ) = {M : M is a model,M |= Σ}
– Fr(A) = {F : F is a frame, F |= A}
– Fr(Σ) = {F : F is a model, F |= Σ}

Theorem 1.2.2 (soundness) Let Σ be a set of formulas and let M ∈
Md(Σ) (F ∈ Fr(Σ)) then for each theorem A ∈L[Σ] we have that M |= A
(F |= A).

Proof. Observe that inference rules (and in particular gen) preserve truth,
and conclude.

As immediate consequence we have that models and frames are com-
pletely characterized by modal logical axioms:

Corollary 1.2.3 Md(L[Σ]) = Md(Σ) and Fr(L[Σ]) = Fr(Σ).

The intuitive idea of possible worlds semantics is that the worlds are the
universes in which formulas are evaluated and that the accessibility relation
is the way in which formulas become true.

Example 1.2.4 Let us consider the Kripke model M = ⟨W,R, V ⟩ in fig.
where W = {x, y, z, u, v}, the relation R is represents by arcs, and the as-
signment function V is given by labelling worlds with propositional symbols.

It easy to verify that, for each formula α :
x |= ✷α
but
x ̸|= ✸α

This fact tell us that the axiom schema D= ✷α⊃✸α does not hold in M.
We can prove that

y |= ✷(p∨r)
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Modal definability



First order translation

Let us assume a modal language with a denumerable set Prop of propositional 
symbols.
Let us consider a first order language L, with a denumerable set  Π of unary 
predicate symbols, and a binary predicate symbol R.
Let τ:Prop→Π a bijective map
Let Form be  the set of first order formula formulas  in the language L.

Given a fixed variable x, we define an injective mapping 
STx:  WFF→Form

1. STx(p) = P(x) for p ∈Prop and P = τ(p);
2. STx(¬A)=¬STx(A)
3. STx(A→B)=STx(A)→STx(B)
4. STx(☐A) = ∀y(xRy→{STx(A)}[x/y]) where y does no occur in ST(A).



definability



Let A (Σ) be a formula (a set of formulas), we say that A (Σ) defines 
a first/second order property Φ in the language with (R, =), if for 
each F (F ∈ Fr(A) (F∈Fr(Σ)) ⟺F⊨ Φ)
If the set Σ defines the condition Φ then we say also that the logic 
L[Σ] defines Φ.

1.3.2 Interpretation on frames

The interpretation of modal formulas over models is simply extendible to
an interpretation w.r.t. frames. The basic idea is to have a second order
translation, where the second order quantification is relative to propositional
variable.

We can state the following theorem:

Theorem 1.3.4 Let α be a modal formula with propositional symbols p1, . . . pm;
F,w |= α iff F,w |= ∀P1 . . .∀PnST (α)
F |= α iff F |= ∀P1 . . .∀Pn∀x.ST (α)

The previos theorem states that modal formulas may be seen as element
of Π1

1 in the analithycal hierarchy.
The previos translation is not very informative, as it refer to propositional

symbols in the underlying modal formulas.
It is interesting the capability of modal formulas to define first/second

order condition on frames, namely first/second order formulas built over the
binary predicate symbols R and =.

Definition 1.3.5 Let A (Σ) be a formula (a set of formulas), we say that A
(Σ) defines a first/second order relation Φ on (R,=), if for each F ∈ Fr(A)
(F ∈ Fr(Σ)) F |= Φ. If Σ define the condition Φ then we say also that the
logic L[Σ] defines Φ.

Very interesting is the capability of modal logic to define first order con-
dition. To this aim we define a class of modal formulas called M1:

Definition 1.3.6 We denote with M1 the class of modal formulas α such
that:

F |= α ⇐⇒ F |= ᾱ

where ᾱ is a first order sentence on (R,=).

The following table shows some interesting member of M1.

formula name formula first order on (R,=)
D ✷A⊃✸A ∀x∃y.xRy
T ✷A⊃A ∀x.xRx
4 ✷A⊃✷✷A ∀xyz.(xRy∧yRz⊃xRz)
B ✸✷A⊃A ∀x∀y.(xRy⊃yRx)
G ✸✷A⊃✷✸A ∀xyz.((xRy∧xRz)⊃∃w(yRw∧zRw))
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Proposition 1.3.7 ✷α⊃✷✷α defines transitivity ∀xyz.(xRy∧yRz⊃xRz)

Proof.

1. F |= ∀xyz.(xRy∧yRz⊃xRz) ⇒ F |= ✷α⊃✷✷α. Let F,w |= ✷α, and
w′, w′′ s.t. wRw′, w′Rw′′ then by transitivity we have that wRw′′ and
therefore F,w′′ |= α; namely F,w′ |= ✷α and F,w |= ✷✷α.

2. F |= ✷α⊃✷✷α ⇒ F |= ∀xyz.(xRy∧yRz⊃xRz). Let us suppose that
F,w |= ✷α⊃✷✷α; we fix the following assignment V (α) = {v|wRv}.
We have that F, V, w |= ✷α and by hypothesis F, V, w |= ✷✷α. Now
for a generic v ∈ V (α) let w′′ s.t. vRw′′. As F, V, w′′ |= α, we must
have that R is transitive.

Proposition 1.3.8 ✸✷α⊃✷✸α defines directness:
dir = ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu))

Proof

1. F |= ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu)) ⇒ F |= ✸✷α⊃✷✸α
Let w ∈ W and F,w |= ✸✷α then ∃w′, wRw′s.t.∀w′′w′Rw′′ ⇒ w′′ |= α.

As dir holds we have that ∀vwRv∃sw′Rs, vRs as F, s |= α and therefore
F,w |= ✷✸α

2. F |= ✸✷α⊃✷✸α ⇒ F |= ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu))
Let w,w′, w′′ s.t. wRw′, wRw′′ and let V the assignment s.t. V (α) =
{s : w′Rs}
We have that F,w′ |= ✷α and that F,w′ |= ✸✷α. As F |= G we have
that F,w |= ✷✸α and therefore ∀vwRv ⇒ ∃tF, t |= α ⇒ t ∈ V (α) ⇒
F |= dir

By combining the capability of modal formulas to define first/second order
relation on the accessibility relation of frames we obtain the following results:
Fr(K) = {⟨U,R⟩ : R is a generic relation}
Fr(KD) = {⟨U,R⟩ : R is total}
Fr(KT) = {⟨U,R⟩ : R is reflexive}
Fr(S4) = {⟨U,R⟩ : R is a preorder}
Fr(S5) = {⟨U,R⟩ : R is an equivalence}
Fr(S4.2) = {⟨U,R⟩ : R is a direct preorder}
Some interesting property charcterize the class M1.

Theorem 1.3.9 Let α be a modal formulas without nesting modalities, then
α ∈ M1.
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Proposition 1.3.8 ✸✷α⊃✷✸α defines directness:
dir = ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu))

Proof

1. F |= ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu)) ⇒ F |= ✸✷α⊃✷✸α
Let w ∈ W and F,w |= ✸✷α then ∃w′, wRw′s.t.∀w′′w′Rw′′ ⇒ w′′ |= α.

As dir holds we have that ∀vwRv∃sw′Rs, vRs as F, s |= α and therefore
F,w |= ✷✸α

2. F |= ✸✷α⊃✷✸α ⇒ F |= ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu))
Let w,w′, w′′ s.t. wRw′, wRw′′ and let V the assignment s.t. V (α) =
{s : w′Rs}
We have that F,w′ |= ✷α and that F,w′ |= ✸✷α. As F |= G we have
that F,w |= ✷✸α and therefore ∀vwRv ⇒ ∃tF, t |= α ⇒ t ∈ V (α) ⇒
F |= dir

By combining the capability of modal formulas to define first/second order
relation on the accessibility relation of frames we obtain the following results:
Fr(K) = {⟨U,R⟩ : R is a generic relation}
Fr(KD) = {⟨U,R⟩ : R is total}
Fr(KT) = {⟨U,R⟩ : R is reflexive}
Fr(S4) = {⟨U,R⟩ : R is a preorder}
Fr(S5) = {⟨U,R⟩ : R is an equivalence}
Fr(S4.2) = {⟨U,R⟩ : R is a direct preorder}
Some interesting property charcterize the class M1.

Theorem 1.3.9 Let α be a modal formulas without nesting modalities, then
α ∈ M1.
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COMPLETENESS



L[Z]  is defined as smallest set X of formulas verifying the following properties:
1. Z⊆ X
2.  if A, B, C are formulas then X contains the formulas (called axioms)

P1 A→(B→A) 
P2 (A→(B→C))→((A→B)→(A→C)) 
P3 ((¬B→¬A)→((¬B→A)→B))
P4 ☐(A➝B)➝(☐A→☐B)

3.  L is closed w.r.t. the following operation
MP  if A∈X and A→B∈X then B∈X(modus ponens)  
NEC if A∈X then ☐A∈X (necessitation)

Given a set Z   of modal fomulas the modal logic L[Z] is defined by means of the following 
axioms and inference rules plus a notion of derivation.

axioms
1. if A, B, C are formulas then the following are axioms

P1 A→(B→A) 
P2 (A→(B→C))→((A→B)→(A→C)) 
P3 ((¬B→¬A)→((¬B→A)→B))
P4 ☐(A➝B)➝(☐A→☐B)

2. if A∈Z then A is an axiom
Inference rules

                            MP   

           
                            NEC

Derivations
A derivation is a finite sequence A1, . . . , An of formulas s.t. for each i ∈ [1, n]
Ai is an axiom; or
Ai ≡ B and ∃j, k < i s.t. Ai ≡ A, Ak ≡ A → B;
Ai ≡ ☐A and ∃k < i s.t. Ak ≡ A;

We write ⊢L[Z] A to denote that there is a derivation A1,...,An with An ≡A

A    A→B  
B

A      
☐A



The construction of the canonical model



Maximal Consistent Sets
A set Γ of WFF is consistent if

Γ⊬⊥.
A set Γ of WFF is inconsistent if

Γ⊢⊥.

A set Γ is maximally consistent iff 
(a) Γ is consistent,
(b) Γ ⊆Γ′ and Γ′ consistent ⇒Γ=Γ′.

If Γ is maximally consistent, then Γ is closed under 
derivability (i.e. Γ ⊢φ⇒φ∈Γ). 



Theorem:
Each consistent set Γ is contained in a maximally 
consistent set Γ✻

   1) enumerate all the formulas 
  φ0, φ1, φ2, .....

