
' $

UNIVERSITY OF MICHIGAN
DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE
LECTURE NOTES FOR EECS 661

CHAPTER 2: UNTIMED MODELS OF DISCRETE EVENT
SYSTEMS

Stéphane Lafortune

September 2004

& %

' $

2.1: LANGUAGES AND AUTOMATA

& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

References for Chapter 2: Textbook, Chapter 2 (and the references therein).

2.1: Languages and Automata

Languages

E: finite set of event symbols (or “alphabet”)

E = {σ1, σ2, . . . , σn}

s: finite sequence of events from E, or word, or string, or trace

s1 = σ2σ3σ1σ1σ5

|s|: length of trace s (number of events, including repetitions); |s1| = 5

σi ∈ s denotes that σi appears in s

ε denotes the empty trace; |ε| = 0

Concatenation of traces (in the obvious manner):

If s2 = σ5σ4, then s1s2 = σ2σ3σ1σ1σ5σ5σ4.

ε is the identity element for concatenation: s1ε = εs1 = s1

σn denotes σσ · · · σ (n times)

S. Lafortune - Last revision: September 2004 2& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

Notions of prefix, suffix, and subtrace:

σ2σ3σ1 is a prefix of s1

σ1σ5 is a suffix of s1

σ3σ1σ1 is a subtrace of s1

prefixes and suffixes are also subtraces

Prefix-closure of a trace: it is the set that contains all the prefixes of the trace

s2 := {s2} = {ε, σ5, s2}

E∗ is the Kleene closure of E.

It is the set of all finite traces of elements of E, including ε.

This set is countably infinite.

S. Lafortune - Last revision: September 2004 3& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

A language over E is a subset of E∗; i.e., any L ⊆ E∗ is a language.

Thus ∅, E, and E∗ are languages.

Note: ε /∈ ∅. {ε} is a nonempty language containing only the empty trace.

Operations on languages:

• All the usual set operations: union, intersection, difference (denoted by “\”),

complement (w.r.t. E∗)

• Concatenation: Let L1, L2 ⊆ E∗, then

L1L2 := {s ∈ E∗ : (s = s1s2) ∧ (s1 ∈ L1) ∧ (s2 ∈ L2)} .

• Prefix-closure: Let L ⊆ E∗, then

L := {s ∈ E∗ : (∃t ∈ E∗)st ∈ L} .

Thus the prefix-closure L of L is the language consisting of all the prefixes of all the

traces in L.

Example: If L = {abc, cde} then L = {ε, a, ab, abc, c, cd, cde}.

If L = ∅ then L = ∅, and if L 6= ∅ then ε ∈ L.

In general, L ⊆ L. L is said to be prefix-closed if L = L.

S. Lafortune - Last revision: September 2004 4& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

• Kleene-closure: Let L ⊆ E∗, then

L∗ := {ω ∈ E∗ : ω = ω1ω2 · · ·ωk, k ≥ 0, ωi ∈ L} .

The * operation is idempotent: (L∗)∗ = L∗. Also, ∅∗ = {ε} and {ε}∗ = {ε}.

• The post-language of L after trace s is:

L/s := {t ∈ E∗ : st ∈ L} .

By definition, L/s = ∅ if s 6∈ L.

More notation: L+ := LL∗.

Two languages L1 and L2 are said to be nonconflicting if L1 ∩ L2 = L1 ∩ L2.

L is M − closed if L ∩ M = L.

S. Lafortune - Last revision: September 2004 5& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

Finite Representation of Languages

• E: finite

• E∗: countably infinite

• 2E∗
(the power set of E∗, i.e., the set of all languages): uncountable

• We would like to represent languages “finitely”.

If a language is finite, we could always list all its elements; but this is rarely practical.

If a language L is infinite, we could try to represent it as:

L = {s ∈ E∗ : s has property P}

where P could for instance specify that a trace should have the same number of σ1

events as σ2 events. This is often useful, but is not amenable to analysis when

calculations involving finding subsets or supersets of L have to be performed (see

Chapter 3).

