Modeling and Synthesis of the Network in Distributed Embedded Systems

Emad Ebeid
University of Verona, Italy
Emad.Ebeid@univr.it

Advisors:
Franco Fummi,
Davide Quaglia
University of Verona, Italy

Outline

• Introduction & Problem statement
• Objectives
• Proposed Methodology
 – Modeling
 – Synthesis
 – Manipulation and DSE
 – Design validation
• Innovations
• Methodology implementation
• Unified case study
• Conclusions and future research opportunities
Introduction

- **Distributed Embedded Systems (DES’s)** are distributed applications of Networked Embedded Systems which are special-purpose, resource-constrained nodes interacting together by using:
 - Network interfaces;
 - Standardized protocols;
 - Wired/Wireless Channels.

- **DES design involves:**
 - HW/SW components;
 - Network;
 - Environment.

Introduction (cont’d)

Temperature control of a building

- **Scenario:**
 - Hundreds of concurrent tasks.
 - Heterogeneous tasks.
 - Devices with different capabilities.
 - Wireless and wired channels.
 - Many communication protocols.
 - Nodes position affects system performance.

- **Questions:**
 - How many nodes?
 - How to assign tasks to nodes?
 - Which network protocols?
 - etc.
Introduction (cont’d)

Hardware design:

High level function model

F(a,b,c) = a AND (not b) AND c

Automatic Synthesis

Mapping

Simulation

Introduction (cont’d)

Software development

- Functionality is described with different languages and an automatic process is used to generate assembly code for different target CPU’s
- **Modeling** of the functionality: High level languages
- **Automatic synthesis**: Compilers
Problem statement

- Design of DES needs a common representation of different aspects (HW, SW, computation, communication, and environment) and efficient simulation.
- Methodology should start from a standard representation of the requirements and the expected behavior of the whole distributed system.
- Synthesis and Automatic design-space exploration of the network characteristics of the system (type of channels, protocols and related HW/SW interfaces) are required.

Problem statement (cont’d)

- Simulation of the final system must be used to support analysis and synthesis steps.
- Pre-designed and pre-verified Intellectual Properties (IPs) should be reused at higher-level of abstraction.
Objectives

The thesis aims to provide a design methodology and tools for modeling and synthesis of the network in distributed embedded systems; the methodology should be based on:

- a common representation framework (e.g., based on UML with custom profiles, and Heterogeneous Intermediate Format (HIF) to model the different aspects of a DES
- a mechanism to synthesize the network from the common representation and to generate efficient simulations
Innovations

• A design methodology for DES
 – a unique, mathematical model to describe and manipulate DES’s
 – a common representation framework to express the different aspects of DES’s
• A methodology to model DES aspects
 – a novel UML Network Profile
 – a methodology to abstract and integrate heterogeneous IPs
• A technique to synthesize the network in distributed embedded systems
• A comprehensive design space exploration framework

Innovations (cont’d)

• A methodology to automatically validate the high-level models
• The development of four tools built upon the HIFSuite framework and an upgrading of SCNSL network simulator that were required to implement the proposed methodologies
Phase #1: Structural Modeling

Elements of Distributed Embedded Systems

Phase #1: Behavioral Modeling

Behavioral Modeling of tasks (SD)
Phase #1: UML/Profiles

- Platform-Independent Models (PIM)
 - UML
- MARTE Profile
- Lack of Formalism
- Lack of semantics
 - Device mobility
 - Network QoS
 - Error rate
 - Environmental modeling
 - etc.

Phase #1: Formalization

- Formal structural representation
- Formal behavioral representation
 - UNIVERCM
- Formalization of manipulation rules
 - Split/Merge/Divide/Aggregate
- Definitions of equivalence
 - Hard and soft
Phase #1: UML Deployment diagram

Example of DES

Phase #1: UML Network Profile

Emad Ebeid/ University of Verona

17/51

18/51
Phase #1: UML Deployment diagram + Network Profile

Example of DES

Phase #1: Model Abstraction

On the Reuse of RTL IPs for SysML Model Generation
Phase #1: Model Abstraction

On the Reuse of Heterogeneous IPs into SysML Models for Integration Validation

- Design process of the network infrastructure starting from a library of nodes and channels
 - Assignment of tasks onto nodes, data flows onto channels and nodes onto zones
- State-of-the-Art of structural synthesis
 - Communication-Aware Specification and Synthesis Environment (CASSE)
 - COmmunication Synthesis Infrastructure (COSI)
 - Network synthesis as solutions of an analytical optimization problem
 - CASSE and COSI limits:
 - Small networks;
 - Simple inter-node interactions;
 - Simple effect of the environment.

Phase #2: Structural Network Synthesis

- Jour. Paper Published JETTA Springer

Emad Ebeid/ University of Verona
Phase #2: Behavioral Network Synthesis

Protocol Synthesis

Mixer

Network Protocol (Network simulator)

Merged Sequence Diagram

Sequence Diagrams

SD to EFSM

EFSM-to-SystemC

EFSM

Relationship between network synthesis and manipulation:
Phase #2: Manipulation

Structural Manipulation Approach: It aims to help the designer to optimize the synthesized network configuration.