2) define the non decreasing sequence: 
Γ0=Γ 
         ⎧Γn ∪ {φn} if Γn ∪ {φn} is consistent, Γn+1=           ⎨                    ⎩Γn otherwise 

3) define 

Γ✻ =∪Γn .
n≥0



Propositional logic:
If Γ is consistent, then there exists a CANONICAL  valuation such that [ψ] = 1 for all 
ψ ∈ Γ.

Let L be a normal modal logic, a model M =⟨U,R,V⟩ is called 
canonical iff
1. U ={w : w is maximal consistent}
2. R={(u,v) : {A:☐A∈u}⊆v
3. u∈V(p) ⇔ p∈u



A logic L is called canonical if, taken the canonical model ⟨U,R,V⟩, 
we have ⟨U,R⟩ ∈ Fr(L).

Theorem CM
Let ⟨U,R,V⟩ the canonical model of L
 ⊢L α ⇔ ⟨U,R,V⟩ ⊨ α



A normal modal logic L is said to be model complete if for each 
formula A:

⊢L A⇔∀M∈Md(L) M⊨A

Theorem 
 Each normal modal logic is model complete
Proof 

(⇒)
⊢L A⇒∀M∈Md(L)M⊨A by soundness

(⇐)
In order to prove
∀M∈Md(L)M⊨A ⇒⊢L A we use the canonical model. 
If ∀M ∈ Md(L) M⊨A we have in particular that taken the canonical 
model ⟨U, R, V⟩ we have that ⟨U, R, V⟩ ⊨ A, and applying theorem 
CM we conclude.



A normal modal logic L(Σ) is said to be frame complete if for each 
formula A:
⊢L A⇔∀F∈Fr(Σ) F⊨A

Theorem The logics K, KD, KT, S4, S5, are  frame complete.
Proof
Let L∈{K, KD, KT, S4, S5}, it is sufficient to show that if ⟨U,R,V⟩ is 
the canonical model of L then  the frame ⟨U,R⟩∈Fr(L).



Let Σ be a set of formulas, and let C ⊆ Fr(Σ) a set of frames; the 
modal logic L[Σ] is said to be C-complete  (complete w.r.t. the 
class C of frames) if
A∈L(Σ)⇔∀F∈C,F⊨A

Theorem 
1. The logics K (KD) is complete with respect to the class of 

denumerable frames with irreflexive, asymmetric and 
intransitive (total) accessibility relation.

2. The logic S4 is complete w.r.t. the set of denumerable partial 
order.



Modal logic and intuitionism

Let us consider the following translation function []* from 
propositional formulas to modal ones.
p* =☐p (p is a propositional symbol) 
[A∧B]* = [A]*∧[B]*
[A∨B]*= [A]*∨[B]*
[A→B]* = ☐([A]*→[B]*) 
[¬A]* =☐(¬[A]*)



Lemma 
Let ⟨W,R,Vi⟩ be an intuitionistic model and ⟨W,R,VS4⟩ be a partial 
order model of S4 s.t. for each propositional symbol p, 
w ⊩i p iff w ⊨S4 ☐p, 
then for each propositional formula A, w ⊩i A iff w ⊨s4 A*

Lemma 
Let Mi=⟨W,R,Vi⟩ be an intuitionistic model and MS4=⟨W,R,VS4⟩ be a 
partial order model of S4 s.t. for each propositional symbol p, 
w ⊩i p iff w ⊨S4 ☐p, 
then for each propositional formula A, Mi⊩i A iff MS4 ⊨s4 A*

Theorem 
⊢i A ⇔⊢S4 A*



natural deduction?



TEMPORAL LOGIC



LTL: Linear Temporal Logic



timeline/computation/fullpath
Kripke frame is Nat=⟨ℕ, σ, ≤⟩

(as usual σ(n) will be written as n+1)

each natural number identifies an temporal instant 

k0 21 3
s=

A  Linear Time Kripke model M (or, simply, a model) is a 
frame plus a valuation of propositional symbols, namely
M= ⟨Nat, V:ℕ→2Prop⟩

σ induces the accessibility relation
𝓝⊆ ℕxℕ
n𝓝m ⟺ m=n+1



language of linear temporal logic 
alphabet: 
(i) proposition symbols : p0, p1, p2, . . . , 
(ii) connectives : →,⊥
(iii) modal operator ◯, 𝓤, 

(iv) auxiliary symbols : ( , ).

The set WFF of (modal) formulas  is the smallest set X 
with the properties
(i) pi ∈X (i∈N), ⊥∈X,
(ii) A,B∈X⇒ (A→B)∈X, 
(iii)A∈X ⇒(¬A)∈X
(iv) A∈X ⇒(◯A)∈X
(v) A,B∈X⇒ (A 𝓤 B)∈X,

AT={p0, p1, p2, . . . ,}∪{⊥}

abbreviations:
♢A := (¬⊥)𝓤A

☐A := ¬♢¬A



Let M= ⟨Nat, V⟩  a model, 

 the satisfiability relation M ⊨ ⊆ ℕxWFF 

is defined as   

1.  M ,n ⊨A∧B⇔ M,n ⊨A & M,n ⊨B 

2.  M ,n ⊨A∨B⇔ M,n ⊨A OR M,n⊨B 

3.  M,n ⊨ ¬A ⇔ M,n ⊭ A, 

4. M,n ⊨A→B⇔ (M,n ⊨A⇒ M,n ⊨B),  

5. M,n ⊨A𝓤B⇔ ∃ m(n≤m & (M,m ⊨ B & ∀j(j∈[n,m-1]⇒M,j ⊨A))) 

6. M,n ⊨☐A⇔  ∀ m (n≤m ⇒M,m ⊨ A)   

7. M,n ⊨♢A⇔  ∃ m (n≤m & M,m ⊨ A) 

8. M,n ⊨◯A⇔  M,n+1 ⊨ A) 

9. M ,n ⊭⊥ 

10.M ,n ⊨ p iff p∈V(n) 



M,n ⊨A𝓤B⇔ ∃ m≥n M,m ⊨ B & ∀j∈[n,m-1] M,j ⊨A

m-1n m

A B



Sometimes in literature a model is given by
K=⟨T,s:ℕ→T, V⟩
where
T is a denumerable set of temporal instants
s is a bijection and 
V:T→2Prop is a valuation
these models are completely equivalent to the models previously 
introduced.



M,sk ⊨A→B⇔ (M,sk ⊨A⇒ M,sk ⊨B), 

M,sn ⊨A𝓤B⇔ ∃ m(n≤m & (M,sm ⊨ B & ∀j(j∈[n,m-1]⇒M,sj ⊨A)))

M,sn ⊨◯A⇔  M,sn+1 ⊨ A)
M ,sn ⊭⊥
M ,sn ⊨ p iff p∈V(sn) 

Let K=⟨T,s:ℕ→T, V⟩,
 the satisfiability relation K ⊨ ⊆ TxWFF
is defined as 



M ⊨ A ⟺ ∀n M,n⊨A

⊨ A ⟺ ∀M.  M ⊨A



∀◯IOMATIZATION (𝓤-free fr∀☐ment)A0 All temporal instances of propositional classical tautologies. 
A1 ◦(A→B)→(◦A→◦B) 
A2 ¬◦A→◦¬A 
A3 ☐(A→B)→(☐A→☐B)
A4 ☐A → A 
A5 ☐A → ☐☐A 
A6 ☐A→◦A 
A7 ☐A → ◦☐A 
A8 A∧☐(A→◦A)→☐A
          A   A→BMP                 B
                   AGen☐                    ☐A
                  AGen◦                ◦A



A∧☐(A→◦A)→☐A
temporal induction

0⊨ A∧☐(A→◦A)→☐A
⟺

(0⊨A & ∀n(n⊨A ⇒ n+1⊨A)) ⇒∀n (n⊨A)
Let α(x) be the property x⊨A

0⊨ A∧☐(A→◦A)→☐A
⟺

(α(0) & ∀n(α(n) ⇒ α(n+1))) ⇒∀n (α(n))

k⊨ A∧☐(A→◦A)→☐A
⟺

(α(k) & ∀n≥k(α(n) ⇒ α(n+1))) ⇒∀n≥k (α(n))



SOUNDNESS

⊢A  ⇒  ⊨A

COMPLETENESS

⊨A  ⇒  ⊢A

(A simple induction on derivations: exercise)

Difficult: the canonical kripke model is not a temporal model



BRANCHING TIME



INTUITIVE IDEA: TREES/GRAPHS instead of COMPUTATIONS

s

q
p

p

p

p,q

p,q

p,q

p,q

qr

r,q

s

s,q

∀◯ =for each next time; ∃◯= there exists a next time such that
∀☐= for each computation and for each state in it
∀♢= for each computation there exists a state in it such that 
∃☐= there exists a computation such that for each state in it
∃♢=there exists a computation and a state in it such that 

s⊨ ∀◯ q      
s⊨ ∃◯ s ∧∃◯p
s⊨ ∃☐ p
s⊨ ∃☐ q
s⊨ ∃♢ r
s⊨ ∃♢ (s ∧¬q)



language of UB 
alphabet: 
(i) proposition symbols : p0, p1, p2, . . . , 
(ii) connectives : →,⊥
(iii) modal operator ∀◯,∀☐,∀♢ 
(iv) auxiliary symbols : ( , ).