S. Lafortune - Last revision: September 2004 6& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

• More preferably, we would like to use discrete event modeling formalisms that would

require us to specify only a finite number of “objects” in order to represent a particular

language.

Finite-state automata and Petri nets are two such formalisms.

Then we would like to know how much of 2E∗
can a particular formalism represent; it

cannot represent all of it because this set is uncountable and we are only specifying a finite

number of objects.

Also of interest would be the properties of the class of languages represented by a given

formalism (e.g., closed under union).

• Computer scientists have developed a hierarchy of (finite) representations of languages (cf.

Chomsky) in a field called Formal Language Theory.

We are primarily interested in the simplest class of languages in this hierarchy, termed the

class of Regular Languages and denoted R.

Note that R 6= 2E∗
.

We will use the notion of Deterministic Finite-State Automata to define R.

S. Lafortune - Last revision: September 2004 7& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

Automata

A Deterministic Automaton, or simply automaton, is a six-tuple

G = (X, E, f, Γ, x0, Xm)

where

X is the set of states

E is the finite set of events associated with the transitions in G

f : X × E → X is the transition function: f(x, e) = y means that there is a transition

labeled by event e from state x to state y; in general, f is a partial function on its domain

Γ : X → 2E is the active event function (or feasible event function); Γ(x) is the set of all

events e for which f(x, e) is defined and it is called the active event set (or feasible event

set) of G at x

x0 is the initial state

Xm ⊆ X is the set of marked states.

S. Lafortune - Last revision: September 2004 8& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

Remarks:

• If X is a finite set, we call G a deterministic finite-state automaton, often abbreviated

as DFA.

• The automaton is said to be deterministic because f is a function over X × E.

• The fact that we allow the transition function f to be partially defined over its domain

X × E is a variation over the “standard” definition of automaton in the computer science

literature that is quite important in DES theory.

• Formally speaking, the inclusion of Γ in the definition of G is superfluous in the sense that

Γ is derived from f .

• Proper selection of which states to mark is a modeling issue that depends on the problem

of interest.

The automaton G operates as follows. It starts in the initial state x0 and upon the

occurrence of an event e ∈ Γ(x0) ⊆ E it will make a transition to state f(x0, e) ∈ X . This

process then continues based on the transitions for which f is defined.

For the sake of convenience, f is always extended from domain X × E to domain X × E∗ in

the following recursive manner:

f(x, ε) := x

f(x, se) := f(f(x, s), e) for s ∈ E∗ and e ∈ E .

S. Lafortune - Last revision: September 2004 9& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

Now think of the automaton as a directed graph and consider all the (directed) paths that

can be followed from its initial state; consider among these all the paths that end in a

marked state.

This leads us to the notion of the languages generated and marked by the automaton.

• The language generated by G is

L(G) := {s ∈ E∗ : f(x0, s) is defined }.

• The language marked by G is

Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm}.

• L(G) is always prefix-closed.

• L(G) = E∗ when f is a total function.

• Automata G1 and G2 are said to be equivalent if

L(G1) = L(G2) and Lm(G1) = Lm(G2) .

S. Lafortune - Last revision: September 2004 10& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

Accessibility and Coaccessibility of Automata

G represents two languages: L(G) and Lm(G). This is central to the modeling of discrete

event systems.

In general: Lm(G) ⊆ Lm(G) ⊆ L(G).

About X:

• Since we use an automaton to model two languages, we can delete all the states that are

not accessible or reachable from x0 by some trace in L(G). Note that when we “delete” a

state, this means also deleting all the transitions that are attached to that state.

• Formally,

Ac(G) := (Xac, E, fac, x0, Xac,m) where

Xac = {x ∈ X : ∃s ∈ E∗ (f(x0, s) = x)}

Xac,m = Xm ∩ Xac

fac = f |Xac×E→Xac
.

• Clearly, the Ac operation has no effect on L(G) and Lm(G). Thus from now on we will

always assume, without loss of generality, that an automaton is accessible, i.e.,

G = Ac(G).