Rules for manipulation:

- Mathematical equations to prove equivalence regarding throughput and delay.

\[
D_{CH_A} = D_{CH_{R1}} + D_{CH_{R2}} + D_R
\]

\[
C_A = \min(C_{B1}, C_{B2})
\]

\[
\sum (D_{CH_R} + D_R) = D_{CH_A}
\]

\[
\min(C_{B1}, ..., C_{Bn}) = C_A
\]

Conf. Paper Published MTV'13
Phase #2: Network Synthesis and Simulation

- The analytical framework for Network synthesis does not capture:
 - Complex inter-node interactions (e.g., shared channel overhead)
 - The effect of the surrounding environment
- The optimal solution must be validated through simulation
 - SystemC Network Simulation Library (SCNSL)

Phase #2: Network Synthesis

Relationship between Network synthesis, Manipulation and Design space exploration:
Phase #3: Design Space Exploration

It is a process to analyze the DES HW/SW tradeoffs along with network tradeoffs

- Which types of processors are needed?
- Which is the amount of memory needed?
- Which are the specifications of the required communication channel (e.g., delay, throughput, packet loss rate, etc.)?

Framework for DSE and Performance Analysis of DES

- SCoPE+
- SCNSL

Modeling platform

Intermediate description

SystemC Code generation

DSE

Performance analysis

Simulation platform

Model-to-Text

Text-to-Model

*.uml

Emad Ebeid/ University of Verona
Phase #3: Design Space Exploration (cont’d)

Example

- The case study consists of two types of cars (automatic and manual) and a semaphore.
- Cars are moving in a road which has a figure of 8 shape and the semaphore is located at the middle of the road.

RESULTS:
Phase #4: Design Validation

- It is a process aims to generate an executable code from high-level models to validate them by simulation
- Generation of SystemC/TLM Code from UML/MARTE Sequence Diagrams for Verification

Generation of VHDL Code from UML/MARTE Sequence Diagrams for Verification
Phase #4: Design Validation

HDL Code Generation From UML/MARTE Sequence Diagrams For Verification and Synthesis

Methodology implementation

Tools Are:
1. UML2HIF
2. NSM
3. HIF2UML
4. N2S
Unified Case study

• one instance of actuator should be placed in each zone
• max......

Struct Model

User require

<zone>
+ zone placed
+ id
+ zone placed
+ id
+ zone placed
+ id

<task>
Task

<node>
Node

Abstraction

14 RTL code

Emad Ebeid/ University of Verona
Functional simulation
Unified Case study

Network simulation statistics

Unified Case study

Manipulation

Emad Ebeid/ University of Verona

41/51

42/51
Unified Case study

Environmental effects

European projects involvement

- **COMPLEX** (COdesign and power Management in PLatform-based design space EXploration):
 - Network-aware Design-Space Exploration.

- **TouchMore** (Automatic Customizable Tool-Chain for Heterogeneous Multicore Platform Software Development):
 - Abstraction of Heterogeneous IPs.

- **SMAC** (SMArt Components & smart systems integration):
 - Environmental modeling.

- **CONTREX** (COdesign and power Management in PLatform-based design space Exploration):
 - Manipulation and a Framework for Design Space Exploration.
Reviewers remarks

• As Chapter 3 is one of the central chapters, I would appreciate to see a more general detailed overview/introduction on the individual mixed HW/SW design phases and an introduction the related terminology, i.e., **modeling, exploration, synthesis, validation**.

• A paragraph has been added to Section 3.1 to introduce the proposed methodology design phases.

• As UML and its profiles cover a large set of different diagrams, a clear identification of the different types of **UML/SysML/MARTE diagrams** which are applied in each of the individual steps would be more appreciated.

• A paragraph has been added to Section 3.1.2 to highlight the used UML/SysML/MARTE diagrams.
Reviewers remarks

• In Section 1.3, the precision of objectives 1 and 2 may quite well benefit of some more scientifically based justification, consider i.e. to argue the impact of standards on industrial exploitation domains or benefits of model-based approached to support the proposed methodology.

• A paragraph has been added in sec 1.3, before the list of objectives, to clarify this point.

Publications & Submissions

• 11 conference papers
• 1 journal paper
• 2 submitted journal papers
• 1 submitted conference paper
• 2 PhD forums
Future research opportunities

- New manipulation rules for both structural and behavioral aspects of DES’s
- Meta-models and design flow for mixed-criticalities DES
- Link between manipulation rules and optimization algorithms
- Extension to continuous time models by using SysML and SystemC AMS → dealing with Cyber-Physical Systems

Conclusions

- Methodology for DES’s
- UML/Network profile
- Tool-chain for DSE and code generation
 - UML2HIF, NSM, HIF2UML and N2S
- Integration between DES’s Simulators
 - SCNSL & SCoPE+
- Reused pre-designed and pre-verified IPs by abstracting and integrating them at UML level
- The overall design flow has been applied to a unified case study to evaluate its effectiveness and applicability
Thank you for your attention