The set WFF of (modal) formulas  is the smallest 
set X with the properties
(i) pi ∈X (i∈N), ⊥∈X,
(ii) A,B∈X⇒ (A→B)∈X, 
(iii)A∈X ⇒(¬A)∈X
(iv) A∈X ⇒(∀♢ A), (∀☐ A), (∀◯ A) ∈X

AT={p0, p1, p2, . . . ,}∪{⊥}

abbreviations:
∃☐ A := ¬∀♢¬ A
∃♢ A := ¬∀☐¬ A
∃◯ A := ¬∀◯¬ A



Semantics
an (UB-)frame is a graph

⟨S,N⟩
where N ⊆ SxS is total (∀s∃s’ sNs’)

An s-branch/s-computation is a sequence 
bs=(si)i<ω s.t. s=s0 & ∀ i∈ℕ siNsi+1

if bs=(si)i<ω with bs[k] we denote sk and with
s’∈ bs we mean that ∃k s.t. s’= bs[k]

an (UB-)model is a pair
⟨F,V⟩

where F is a frame 
and V:S→2Prop

is a valuation



Let M= ⟨S,N,V⟩  a model, 

 the satisfiability relation M ⊨ ⊆ SxWFF 

is defined as   

1. M ,s ⊭⊥ 

2. M ,s ⊨ p iff p∈V(s) 

3. M ,s ⊨A∧B⇔ M,s ⊨A & M,s ⊨B 

4. M ,s ⊨A∨B⇔ M,s ⊨A OR M,s⊨B 

5. M,s ⊨ ¬A ⇔ M,s ⊭ A, 

6. M,s ⊨A→B⇔ (M,s ⊨A⇒ M,s ⊨B),  

7. M,s ⊨∀☐ A⇔  ∀bs∀s’∈bs M,s’ ⊨ A 

8. M,s ⊨∀♢ A⇔  ∀bs∃s’∈bs M,s’ ⊨ A 

9. M,s ⊨∃☐ A⇔  ∃bs∀s’∈bs M,s’ ⊨ A 

10. M,s ⊨∃♢ A⇔  ∃bs∃s’∈bs M,s’ ⊨ A 

11. M,s ⊨∀◯ A⇔  ∀s’ (sNs’⇒ M,s’ ⊨ A) 

12. M,s ⊨∃◯ A⇔  ∃s’ (sNs’ & M,s’ ⊨ A)



AXIOMATIZATION (𝓤-free fragment)

A0 All temporal instances of propositional classical tautologies. 
. (A1)  ∀☐(A→B)⊃(∀☐A→∀☐B) 
. (A2)  ∀◯(A→B)⊃(∀◯A→∀◯B) 
. (A3)  ∀☐A → (∀☐A ∧ ∀◯∀☐ A) 
. (A4)  A ∧ ∀☐(A→∀◯A)→∀☐A) 
. (E1)  ∀☐(A→B)⊃(∃☐A→∃☐B)
. (E2)  ∃☐ A → (A ∧ ∃◯∃☐A) 
. (E3)  ∀☐A → ∃☐A 
. (E4)  A ∧ ∀☐(A →∃◯A) → ∃☐A

          A   A→B
MP  
               B

                   A
Gen  
               ∀☐A



SOUNDNESS

⊢A  ⇒  ⊨A

COMPLETENESS

⊨A  ⇒  ⊢A

(A simple induction on derivations: exercise)

Difficult: the canonical kripke model is not an UB-model



The Logic CTL

CTL= UB+𝓤ntil



language of CTL 
alphabet: 
(i) proposition symbols : p0, p1, p2, . . . , 
(ii) connectives : →,⊥
(iii) modal operator ∀◯,∀𝓤, ∃𝓤 

(iv) auxiliary symbols : ( , ).

The set WFF of (modal) formulas  is the smallest 
set X with the properties
(i) pi ∈X (i∈N), ⊥∈X,
(ii) A,B∈X⇒ (A→B)∈X, 
(iii)A∈X ⇒(¬A)∈X

(iv) A,B∈X ⇒(∀◯ A), (A ∀𝓤 B) ∈X

AT={p0, p1, p2, . . . ,}∪{⊥}

abbreviations:
∃◯A = ¬∀◯¬A         
∃☐A=¬∀♢¬A   ∀☐A=¬∃♢¬A   ∃♢α ≡ true ∃𝓤 A       ∀♢A ≡ true ∀𝓤 A



M,s ⊨B ∃𝓤 A
⇔  
∃bs ∃k ( M,bs[k] ⊨ A & ∀j∈[0,k-1] bs[j] ⊨ B 

NOTATION: if bs=(si)i<ω with bs[k] we denote sk

M,s ⊨B ∀𝓤 A
⇔  
∀bs ∃k ( M,bs[k] ⊨ A & ∀j∈[0,k-1] bs[j] ⊨ B 



in order to axiomatize CTL we add to the axioms od UB 
the following
∀☐(C→(¬B∧(A→∀◯C))→(C→¬(A∃𝓤B))

∀☐(C→(¬B∧∃◯C))→(C→¬(A∀𝓤B))



Basic CTL Operators (Cont.)

The four most
widely used CTL
operators are illus-
trated here.
Each computation
tree has the state s0

as its root.

g

.

..
.
..

.

..
.
..

g

.

..
.
..

.

..
.
..

g

g

M, s0 |= EF g M, s0 |= AF g

g

.

..
.
..

.

..
.
..

g

g

g

.

..
.
..

.

..
.
..

g

g

g

g

g g

M, s0 |= EG g M, s0 |= AG g
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SOUNDNESS

⊢A  ⇒  ⊨A

COMPLETENESS

⊨A  ⇒  ⊢A

(A simple induction on derivations: exercise)

Difficult: the canonical kripke model is not  CTL-model



CTL*



The computation tree logic CTL* (pronounced “CTL star”) combines 
both branching-time and linear-time operators. 

In this logic a path quantifier can prefix an assertion composed of 
arbitrary combinations of the usual linear-time operators. 

The Logic CTL∗

The computation tree logic CTL∗ (pronounced “CTL star”) combines
both branching-time and linear-time operators.

In this logic a path quantifier can prefix an assertion composed of
arbitrary combinations of the usual linear-time operators.

1. Path quantifiers:
! A — “for every path”
! E — “there exists a path”

2. Linear-time operators:
! Xp — p holds true next time.
! Fp — p holds true sometime in the future
! Gp — p holds true globally in the future
! pUq — p holds true until q holds true

For a path π = (s0, s1, . . .), state s0 is considered to be at the present time.
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Path Formulas and State Formulas

The syntax of state formulas is given by the following rules:

! If p is an atomic proposition, then p is a state formula.

! If f and g are state formulas, then ¬f and f ∨ g are state formulas.

! If f is a path formula, then E(f) and A(f) are state formulas.

Two additional rules are needed to specify the syntax of path formulas:

! If f is a state formula, then f is also a path formula.
(A state formula f is true for a path π if the f is true in the initial
state of the path π.)

! If f and g are path formulas, then ¬f , f ∨ g, X f , F f , G f , and
f U g are path formulas.
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State Formulas (Cont.)

If f is a state formula, the notation M, s |= f means that f holds at

state s in the Kripke structure M .

Assume f1 and f2 are state formulas and g is a path formula. The
relation M, s |= f is defined inductively as follows:

1. s |= p ⇔ atomic proposition p is true in s .
2. s |= ¬f1 ⇔ s ̸|= f1.
3. s |= f1 ∨ f2 ⇔ s |= f1 or s |= f2.
4. s |= E(g) ⇔ g holds true for some path π starting with s
4. s |= A(g) ⇔ g holds true for every path π starting with s
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Path Formulas (Cont.)

If f is a path formula, the notation M,π |= f means that f holds true

for path π in Kripke structure M .

Assume g1 and g2 are path formulas and f is a state formula. The
relation M,π |= f is defined inductively as follows:

1. π |= f ⇔ s is the first state of π and s |= f .
2. π |= ¬g1 ⇔ π ̸|= g1.
3. π |= g1 ∨ g2 ⇔ π |= g1 or π |= g2.
4. π |= X g1 ⇔ π1 |= g1.
5. π |= F g1 ⇔ πk |= g1 for some k ≥ 0
6. π |= G g1 ⇔ πk |= g1 for every k ≥ 0
7. π |= g1 U g2 ⇔ there exists a k ≥ 0 such that

πk |= g2 and πj |= g1 for 0 ≤ j < k.

Recall: For π = (s0, s1, . . .), we write πi to denote the suffix starting with si.
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Time

Notice that Fp, FFp, FFFp, etc., hold true for a path π even if p holds
true at only the initial state in the path π.

! In CTL∗, the ‘future’ includes the present state. (States have
temporal duration, so if we’re presently in state s at time t, then
we’ll still be in state s in the future at time t + dt where dt is an
infinitesimally small period of time.)
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Relationships between operators

Note the following:

! A(f) ≡ ¬E(¬f)

! F f ≡ (true U f)

(Recall: π |= g1 U g2 ⇔ there exists a k ≥ 0 such that
πk |= g2 and πj |= g1 for 0 ≤ j < k.)

! G f ≡ ¬F¬f

So, given any CTL∗ formula, we can rewrite it without using the
operators A, F, or G.
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Typical CTL∗ formulas

! EF(Started ∧ ¬Ready): It is possible to get to a state where
Started holds but Ready does not hold.

! AG(Req → AFAck): If a request occurs, then it will be eventually
acknowledged.

! AG(AFDeviceEnabled): The proposition DeviceEnabled holds
infinitely often on every computation path.

! AG(EFRestart): From any state it is possible to get to the Restart
state.

! A(GF enabled ⇒ GF executed): if a process is infinitely-often
enabled, then it is infinitely-often executed.

Note that the first four formulas are CTL formulas.
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SOUNDNESS

⊢?

COMPLETENESS

????



Expressive Power

It can be shown that the three logics discussed in this section have
different expressive powers.

For example, there is no CTL formula that is equivalent to the LTL
formula A(FG p).

Likewise, there is no LTL formula that is equivalent to the CTL formula
AG(EF p).

The disjunction A(FG p) ∨ AG(EF p) is a CTL∗ formula that is not
expressible in either CTL or LTL.
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Model Checking
Given a model M and a formula A

M⊨A ?

model checking is important for verification of properties of
concurrent and distribute systems.
M represent the computational space and A the property to be 
verified

Theorem
The model checking problem for CTL is in deterministic 
polynomial time

Theorem 
The model checking problem for LTL
is PSPACE-complete



Modal Deductive Systems



NORMALIZATION



we consider a logic without the absurdum 
connective, and with propositional connective  

only implication and conjunction 





6

Normalisation

6.1 Cuts

Anyone with a reasonable experience in making natural deduction derivations
will have observed that one somehow gets fairly efficient derivations. The worst
that can happen is a number of steps that end up with what was already
derived or given, but then one can obviously shorten the derivation. Here is
an example:

[σ ∧ ϕ]2
∧E

ϕ [ϕ → ψ]1
→ E

ψ

[σ ∧ ϕ]2
∧E

σ
→ I

ψ → σ
→ E

σ
→ I1

(ϕ → ψ) → σ
→ I2

(σ ∧ ϕ) → ((ϕ → ψ) → σ)

σ occurs twice, the first time it is a premise for a → I, and the second
time the result of a → E. We can shorten the derivation as follows:

[σ ∧ ϕ]1
∧E

σ
→ I

(ϕ → ψ) → σ
→ I1

(σ ∧ ϕ) → ((ϕ → ψ) → σ)

It is apparently not a good idea to introduce something and to eliminate it
right away. This indeed is the key-idea for simplifying derivations: avoid elim-
inations after introductions. If a derivation contains an introduction followed
by an elimination, then one can, as a rule, easily shorten the derivation, the
question is, can one get rid of all those unfortunate steps? The answer is ‘yes’,
but the proof is not trivial.
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conversions

6.1 Cuts 189

The adoption of the new rule is not necessary, but rather convenient.