S. Lafortune - Last revision: September 2004 11& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

About Xm:

• A state is coaccessible if it can reach a marked state.

• Taking the coaccessible part of an automaton means building

CoAc(G) := (Xcoac, E, fcoac, x0,coac, Xm) where

Xcoac = {x ∈ X : ∃s ∈ E∗ (f(x, s) ∈ Xm)}

x0,coac =

{

x0 if x0 ∈ Xcoac

undefined otherwise

fcoac = f |Xcoac×E→Xcoac
.

• The CoAc operation clearly affects (i.e., shrinks) L(G) but it does not affect Lm(G).

If G is coaccessible (i.e., G = CoAc(G)), then L(G) = Lm(G).

• An automaton that is both accessible and coaccessible is said to be trim.

Trim(G) := CoAc[Ac(G)] = Ac[CoAc(G)].

• Coaccessibility is very useful to model deadlock, or more generally, what we will call

blocking:

An automaton is said to be blocking if

L(G) 6= Lm(G)

which necessarily means that Lm(G) is a proper subset of L(G).

S. Lafortune - Last revision: September 2004 12& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

About E:

• Formally, we can include in E events that do not appear in L(G), since E is a parameter

in the definition of an automaton. This can however lead to some confusion, as in such a

case, the automaton is not entirely represented by its transition function f , something

that we find convenient. Thus, from now on, unless explicitly stated otherwise, we will

assume that E in the definition of automaton G consists only of those events that appear

in the traces in L(G).

UMDES-LIB:

• refer to the commands: create fsm, acc, co acc, write ev, write st, equiv.

S. Lafortune - Last revision: September 2004 13& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

Complement Operation

Given: G = (X, E, f, Γ, x0, Xm) that marks the language K ⊆ E∗.

Desired: Gcomp that marks the language E∗ \ K.

Gcomp is built in two steps as follows.

1. Complete the transition function f of G and make it a total function, ftot.

1.1. X ∪ {xd} [“dead” or “dump” state]

1.2.

ftot(x, e) =

{

f(x, e) if e ∈ Γ(x)

xd otherwise.

Moreover, set ftot(xd, e) = xd for all e ∈ E.

1.3. Gtot = (X ∪ {xd}, E, ftot, x0, Xm)

and L(Gtot) = E∗ and Lm(Gtot) = K.

2. Gcomp = (X ∪ {xd}, E, ftot, x0, (X ∪ {xd}) \ Xm) .

Clearly, L(Gcomp) = E∗ and Lm(Gcomp) = E∗ \ Lm(G), as desired.

S. Lafortune - Last revision: September 2004 14& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

Nondeterministic Automata

• We extend the definition of automata to allow for two new elements:

1. The event set is augmented to

Eε = E ∪ {ε} .

A transition labeled ε is to be interpreted as some internal event of the automaton

that is not observed by the outside world.

2. f(x, σ) is no longer required to be a single state but can now be a set of states.

The resulting object is called a Nondeterministic Automaton. Formally, a

Nondeterministic Automaton, denoted by Gnd, is a six-tuple

Gnd = (X, Eε, fnd, Γ, x0, Xm)

where these objects have the same interpretation as in the definition of deterministic

automaton, with the two differences that:

1. fnd is a function fnd : X × Eε → 2X , that is, fnd(x, e) ⊆ X whenever it is defined.

2. The initial state may itself be a set of states, that is x0 ⊆ X .

S. Lafortune - Last revision: September 2004 15& %

' $
EECS 661 - Chapter 2 2.1: Languages and Automata

• Nondeterministic automata generate and mark languages similarly to automata.

To describe these languages formally, we start by extending the domain of fnd to traces of

events. Let u be a trace of events and e an event; then

fnd(x, ue) := {z : z ∈ fnd(y, e) for some state y ∈ fnd(x, u)} .

Note that by convention, x ∈ fnd(x, ε).