We will first look at predicate calculus with ∧,→,⊥, ∀.

Derivations will systematically be converted into simpler ones by “elimi-
nation of cuts”; here is an example:

D

σ
→ I

ψ → σ

D′

ψ
→ E

σ

converts to
D

σ

In general, when the tree under consideration is a subtree of a larger deriva-
tion the whole subtree ending with σ is replaced by the second one. The rest
of the derivation remains unaltered. This is one of the features of natural de-
duction derivations: for a formula σ in the derivation only the part above σ is
relevant to σ. Therefore we will only indicate conversions as far as required,
but the reader will do well to keep in mind that we make the replacement
inside a given bigger derivation.

We list the possible conversions:
D1

ϕ1

D2

ϕ2
∧I

ϕ1 ∧ ϕ2
∧E

ϕi

is converted to
Di

ϕi

D1

ψ

[ψ]

D2

ϕ
→ I

ψ → ϕ
→ E

ϕ

is converted to

D1

ψ

D2

ϕ

D

ϕ
∀I

∀xϕ[x/y]
∀E

ϕ[t/y]

is converted to
D[t/y]

ϕ[t/y]
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⊳

Redex/cut: sequence   ➝I ,  ➝E



⊳

σ σ

hp𝓓2 ⊆hp𝓓1

𝓓2𝓓1𝓓1 𝓓2



⊳
𝓓2𝓓1

➝

𝓓2𝓓1

𝓓 𝓓*=𝓓[𝓓1/𝓓2]

𝓓➝𝓓*



𝓓➝𝓓* (𝓓 1-step reduces to 𝓓*): 𝓓* is obtained by applying a 

conversion to a subderivation of 𝓓

𝓓↠𝓓* (𝓓 reduces to 𝓓*): ∃ 𝓓1…𝓓n s.t. 𝓓=𝓓1, 𝓓*=𝓓n, 𝓓1➝…➝𝓓n  
↠ is the reflexive and transitive closure of ➝

𝓓 is in normal form (irreducible) if 𝓓↠𝓓* implies that 𝓓=𝓓* 
𝓓 is in normal form (irreducible) if there is no 𝓓* s.t. 𝓓➝𝓓* 

Theorem (weak normalisation)
for each 𝓓 there is 𝓓* s.t. 𝓓↠𝓓* and 𝓓* is in normal form
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⊳

conversion with cut formula ψ→φ



d(φ)= size of φ

φ is maximal in a derivation 𝓓 if:
1. φ is a cut formula
2. d(φ)=max{d(δ): δ is a cut formula in 𝓓} 



Theorem (weak normalisation)
for each 𝓓 there is 𝓓* s.t. 𝓓↠𝓓* and 𝓓* is in normal form

d=max{d(δ): δ is a cut formula in 𝓓} 
n=#{δ : δ is an occurrence of a maximal cut}
Let call R(𝓓) the pair (d,n) of 𝓓.
Let us assume the lexicographic  well order < for pairs of natural numbers:
(d,n) < (d’,n’) iff d <d’ or d=d’ and n< n’.
The proof is by induction on R(𝓓).
Base: if R(𝓓)=(0,0) then 𝓓 is in normal form;
Induction step: let us suppose that R(𝓓)=(d,n).
Make a reduction with a maximal cut formula δ: 𝓓→𝓓*, with R(𝓓*)=(d*,n*)
Now observe that (d*,n*)<(d,n) (if n>1 then d*=d and n*=n-1, if n=1, then d*<d)
By induction hypothesis 𝓓*↠𝓓º
Since 𝓓→𝓓* and 𝓓*↠𝓓º we have the thesis.



The case of S4

There is no general way of giving a 
proof theory for modal logics.



7.3 r is ✸ and r′ is ✷. We have:

π1 ⊢ ✸Γ1, A,✸A,Γ2
✸

π ⊢ ✸Γ1,✸A,Γ2

and
π′
1 ⊢ ✸Γ1,¬A

✷
π′ ⊢ ✸Γ1,¬✸A,Γ2

Proof ϖ is

π1 ⊢ ✸Γ1, A,✸A,Γ2 π′A ⊢ ✸Γ1, A,¬✸A,Γ2
=================================== IH

⊢ ✸Γ1, A,Γ2 π′Γ2

1 ⊢ ✸Γ1,¬A,Γ2
cut

ϖ ⊢ ✸Γ1,Γ2

7.4 r is ✷ and r′ is ✸. Dual of case 7.3.

The previous lemma establishes in the standard way the cut-elimination the-
orem:

Theorem 2.2.7 Given any proof of ⊢ Γ, it is possible to construct a cut-free
proof of the same sequent.

2.3 Natural deduction systems

We focus our attemption on the Prawitz [45] treatment of S4 ( and we sketch
S5).

2.3.1 Natural deduction system for S4

The natural deduction systems S4-NK, S4-NJ, are obtained by adding the
following rules for modalities to NK and NJ .

Rules for S4

1. ✷ introduction
✷Γ,¬✸Γ′

...
A

✷A
✷I

37

2. ✷ elimination
Γ
...

✷A

A
✷E

3. ✸ introduction
Γ
...
A

✸A
✸I

4. ✸ elimination
Γ1
...

✸B

✷Γ,¬✸Γ′, [[B]]
...
C

C
✸E

with C is of the kind ✷F,¬✸F .

2.3.2 Normalization

In order to simplify the treatment we limit ourselves to the fragment {✷,⊃,∧}.
Let us consider the following proof.

✷A∧✷B
∧E

✷B

✷A∧✷B
∧E

✷A

✷A
✷E

A

✷B
✷E

B
∧I

A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)
⊃I

✷A⊃(✷B⊃✷(A∧B))
⊃E

✷B⊃✷(A∧B)
⊃E

✷(A∧B)

We can observe that this proof is not in normal form. Now note that
we cannot perform a β reduction (with type ✷B⊃✷(A∧B)) as the resulting
figure is not correct:
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D

C ∈hp D ⇔ C has the shape either ☐B or ¬♢B  



failure of normalisation 

✷A∧✷B
∧E

✷A
✷E

A

✷B
✷E

B
∧I

A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)

In fact the last application of ✷I violate the constraint previously im-
posed.

In order to have a normalizing system we recall a different natural deduc-
tion system for S4, namely the “third version” of the calculus discussed in
Prawitz’ classical monograph [?, Chapter VI, pag. 79]. As for the rules for
✷, the elimination is the same as ours with the omission of levels, while the
introduction rule is rather elaborate, in order to ensure normalization and
the subformula property. An application of ✷ must have the form:

D1 Dn

[✷τ1 . . . ✷τn]

D
σ
✷σ

✷I

where ✷τ1, . . . ,✷τn are all the open assumptions of D, they are essentially
modal and no open assumption in the deductions Di (of conclusion ✷τi) is
bound in D. In other words, an application of ✷I is obtained by taking a
deduction

✷τ1 . . . ✷τn

D
σ

and plugging into these assumptions arbitrary derivations with the right
conclusion. Rule ✷ is far from being “natural”: it allows normalization, but
at the price of a globally stated constraint on its application.

2.3.3 Addendum: rules for S5

1. ✷ introduction
✷Γ,¬✸Γ′,¬✷Γ′′,¬✸Γ′′′

...
A

✷A
✷I
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2. ✷ elimination
Γ
...

✷A

A
✷E

3. ✸ introduction
Γ
...
A

✸A
✸I

4. ✸ elimination
Γ1
...

✸B

✷Γ,¬✸Γ′, [[B]]
...
C

C
✸E

with C is of the kind ✷F,¬✸F .

2.3.2 Normalization

In order to simplify the treatment we limit ourselves to the fragment {✷,⊃,∧}.
Let us consider the following proof.

✷A∧✷B
∧E

✷B

✷A∧✷B
∧E

✷A

✷A
✷E

A

✷B
✷E

B
∧I

A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)
⊃I

✷A⊃(✷B⊃✷(A∧B))
⊃E

✷B⊃✷(A∧B)
⊃E

✷(A∧B)

We can observe that this proof is not in normal form. Now note that
we cannot perform a β reduction (with type ✷B⊃✷(A∧B)) as the resulting
figure is not correct:
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✷A∧✷B
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In fact the last application of ✷I violate the constraint previously im-
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In order to have a normalizing system we recall a different natural deduc-
tion system for S4, namely the “third version” of the calculus discussed in
Prawitz’ classical monograph [?, Chapter VI, pag. 79]. As for the rules for
✷, the elimination is the same as ours with the omission of levels, while the
introduction rule is rather elaborate, in order to ensure normalization and
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D
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and plugging into these assumptions arbitrary derivations with the right
conclusion. Rule ✷ is far from being “natural”: it allows normalization, but
at the price of a globally stated constraint on its application.

2.3.3 Addendum: rules for S5

1. ✷ introduction
✷Γ,¬✸Γ′,¬✷Γ′′,¬✸Γ′′′

...
A

✷A
✷I
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where in ! I and ⊗E each discharging is compulsory and involves exactly one
formula occurrence.

If S is one of the systems introduced below, we write Γ ⊢S σi when in S there
is a deduction of σi from the assumptions of the multiset Γ.

2.2 Minimal linear exponential

The first fragment we have in mind is the one where only K is required; the
system LℓK is obtained from Lℓ by adding the exponential rules:

Γ···
σj

!I j>#Γ
!σj−1

Γ···
!σj

!E
σj+1

We thus have only functoriality of !; axiom K is obtained as follows.

[ !α1]
!E

α2

[ !(α ! β)1]
!E

α ! β2

! E
β2

!I
!β1

! I
!α ! !β1

! I
!(α ! β) ! ( !α ! !β)1

Observe that the deduction proceeds exactly as the first order derivation of
the formula ∀x(α ⊃ β) ⊃ (∀xα ⊃ ∀xβ).

2.3 T-Linear exponential

Axiom T, that is the comonad natural transformation ε : ! → Id, allows the
“elimination” of a ! without incrementing the level index of a formula: εαj :
!αj → αj. The system LℓKT is thus obtained extending the !E rule of LℓK to
take care of this possibility:

Γ···
!σj

!E k∈{j, j+1}
σk

Γ=hp of the derivation, 
#Γ=max{i: αi∈Γ}

☐

☐
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S. Martini, A. Masini

Axiom T can now be proved in a simple way:

[ !α1]
!E

α1

! I
!α ! α1

2.4 4-Linear exponential

Axiom 4, finally, specifies the natural transformation δ : ! → ! !. Following
the pattern of the previous case, we are thus looking for a rule allowing the
derivation

!αj

···
! !αj

At this point we could apply twice the minimal rule !E of LℓK, obtaining a
deduction of αj+2 from the assumption !αj. We can pack this deduction in a
single rule, and, since we can clearly apply this pattern many times, we may
generalize the rule to obtain αj+k from the assumption !αj. The system LℓK4
is thus obtained from LℓK by extending its !E rule as:

Γ···
!σj

!E k>j
σk

The crucial fact is that this rule is in fact sufficient to obtain a proof of axiom
4:

[ !α1]
!E

α3

!I
!α2

!I
! !α1

! I
!α ! ! !α1

2.5 Full linear exponential

The full power of the linear exponential (axioms K, T, and 4) is recovered in
system LℓKT4, whose rule !E encompasses the rules of the same name of the
previous systems:

→

T
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Γ···
!σj

!E k≥j
σk

Remark. The four systems we have considered, LℓK, LℓKT , LℓK4, and
LℓKT4, are distinct, since it can be shown that by relaxing the linearity con-
straints they respectively yield natural deduction systems for the (positive
fragments of the) modal logics K, KT, K4, S4 (after interpreting ! as neces-
sity).

3 Normalization

It remains to show that the proposed calculi can be given a computational
interpretation. For each calculus we define, as usual, a correct notion of re-
duction on deductions, proving the existence of a normalization strategy.

The redexes are defined as expected. In particular, the propositional con-
tractions are standard, since they do not interfere with the level structure.
More care has to be taken with the !-rules; in general, a redex is given by the
following proof-figure, where the possible values of j depend on the specific
calculus.

D
αk

!I
!αk−1

!E
αk−1+j

The level index of the conclusion may be different from the level index of the
premise of !I. The same situation arises in the first order calculus, where a
redex is:

D
α

!I
∀xα

!E
[t/x]α

and its reduction requires the substitution of t for x in D. The exact definition
of this substitution, though conceptually non deep, is non trivial (see, e.g.,
[TvD88]). The following definition is for the level indexes what the usual
substitution is for terms and variables.

Definition 3.1 [Level substitution] Let D be a deduction of conclusion αv;
let i ≥ 2 and n ∈ {−1} ∪ N if v ≥ 2; let i ≥ 1 and n ∈ N if v ≥ 1. We

S4



On the Fine Structure of the Exponential Rule

Γ···
!σj

!E k≥j
σk

Remark. The four systems we have considered, LℓK, LℓKT , LℓK4, and
LℓKT4, are distinct, since it can be shown that by relaxing the linearity con-
straints they respectively yield natural deduction systems for the (positive
fragments of the) modal logics K, KT, K4, S4 (after interpreting ! as neces-
sity).

3 Normalization

It remains to show that the proposed calculi can be given a computational
interpretation. For each calculus we define, as usual, a correct notion of re-
duction on deductions, proving the existence of a normalization strategy.

The redexes are defined as expected. In particular, the propositional con-
tractions are standard, since they do not interfere with the level structure.
More care has to be taken with the !-rules; in general, a redex is given by the
following proof-figure, where the possible values of j depend on the specific
calculus.

D
αk

!I
!αk−1

!E
αk−1+j

The level index of the conclusion may be different from the level index of the
premise of !I. The same situation arises in the first order calculus, where a
redex is:

D
α

!I
∀xα

!E
[t/x]α

and its reduction requires the substitution of t for x in D. The exact definition
of this substitution, though conceptually non deep, is non trivial (see, e.g.,
[TvD88]). The following definition is for the level indexes what the usual
substitution is for terms and variables.

Definition 3.1 [Level substitution] Let D be a deduction of conclusion αv;
let i ≥ 2 and n ∈ {−1} ∪ N if v ≥ 2; let i ≥ 1 and n ∈ N if v ≥ 1. We

On the Fine Structure of the Exponential Rule

where j = r or j = r + 1. Then,

[−1]iD =
[−1]i

⎧
⎪⎪⎨

⎪⎪⎩

Γ
...

!αr

αj−1

We have two subcases, depending on the value of i:

1. i ≤ r. By induction hypothesis (note that i ≤ r and 2 ≤ i imply r ≥ 2),
we have:

[−1]iD =

[−1]iΓ
...

!αr−1

αj−1

2. r < i ≤ j. Then it is the case that j = r + 1; note, moreover, that
the indicated level substitution is the identity and that αj−1 = αr. The
thesis follows by an application of the proper elimination rule of LℓKT .

Definition 3.3 [Reduction] We define the redexes and their contractions; the
boxed formula is the principal formula of the redex.

• β-contractions :

[αj] [βj]
D
γv

E ′ E ′′

αj βj

⊗I
α⊗ βj

⊗E
γv

◃

E ′ E ′′

αj βj

D
γv

D′

αv

[αv]
D′′

βv

" I
α " βv

" E
βv

◃

D′

αv

D′′

βv

D
αk

!I
!αk−1

!E
αk−1+j

◃ [j − 1]kD
αk−1+j , where:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j = 1 in LℓK
0 ≤ j ≤ 1 in LℓKT
1 ≤ j in LℓK4
0 ≤ j in LℓKT4
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Arithmetic in a Natural deduction setting

Language L0:  
one unary function symbol S 
two binary function symbol +, ● 
two predicate symbols =, ≤
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                D 

A(0)           A(S(x)) 
A(t)

x∉FV(hp(D)-{A(x)}
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We also believe that position formulas allow the development of a proof theory for
a wide class of logics that, like LTL, require a clear de!nition and a precise treatment
of modalities.
We !nish this introduction with a fairly informal outline of the ideas and motivations

that lay behind the notion of position formulas, referring the reader to the relevant
section for the technical details.

1.1. Modal interaction: towards positions

Let us review the constraint in the introduction rule

...
A(x)
∀xA(x) (∀I)

for the !rst-order universal quanti!er: the variable x does not occur free in any of the
undischarged assumptions on which the deduction of A(x) depends.
If we say that formula A interacts with formula B with respect to variable x when

x occurs free in both A and B, the constraint in ∀I can be reformulated by saying that
A(x) does not interact, with respect to the variable x, with any of the undischarged
assumptions on which the deduction of A(x) depends.
Since the intuitive meaning of modal operator is “for each state from the current

state onwards”, we aim at an introduction rule like:

...
A
A

with the constraint that A does not interact with any of the undischarged assumptions
on which the deduction of A depends. Clearly, the key point is to de!ne a relation
of modal interaction between modal formulas. In order to do that the basic idea is to
add a component to a propositional modal formula: a space position.
We write As to say that formula A has (is in) position s. We call As a position

formula (from now on, for short: formula).
As we will see while introducing the di"erent deduction rules, positions allow a

clear de!nition of modal interaction between formulas. Only modal operators and
an induction rule can change the position of a formula. For this reason propositional
connectives can only be applied to formulas that are in the same position. For instance,
the → I rule is the following:

[As]
...
Bs

A→ Bs
(→ I)

the variable x does not occur free in any of the undischarged 
assumptions on which the deduction of A(x) depends. 

∀I can be reformulated by saying that A(x) does not interact, with respect to 
the variable x, with any of the undischarged assumptions on which the 

deduction of A(x) depends. 
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(Notice the same position in the antecedent and in the consequent before application
of the rule.)
Natural deduction or sequent calculi for non modal logics turn out to be the particular

case when all formulas have the same (no) position.

1.2. The nature of positions and the treatment of modal operators

As already said, a position is a space coordinate. More precisely, it is an ordered
pair ⟨n; S⟩ where n is a natural number and S is a !nite set of tokens. The use of
tokens allows a precise de!nition of modal interaction (see below) that in turn governs
the de!nition of deduction rules.
The !rst component of a position plays a role in the de!nition of the deduction rules

for ◦ operator. The second component plays a role in the de!nition of the deduction
rules for operator and for its dual ⋄. Both components play a role in the de!nition
of an induction rule.
We intuitively think of ⟨n + 1; S⟩ as the successor position of ⟨n; S⟩. With this

intuition in mind we formulate the rules for ◦ as follows:
...

A⟨n+1;S⟩

◦A⟨n;S⟩ (◦I)

...

◦A⟨n;S⟩

A⟨n+1;S⟩
(◦E)

Dealing with operator, we see how the use of positions is crucial in de!ning modal
interaction.
In analogy with the !rst-order case, we say that formula A⟨n; S⟩ interacts with formula

B⟨m;T⟩ with respect to the token x if x∈S ∩ T .
Suppose we can prove A⟨n; S⟩ from a set ! of undischarged assumptions such that

A⟨n; S⟩ does not interact with any formula in ! with respect to a token x occurring in
S. In such a case we can introduce modal operator in such a way that eventually
formula A is in position ⟨n; S\{x}⟩.
Hence tokens are needed to formalize the notion of modal interaction underlying the

de!nition of modal rules. Indeed one may dispose of tokens by introducing !-rules
for modalities similar to the !-rule for !rst-order arithmetic: we will investigate such
a possibility in a future work.
Since introduction of operator deletes a token, in order to perform further intro-

ductions of it make sense to have a (!nite) set of tokens available, rather than just
one. Such a choice also shows to be convenient when proving normalization.
Notice that deleting a token is a sort of counterpart of the !rst-order mechanism of

variable binding by quanti!ers. However, in this setting, there is no binding mechanism
for tokens: one cannot quantify over tokens.
The corresponding rule is the following:

...

A⟨n;S⟩

A⟨n;S\{x}⟩
( I)
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(Notice the same position in the antecedent and in the consequent before application
of the rule.)
Natural deduction or sequent calculi for non modal logics turn out to be the particular

case when all formulas have the same (no) position.