We define:

L(Gnd) = {s ∈ E∗ : ∃x ∈ x0 (fnd(x, s) is defined)}

Lm(Gnd) = {s ∈ L(Gnd) : ∃x ∈ x0 (fnd(x, s) ∩ Xm 6= ∅)} .

• Question?: Do nondeterministic automata have more expressive power than automata?

Answer: No! Any nondeterministic automaton can be transformed into an equivalent

automaton, i.e., an automaton that generates and marks the same languages.

Proof: Deferred to section on observer automata.

S. Lafortune - Last revision: September 2004 16& %

' $

2.2: COMPOSITION OF AUTOMATA

& %

' $
EECS 661 - Chapter 2 2.2: Composition of Automata

2.2: Composition of Automata

Product

Symbol for Product: ×

Input: G1 = (X1, E1, f1, Γ1, x01, Xm1) and G2 = (X2, E2, f2, Γ2, x02, Xm2).

Output: G1 × G2 := Ac(X1 × X2, E1 ∩ E2, f, Γ1×2, (x01, x02), Xm1 × Xm2)

where

f((x1, x2), σ) :=

{

(f1(x1, σ), f2(x2, σ)) if σ ∈ Γ1(x1) ∩ Γ2(x2)

undefined otherwise

⇒ Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2)

Properties:

1. L(G1 × G2) = L(G1) ∩ L(G2)

2. Lm(G1 × G2) = Lm(G1) ∩ Lm(G2)

Comments:

• Property (2) shows how we can “implement” the intersection of languages using automata.

• UMDES-LIB: product.

S. Lafortune - Last revision: September 2004 18& %

' $
EECS 661 - Chapter 2 2.2: Composition of Automata

Parallel Composition

Symbol for Parallel Composition: ||

Input: G1 = (X1, E1, f1, Γ1, x01, Xm1) and G2 = (X2, E2, f2, Γ2, x02, Xm2).

Output: G1 || G2 := Ac(X1 × X2, E1 ∪ E2, f, Γ1||2, (x01, x02), Xm1 × Xm2)

where

f((x1, x2), σ) :=



















(f1(x1, σ), f2(x2, σ)) if σ ∈ Γ1(x1) ∩ Γ2(x2)

(f1(x1, σ), x2) if σ ∈ Γ1(x1) \ E2

(x1, f2(x2, σ)) if σ ∈ Γ2(x2) \ E1

undefined otherwise.

In a parallel composition, a common event, i.e., an event in E1 ∩ E2, can only be executed if

the two automata both execute it simultaneously. Thus the two automata are

“synchronized” on the common events. (For this reason, this operation is also called

synchronous composition.) The other events, i.e., those in (E2 \ E1) ∪ (E1 \ E2), are not

subject to such a constraint and can be executed whenever possible.

S. Lafortune - Last revision: September 2004 19& %

' $
EECS 661 - Chapter 2 2.2: Composition of Automata

Properties of ||:
Let us define the natural projections Pi : (E1 ∪ E2)

∗ → E∗
i for i = 1, 2 as follows:

Pi(ε) = ε

Pi(σ) =

{

σ if σ ∈ Ei

ε if σ 6∈ Ei

Pi(sσ) = Pi(s)Pi(σ) for s ∈ (E1 ∪ E2)
∗, σ ∈ (E1 ∪ E2)

and the corresponding inverse maps P−1
i : E∗

i → 2(E1∪E2)
∗

as follows:

P−1
i (t) = {s ∈ (E1 ∪ E2)

∗ : Pi(s) = t} .

The projections Pi and their inverses P−1
i are extended to languages in the usual manner: for

L ⊆ (E1 ∪ E2)
∗,

Pi(L) := {t ∈ E∗
i : ∃s ∈ L(Pi(s) = t)}

and for Li ⊆ E∗
i ,

P−1
i (Li) := {s ∈ (E1 ∪ E2)

∗ : ∃t ∈ Li(Pi(s) = t)} .

Note that Pi[P
−1
i (L)] = L but L ⊆ P−1

i [Pi(L)]. (These properties are true for any natural

projection.)