1.2. The nature of positions and the treatment of modal operators

As already said, a position is a space coordinate. More precisely, it is an ordered
pair ⟨n; S⟩ where n is a natural number and S is a !nite set of tokens. The use of
tokens allows a precise de!nition of modal interaction (see below) that in turn governs
the de!nition of deduction rules.
The !rst component of a position plays a role in the de!nition of the deduction rules

for ◦ operator. The second component plays a role in the de!nition of the deduction
rules for operator and for its dual ⋄. Both components play a role in the de!nition
of an induction rule.
We intuitively think of ⟨n + 1; S⟩ as the successor position of ⟨n; S⟩. With this

intuition in mind we formulate the rules for ◦ as follows:
...

A⟨n+1;S⟩

◦A⟨n;S⟩ (◦I)

...

◦A⟨n;S⟩

A⟨n+1;S⟩
(◦E)

Dealing with operator, we see how the use of positions is crucial in de!ning modal
interaction.
In analogy with the !rst-order case, we say that formula A⟨n; S⟩ interacts with formula

B⟨m;T⟩ with respect to the token x if x∈S ∩ T .
Suppose we can prove A⟨n; S⟩ from a set ! of undischarged assumptions such that

A⟨n; S⟩ does not interact with any formula in ! with respect to a token x occurring in
S. In such a case we can introduce modal operator in such a way that eventually
formula A is in position ⟨n; S\{x}⟩.
Hence tokens are needed to formalize the notion of modal interaction underlying the

de!nition of modal rules. Indeed one may dispose of tokens by introducing !-rules
for modalities similar to the !-rule for !rst-order arithmetic: we will investigate such
a possibility in a future work.
Since introduction of operator deletes a token, in order to perform further intro-

ductions of it make sense to have a (!nite) set of tokens available, rather than just
one. Such a choice also shows to be convenient when proving normalization.
Notice that deleting a token is a sort of counterpart of the !rst-order mechanism of
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with the restriction that x∈S and x does not occur in any of the undischarged as-
sumptions on which the deduction of A⟨n; S⟩ depends.
Let us investigate now the elimination rule for . Because of the intended meaning

of , we aim at an elimination rule quite similar to the !rst-order elimination rule
for ∀:

...
∀xA(x)
A(t)

with the restriction that term t is free for variable x in A(x).
Intuitively, after the elimination of from As, formula A can be in any position that

is “reachable” from position s. Reachable positions from s= ⟨n; S⟩ are those obtained
by “adding” an arbitrary position to s, namely those of the form ⟨n+m; S ∪T ⟩, where
⟨m; T ⟩ is any position. Therefore we have the following rule:

...

A⟨n;S⟩

A⟨n+m;S∪T⟩
;

where ⟨m; T ⟩ is an arbitrary position.
Here are two examples of deductions: we prove the natural counterparts of A→
A and A→A in the present setting.

[ A⟨0;∅⟩]
A⟨0;{x;y}⟩

E

A⟨0;{x}⟩

A⟨0;∅⟩
I

I

A→ A⟨0;∅⟩
→ I

[ A⟨0;∅⟩]
A⟨0;∅⟩

E

A→A⟨0;∅⟩
→ I

The intended meaning of operator ⋄ is “there is a state from the current state onwards
such that: : :”. Its rules are obtained by “dualizing” those for , similarly to what is done
with the !rst-order existential quanti!er. See Section 2 for the details.

1.3. An induction rule

A powerful tool in LTL is the modal induction axiom

(A ∧ (A→ ◦A))→ A:

Since we aim at a normalization theorem, we want an induction rule on position
formulas that behaves well with respect to a suitable notion proof reduction.
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In analogy with the induction rule of !rst order-arithmetic

[A(x)]
...

...
A(0) A(x + 1)

A(t)

(thoroughly discussed in [17]), we look for a rule that does not interfere with modal
operators, but simply acts on positions.
For instance, the following

...
...

As (A→ ◦A)s

As

would work if we just wanted to present a proof system. On the contrary, from a
proof-theoretic viewpoint, where cut elimination or normalization are crucial results,
the previous rule is clearly defective since it introduces in the conclusion. We would
have two di"erent rules introducing and this would make a normalization process
very unlikely to perform.
In order to formulate the right rule, we combine the previously de!ned notions of

reachable position and of modal interaction to get the following:

[A⟨n; S∪{x}⟩]
...

...

A⟨n;S⟩ A⟨n+1;S∪{x}⟩

A⟨n+m;S∪T⟩
(IND)

with the restriction that x does not occur in S or in any of the assumptions on which the
deduction of A⟨n+1; S∪{x}⟩ depends, with the exception of the discharged assumptions
A⟨n; S∪{x}⟩.
Notice that we require that A⟨n+1; S∪{x}⟩ and A⟨n; S∪{x}⟩ do not interact with any of

the other undischarged assumptions in the rightmost derivation. This makes sure that
the deduction

A⟨n;S∪{x}⟩

...

A⟨n+1;S∪{x}⟩

is “universally valid”, so it corresponds to a proof of (A→◦A)⟨n; S⟩.
Rule IND ends with formula A in an arbitrary position that is reachable from the

initial position ⟨n; S⟩.
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2. Natural deduction systems for position formulas

In this section we !rst introduce the class of position formulas. Later we present
the classical natural deduction system PNK and its intuitionistic counterpart PNJ.
Position formulas are obtained by adding positions to formulas belonging to a set

of modal formulas that we are going to describe now.
Modal formulas have an alphabet consisting of:

• denumerably many proposition symbols p0; p1; : : : ,
• the symbol ⊥ for absurdum,
• the propositional connectives ∨;∧;→,
• the modal operators ◦; ;⋄, and
• the auxiliary symbols ( and ).

De!nition 2.1. The set of modal formulas is the least set that contains ⊥, the proposi-
tion symbols and is closed under applications of the prepositional connectives and the
modal operators.

Metavariables p; q; r; : : : range on proposition symbols and metavariables A; B; C; : : :
range on modal formulas.
As usual, ¬A is an abbreviation for A→⊥.

De!nition 2.2. The set of positions is the set of all pairs ⟨n; S⟩ where n is a natural
number and S is a !nite set of tokens from a denumerable set T = {x0; x1; : : :}.
(For a discussion on the nature of tokens in this setting, see the Introduction.)

Metavariables u; v; w; x; y; z range on tokens and metavariables s; t; u (possibly in-
dexed) range on positions.

De!nition 2.3. A position formula (brie"y: formula) is an expression of the form As,
where A is a modal formula and s is a position.

Let s= ⟨n; S⟩ and t= ⟨m; T ) be positions. For sake of simplicity we introduce the
following notation:
• s⊕ t for ⟨n+ m; S ∪T ⟩,
• if T = ∅ we write s⊕m for s⊕ t,
• if t= ⟨0; {x}⟩ we write s⊕ x for s⊕ t,

• we let s[t=x] =
{

⟨n+ m; (S\{x})∪T ⟩ if x∈ S;

s otherwise:
Given a nonatomic modal formula, say A∧B, and a position s, we write A∧Bs

meaning (A∧B)s (similarly in other cases). However, we feel free to use braces when
they increase readability.
The set of derivations from a set ! of assumptions is de!ned as follows: it is

the least set that contains ! and is closed under application of the following rules
(a formula in square braces represents a discharged assumption):
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2.1. Logical rules

...
...

As Bs

A ∧ Bs (∧I)

...
A ∧ Bs

As
(∧1E)

...
A ∧ Bs

Bs
(∧2E)

...
As

A∨Bs (∨1I)

...
Bs

A ∨ Bs (∨2I)

[As] [Bs]
...

...
...

A ∨ Bs Ct Ct

Ct
(∨E)

[As]
...
Bs

A→ Bs
(→ I)

...
...

A→ Bs As

Bs
(→ E)

[¬As]
...
⊥t

As
(⊥c)

...
⊥t

As
(⊥i)

In the rule ⊥c, formula A is a proposition symbol. In ⊥i ; A is an atomic modal
formula. When A is ⊥ we further require s ̸= t.

...

As⊕1

◦As (◦I)

...
◦As

As⊕1
(◦E)

...
As⊕x

As
( I)

...
As

As⊕t
( E)

In the rule I the token x does not occur in s or in the set of assumptions on which
As⊕ x depends.

...
As⊕t

⋄As (⋄I)

[As⊕x]
...

...
⋄As Ct

Ct
(⋄E)

In the rule ⋄E the token x does not occur in s; t or in the set of assumptions on
which Ct depends, with the exception of the discharged assumptions As⊕ x.
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2.2. Induction rule

[As⊕x]
...

...

As As⊕⟨1;x⟩

As⊕t
(IND)

In the rule IND, the token x does not occur in s or in any of the assumptions on
which As⊕⟨1; x⟩ depends, with the exception of the discharged assumptions As⊕x.
We call s the basis position and t the induction position.
We call PNK is the (classical) natural deduction system made of all the previous rules

but ⊥i (notice however that ⊥i is an instance of ⊥c). We call PNJ the (intuitionistic)
system made of all the previous rules but ⊥c.
Let N be PNK or PNJ. We write ! ⊢N As to say that there exists a deduction of As

in the system N whose (undischarged) assumptions belongs to !.
A deduction with no undischarged assumption will be called a proof.
We refer to the token x that explicitly appears in any of the rules I , ⋄E, IND as

to the proper token of the corresponding rule. We say that a token is a proper token
in a derivation if it is the proper token of some I , ⋄E, IND rule in the derivation.
By token renaming we can prove the following (see [19, p. 529], for a proof for

variables):

Proposition 2.4. Let ! ⊢N As, where N is PNK or PNJ. Then there exists a deduction
of As from ! in the system N such that
1. each proper token is the proper token of exactly one instance of I or ⋄E or IND
rule;

2. the proper token of any instance of I rule occurs only in the sub-derivation above
that instance of the rule;

3. the proper token of any instance of ⋄E or IND rule occurs only in the sub-
derivation above the minor premiss of that instance of the rule.

De!nition 2.5. A deduction satisfying conditions 1–3 of Proposition 2.4 is said to
satisfy the token condition.
By Proposition 2.4 we can always assume that all deductions satisfy the token con-

dition.
We denote by "[t=x] the tree obtained by replacing each position s in a deduction

" with s[t=x].

Remark 2.1. If
1. " is a deduction satisfying the token condition,
2. x is a token that is not a proper token of ", and
3. t is a position not containing any proper token of ",
then "[t=x] is a deduction satisfying the token condition.
(Note: if " ends with ⊥i and its last formula is ⊥s for some s, it might be that

the corresponding restriction in ⊥i is not satis!ed after the substitution. In such a case
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We write ︎ ⊢As to say that there exists a deduction of As in the 
system whose (undischarged) assumptions belongs to ︎. 



¬◦A→◦¬A 



¬◦A→◦¬A 
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A2 Use:

A8 Let x be a token not occurring in s. Use:

The other cases are even easier.

Corollary 3.5. For every temporal formula A

⊢LTL A ⇔ ⊢PNK A⟨0;∅⟩:

Proof. (⇒) See Theorem 3.4.
(⇐) Suppose ⊢PNK A⟨0;∅⟩. Then, by Theorem 3.3, Na; ! |=A⟨0;∅⟩ for all Na; !, namely

N! |=0 A for all ! :N→ 2At . From Theorem 3.1 we !nally get ⊢LTL A.

Corollary 3.6. PNK is consistent.

4. Normalization in PNJ

In this section we study normalization for the intuitionistic calculus. We prove a
strong normalization theorem for PNJ. As a corollary we obtain a syntactic proof
of consistency of PNJ. Eventually we provide a counterexample to the subformula
property for PNJ.
In order to prove normalization we follow the method of Prawitz based on the notion

of strong validity [17], adapted and extended to the case of !rst-order arithmetic by
Troelstra [18].
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by ![t=x] we mean the deduction obtained by deleting, after the substitution, the last
-incorrect- application of ⊥i.)

We want to make sense of ![t=x] even when the conditions of Remark 2.1 are not
satis!ed. Notice that if ! is a deduction satisfying the token condition, we can replace
all proper tokens in ! by new tokens so to obtain a deduction !′ of the same formula
from the same assumptions so that t and x satisfy all the conditions of Remark 2.1.
Hence we de!ne ![t=x] as !′[t=x]. In the sequel we will implicitly assume that by
![t=x] we actually mean !′[t=x], for some !′ as above.

3. A comparison of PNK with LTL

In this section we compare the deductive power of PNK with that of a Hilbert style
formulation of Linear Time Logic (brie"y: LTL). As customary, we call LTL-formulas
temporal formulas, rather than modal formulas.
We prove that a temporal formula A is provable in LTL if and only if the formula

A⟨0;∅⟩ is provable in PNK. As a byproduct we obtain another proof of consistency of
PNK (see Remark 5.4).
We rely on a well-known completeness theorem for LTL (see Theorem 3.1 below).
The language of LTL is a propositional language with a denumerable set At of

propositional letters, augmented with the temporal operators and ◦.
We !rst introduce an axiomatization in Hilbert style of LTL. (We do not claim that

the following is a minimal set of axioms for LTL.)

Axioms

A0 All temporal instances of !rst-order classical tautologies.
A1 ◦(A→B)→ (◦A→◦B)
A2 ¬◦A→◦¬A
A3 (A→B)→ ( A→ B)
A4 A→A
A5 A→ A
A6 A→◦A
A7 A→◦ A
A8 A∧ (A→◦ A)→ A

Rules

MP Modus Ponens; ◦G ⊢ A
⊢ ◦A ; G

⊢ A
⊢ A

We sometimes write ⊢LTL for the provability relation in LTL.
Given the frame N of natural numbers, a map " :N→ 2At and a natural number m

the relation of satis!ability by the model N"= ⟨N; "⟩ of a temporal formula A at time
m (notation: N" |=m A) is de!ned by induction on the complexity of A in the standard
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We call s the basis position and t the induction position.
We call PNK is the (classical) natural deduction system made of all the previous rules

but ⊥i (notice however that ⊥i is an instance of ⊥c). We call PNJ the (intuitionistic)
system made of all the previous rules but ⊥c.
Let N be PNK or PNJ. We write ! ⊢N As to say that there exists a deduction of As

in the system N whose (undischarged) assumptions belongs to !.
A deduction with no undischarged assumption will be called a proof.
We refer to the token x that explicitly appears in any of the rules I , ⋄E, IND as

to the proper token of the corresponding rule. We say that a token is a proper token
in a derivation if it is the proper token of some I , ⋄E, IND rule in the derivation.
By token renaming we can prove the following (see [19, p. 529], for a proof for

variables):

Proposition 2.4. Let ! ⊢N As, where N is PNK or PNJ. Then there exists a deduction
of As from ! in the system N such that
1. each proper token is the proper token of exactly one instance of I or ⋄E or IND
rule;

2. the proper token of any instance of I rule occurs only in the sub-derivation above
that instance of the rule;

3. the proper token of any instance of ⋄E or IND rule occurs only in the sub-
derivation above the minor premiss of that instance of the rule.

De!nition 2.5. A deduction satisfying conditions 1–3 of Proposition 2.4 is said to
satisfy the token condition.
By Proposition 2.4 we can always assume that all deductions satisfy the token con-

dition.
We denote by "[t=x] the tree obtained by replacing each position s in a deduction

" with s[t=x].

Remark 2.1. If
1. " is a deduction satisfying the token condition,
2. x is a token that is not a proper token of ", and
3. t is a position not containing any proper token of ",
then "[t=x] is a deduction satisfying the token condition.
(Note: if " ends with ⊥i and its last formula is ⊥s for some s, it might be that

the corresponding restriction in ⊥i is not satis!ed after the substitution. In such a case

Towards Strong Normalisation  
(intuitionistic system) 

Very Difficult

S. Baratella, A. Masini / Annals of Pure and Applied Logic 123 (2003) 135–162 143

2.2. Induction rule

[As⊕x]
...

...

As As⊕⟨1;x⟩

As⊕t
(IND)

In the rule IND, the token x does not occur in s or in any of the assumptions on
which As⊕⟨1; x⟩ depends, with the exception of the discharged assumptions As⊕x.
We call s the basis position and t the induction position.
We call PNK is the (classical) natural deduction system made of all the previous rules

but ⊥i (notice however that ⊥i is an instance of ⊥c). We call PNJ the (intuitionistic)
system made of all the previous rules but ⊥c.
Let N be PNK or PNJ. We write ! ⊢N As to say that there exists a deduction of As

in the system N whose (undischarged) assumptions belongs to !.
A deduction with no undischarged assumption will be called a proof.
We refer to the token x that explicitly appears in any of the rules I , ⋄E, IND as

to the proper token of the corresponding rule. We say that a token is a proper token
in a derivation if it is the proper token of some I , ⋄E, IND rule in the derivation.
By token renaming we can prove the following (see [19, p. 529], for a proof for

variables):

Proposition 2.4. Let ! ⊢N As, where N is PNK or PNJ. Then there exists a deduction
of As from ! in the system N such that
1. each proper token is the proper token of exactly one instance of I or ⋄E or IND
rule;

2. the proper token of any instance of I rule occurs only in the sub-derivation above
that instance of the rule;

3. the proper token of any instance of ⋄E or IND rule occurs only in the sub-
derivation above the minor premiss of that instance of the rule.

De!nition 2.5. A deduction satisfying conditions 1–3 of Proposition 2.4 is said to
satisfy the token condition.
By Proposition 2.4 we can always assume that all deductions satisfy the token con-

dition.
We denote by "[t=x] the tree obtained by replacing each position s in a deduction

" with s[t=x].

Remark 2.1. If
1. " is a deduction satisfying the token condition,
2. x is a token that is not a proper token of ", and
3. t is a position not containing any proper token of ",
then "[t=x] is a deduction satisfying the token condition.
(Note: if " ends with ⊥i and its last formula is ⊥s for some s, it might be that

the corresponding restriction in ⊥i is not satis!ed after the substitution. In such a case



S. Baratella, A. Masini / Annals of Pure and Applied Logic 123 (2003) 135–162 147

We !rst introduce the following notation:

Bt

!
As

to say that ! is a deduction of formula As containing some occurrences of

formula Btamong its assumptions;

!

As
R to say that ! is a deduction of formula As whose last rule is R:

In order to de!ne the notion of normal form for a deduction, we must explain what
we mean by reduction sequence. Therefore we !rst have to introduce contractions, that
are crucial to the de!nition of reduction steps. (See [18] or [7].)

4.1. Proper contractions

The relation . of proper contractibility between deductions is de!ned as follows.
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4.2. Commutative contractions

In this subsection, by

!1
Ct !2
Dr

R

we denote a deduction ending with an elimination rule R whose major premiss is
formula Ct .
We further extend the relation . by adding the following commutative contractions:

Remark 4.1. It is easy to verify that contractions transform deductions into deductions.
Furthermore they all preserve the token condition.

De!nition 4.1. 1. The relation ≻ of immediate reducibility between deductions is de-
!ned as follows: !1≻!2 if and only if there exist deductions !3 and !4 such that
!3 .!4 and !2 is obtained by replacing !3 with !4 in !1.
2. The relation

∗
≻ of reducibility is the transitive and re"exive closure of ≻.

De!nition 4.2. Let ! be a deduction. A reduction sequence of ! of length I6! is a
sequence of deductions (!i)i¡I such that !0 =! and !i−1≻!i for all 0¡i¡I .
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formulas. We stress that, contrary to Masini, Viganò & Volpe (2011), we have no
distinction between relational and labelled formulas. In system N one formulates a
principle of induction as is done in first order arithmetic. We prove soundness of N with
respect to the given semantics. We also prove that N is weakly complete, namely: if A

⇡

is a valid formula, then it is provable in system N . Weak completeness is the best we
can aim at: see the discussion in Stirling (1992).

What is missing in this paper is a proof–theoretic investigation of system N . This will
be pursued in a future work.

2. Frames

Frames are tree–like triples S = (S,�, D) where

(1) S is a nonempty set (elements of S will be called time instants or nodes);
(2) � is a discrete strict partial ordering on S that satisfies the following:

(a) for all s 2 S there exists s

0 2 S such that s � s

0
.

(b) for all s, s

0 2 S, the set {x 2 S : s � x � s

0} is finite and linearly ordered.
(3) D ✓ !

S satisfies the property that, for each (s
i

)
i2!

2 D, s

i+1

is an immediate
successor of s

i

, for all i 2 !. Elements of D will be called (time)–directions.
(4) D is

(a) su�x–closed, namely whenever (s
i

)
i2!

2 D, then (s
i+1

)
i2!

2 D;
(b) fusion–closed, namely whenever (s

i

)
i2!

2 D, (t
i

)
i2!

2 D and s

n

= t

n

for
some n, then (s

0

, . . . , s

n

, t

n+1

, t

n+2

, . . . ) 2 D.

Let S = (S,�, D) be a frame. Notice that, according to the terminology of Reynolds
(2007), the pair (S,�) and the set D are just a transition frame and a bundle respec-
tively.

Let d be a direction. The n-th node of direction d will be denoted by d

n

(d
0

thus
being the initial instant of d). We denote by d

n the direction (d
n

, d

n+1

, . . . ). Notations
like d

n

m

have the expected meaning: d

n

m

= d

n+m

.

3. Syntax

In addition to the first–order connectives, the modal operators 2,# and the “second
order” quantifier 8, (whose meaning will be explained in the sequel), we have at our
disposal:

(1) a countable set V

0

= {x
i

: i 2 !} of variables ranging over natural numbers, called
tokens. We shall use metavariables x, y, z for tokens.

(2) a countable set � = {�
i

: i 2 !} of variables ranging over directions, called
path-variables. We shall shall use �, �, ⌘ as metavariables for path-variables.

(3) a countable set V

1

of propositional variables (letters).

Definition 1. A position p is a finite (possibly empty) string of tokens and occurrences
of the digit 1 with the property that each token has at most one occurrence in p.

Intuitively, position p = p

1

. . . p

n

stands for the algebraic expression
P

p =
P

n

i=1

p

i

.

We regard two positions p, q as equal if
P

p =
P

q is an algebraic identity. So, formally
speaking, we deal with equivalence classes of positions. For better readability, we shall
abbreviate 1 . . . 1| {z }

n times

with the natural number n. We denote by P the set of positions.

2
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Figure 1. Graphical representation of term �2x⌘y1�.

Metavariables for positions will be p, q, . . . (possibly indexed).
Here is a semantic intuition: once a direction has been fixed in a frame, a position will

be interpreted into a natural number, that identifies a node belonging to that direction.
As customary, we denote the empty string by ✏.

Definition 2. The set ⌃ of strings is the least set X such that

(1) � [ P [ {✏} ✓ X;
(2) if � 2 X then �� 2 X for all � 2 � not occurring in �;
(3) if � 2 X then �p 2 X for all p 2 P such that no token in p occurs in �.

So a string is a finite sequence of tokens and path-variables where no token or path-
variable occurs more than once.

We shall use metavariable � (possibly indexed) for strings. We define a subset ⇧ of ⌃
as follows:

Definition 3. The set ⇧ of terms is the collection of strings whose leftmost element is
a path-variable.

We use metavariables ⇡, ⇢ (possibly indexed) for terms.
A further semantic intuition: in a frame, terms shall denote paths, namely finite se-

quences of directions and positions. Each path must begin with a direction. A position
alone does not provide enough information, unless a direction has been fixed already.
In that case, one can “mark” one or more positions along that direction – recall that
each direction has an initial instant. This semantic intuition is made clear in Section 4,
where we provide a recursive definition of assignment of value to a term and we also
show how that definition works on the term of Figure 1.

Definition 4. The set of pre–formulas is the least set X such that

(1) ?2 X and A 2 X whenever A is a propositional letter;
(2) (A ^B) 2 X whenever A, B 2 X;
(3) (A ! B) 2 X whenever A, B 2 X;
(4) (#A), (2A) and (8A) are in X whenever A 2 X.

We regard ¬A and 9A as abbreviations for A !? and ¬8¬A respectively.

Definition 5. A labelled temporal formula (briefly: formula) is a string of the form A

⇡

,

where A is a pre–formula and ⇡ 2 ⇧. Formula A

⇡ is atomic when A is atomic.

3
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Metavariables for positions will be p, q, . . . (possibly indexed).
Here is a semantic intuition: once a direction has been fixed in a frame, a position will

be interpreted into a natural number, that identifies a node belonging to that direction.
As customary, we denote the empty string by ✏.
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We shall use metavariable � (possibly indexed) for strings. We define a subset ⇧ of ⌃
as follows:
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We use metavariables ⇡, ⇢ (possibly indexed) for terms.
A further semantic intuition: in a frame, terms shall denote paths, namely finite se-
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alone does not provide enough information, unless a direction has been fixed already.
In that case, one can “mark” one or more positions along that direction – recall that
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Let e

0

, . . . , e

k�1

not in S. Let S

0 = S[{e
0

, . . . , e

k�1

}, by this meaning that S

0 = S

if k = 0. We extend � to S

0 by taking the transitive closure of

� [{(e
0

, e

1

), . . . , (e
k�2

, e

k�1

), (e
k�1

, d

0

)}.

Let D

0 be the su�x– and fusion–closure of

D [ {(e
0

, . . . , e

k�1

, d

0

, . . . , d

n

, . . . )}.

We define assignment v on S

0 as follows:

v

ei(�) = (e
i

, . . . , e

k�1

, d

0

, . . . , d

n

, . . . ), 0  i  k � 1; v

d0(�) = d,

for all path-variables �. (v is arbitrarily defined on the other nodes of S.) We also
let v

s

(x) = 0 for each s 2 S

0 and each token x. We let L

0 be any extension of L

to S

0
. Finally, we let S

0 = (S0
,�0

, L

0). By construction we have (S0
, L

0
, v) 6|=

e0 A

⇡

,

hence 6|= A

⇡

.

5. Rules of system N

In this section we introduce a natural deduction system, that we call N , for the until–free
subsystem of bundled branching time logic.

As usual, formulas in square brackets denote discharged assumptions.

5.1 Propositional rules

Rules for propositional connectives mimic the corresponding rules of propositional nat-
ural deduction, in particular they apply to formulas with the same label, with the only
exception of falsum rule.

A

⇡

1

A

⇡

2

(A
1

^A

2

)⇡

^I

[A⇡

1

]
...

A

⇡

2

(A
1

! A

2

)⇡

! I (1)

(A
1

^A

2

)⇡

A

⇡

i

(i = 1, 2) ^E

i

(A
1

! A

2

)⇡

A

⇡

1

A

⇡

2

! E (2)

[¬A

⇡]
...
?⇢

A

⇡

?
c

(3)

The more liberality in the use of labels in rule ?
c

is due to the fact that, for each
label ⇢, formula ?⇢ represents falsum. See Definition 6.
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5.2 Temporal rules

A

⇡x

(2A)⇡

2 I (4)

where x does not occur in any of the assumptions on which the proof of the premiss
depends.

A

⇡1

(#A)⇡

# I (5)

A

�

(8A)�

8 I1
A

⇡�

(8A)⇡�

8 I2
A

⇡�

(8A)⇡

8 I3 (6)

where � does not occur in any of the assumptions on which the proof of the premiss
depends.

(2A)⇡

A

⇡p

2 E (7)

when p is the empty position, we just write A

⇡ in the conclusion.

(#A)⇡

A

⇡1

# E (8)

(8A)⇡

A

⇡

8E1
(8A)⇡

A

⇡�

8E2
(8A)⇡�

A

⇡

8E3 (9)

5.3 Extralogical rules

[A⇡x]
...

A

⇡

A

⇡x1

A

⇡p

IND (10)

where token x does not occur free in any of the assumptions di↵erent from A

⇡x on which
the proof A

⇡x1 depends.

A

⇡

A

⇡�

At (11)

where A is a propositional letter.
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[A⇡�1�1
1

] . . . [A⇡�1�k

k

]
...

A

⇡1��1
1

. . . A

⇡1��k

k

B

⇡�1�k+1

B

⇡1��k+1
LS (12)

where � does not occur in any of the assumptions di↵erent from A

⇡�1�1
1

, . . . , A

⇡�1�k

k

on
which the derivation of B

⇡�1�k+1 depends.

Remark. The following is an instance of LS rule when k = 0:

B

⇡�1�

B

⇡1��

,

where � does not occur in any of the assumptions on which the derivation of B

⇡�1�

depends. Actually, such an instance su�ces to get a completeness theorem. We already
formulate LS in general form in order to prove below that its application can always be
restricted to the case when the conclusion is an atomic formula. This will be useful in a
future proof–theoretic investigation of system N .

Warning. In rules above, we implicitly assume that the formation rules for p–strings
are obeyed. For instance, in 8I2, we assume that � does not occur in ⇡ and, in (4), that
no token in p occurs in ⇡. Similarly for the other rules.

The inductive definition of derivation is the standard one in natural deduction. We
denote by

�··· D
A

⇡

a derivation D of formula A

⇡ whose set of undischarged assumptions is contained in �
and we write � `D A

⇡. We say that A

⇡ is provable from �, and we write � ` A

⇡, if
there exists a derivation D such that � `D A

⇡.

Proposition 13. For all pre–formulas A, B and all path-variables �:

(1) ` A

� for every propositional tautology A;
(2) ` (2(A ! B) ! (2A ! 2B))�;
(3) ` ((#¬A ! ¬# A) ^ ((¬# A ! #¬A))�;
(4) ` (#(A ! B) ! (#A ! #B))�;
(5) ` (2A ! A ^#2A)�;
(6) ` (2(A ! #A) ! (A ! 2A))�

.

Proof. We sketch just two proofs.

(5)

[(2A)�]

A

�1x

(2A)�1

(#2A)�

(2A ! #2A)�

9
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(6) We get the required proof by applying IND rule. It su�ces to show

A

�x

, (2(A ! #A))� ` A

�x1

This can be done easily.

Proposition 14. For all pre–formulas A, B and all path-variables �:

(1) ` (8A ! A)�;
(2) ` (8A ! 88A)�;
(3) ` (8(A ! B) ! (8A ! 8B))�;
(4) ` (A ! 8A)� when A is a propositional letter;
(5) ` (A ! 89A)�;
(6) ` (8# A ! #8A)� (Fusion).

Proof. All proofs are straightforward. We just sketch three of them.

(2) Let �, ⌘ be path-variables. Then

[(8A)�]

A

��

(8A)��

(88A)�

(8A ! 88A)�

(5) Let �, ⌘ be path-variables. Then

[(8¬A)�� ]

(¬A)�

A

�

?�

?��

(¬8¬A)��

(89A)�

(6) Let � be a path-variable.

[(8# A)�]

(#A)��

A

��1

A

�1�

(8A)�1

(#8A)�

(8# A ! #8A)�

Notice that the third rule applied from top is an instance of LS.
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all ⇡,

`H A ) ` A

⇡

Building on Stirling (1992), in Masini, Viganò & Volpe (2011) the authors establish
soundness and weak completeness of H with respect to BCTL⇤�. Therefore, by the above
remarks, we get that, for all A and all ⇡,

|= A

⇡ ) � A ) A 2 BCTL⇤� ) `H A ) ` A

⇡

.
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