S. Lafortune - Last revision: September 2004 20& %

' $
EECS 661 - Chapter 2 2.2: Composition of Automata

We have the following properties for parallel composition:

1. Pi[L(G1||G2)] ⊆ L(Gi), for i = 1, 2.

2. L(G1||G2) = P−1
1 [L(G1)] ∩ P−1

2 [L(G2)]

3. Lm(G1||G2) = P−1
1 [Lm(G1)] ∩ P−1

2 [Lm(G2)]

4. G1||G2 = G2||G1, up to a renaming of the states

5. G1||(G2||G3) = (G1||G2)||G3

Comments:

• We can also define a || operation on languages. In view of the above, the proper definition

is:

for Li ⊆ E∗
i and Pi defined as above,

L1||L2 = P−1
1 (L1) ∩ P−1

2 (L2) .

• If E1 = E2, then the parallel composition reduces to the product, since all transitions are

forced to be synchronized.

• If E1 ∩ E2 = ∅, then there are no synchronized transitions and thus G is the concurrent

behavior of G1 and G2. This is often termed the shuffle of G1 and G2.

• UMDES-LIB: par comp.

S. Lafortune - Last revision: September 2004 21& %

' $

2.3: OBSERVER AUTOMATA

& %

' $
EECS 661 - Chapter 2 2.3: Observer Automata

2.3: Observer Automata

• Consider a DES modeled by (possibly nondeterministic) automaton

Gnd = (X, E ∪ {ε}, fnd, Γ, x0, Xm).

• Partition the set of events E of G as

E = Eo ∪ Euo

where

– Eo is the set of observable events (i.e., recorded by the sensors);

– Euo is the set of unobservable events (i.e., not recorded by the sensors).

Note that ε transitions are also unobservable, by definition of ε.

• Objective: estimate the state of Gnd from traces of observed events only.

Tool: Observers [Gobs].

UMDES-LIB: refer to the command obsvr.

S. Lafortune - Last revision: September 2004 23& %

' $
EECS 661 - Chapter 2 2.3: Observer Automata

Procedure for Building Observer Gobs for Gnd

Let Gnd = (X, E ∪ {ε}, fnd, x0, Xm) be a nondeterministic automaton and let E = Eo ∪Euo.

Then Gobs = (Xobs, Eo, fobs, x0,obs, Xm,obs) and it is built as follows.

Step 0: Replace all the transitions of Gnd labeled by events in Euo by ε-transitions. Let the

modified automaton still be denoted by Gnd.

Step 1: Start with Xobs = 2X \ ∅.

Step 2: For each state x ∈ X define

UR(x) := fnd(x, ε) .

Read UR as “unobservable reach” since ε transitions are not “observed”. It is assumed

here that we are working with the extension of function fnd to strings in (E ∪ {ε})∗, as

described earlier.

For a set B, define

UR(B) =
⋃

x∈B

UR(x) .

Step 3: Define x0,obs = UR(x0).

S. Lafortune - Last revision: September 2004 24& %

' $
EECS 661 - Chapter 2 2.3: Observer Automata

Step 4: For each S ⊆ X and e ∈ E, define

fobs(S, e) = UR({x ∈ X : ∃xe ∈ S [x ∈ fnd(xe, e)]})

Step 5: Xm,obs = {S ⊆ X : S ∩ Xm 6= ∅}.

Step 6: In practice, the above is performed in a breadth-first manner so that only the accessible

part of Gobs is constructed. The resulting state space Xobs is a subset of 2X . Note that the

empty subset of X need not be considered, since it is never an accessible state of Xobs.

S. Lafortune - Last revision: September 2004 25& %

' $
EECS 661 - Chapter 2 2.3: Observer Automata

The important properties of Gobs are that:

1. Gobs is a deterministic automaton with event set Eo.

2. L(Gobs) = Po[L(Gnd)]

where Po is the natural projection Po : E → Eo .

3. Lm(Gobs) = Po[Lm(Gnd)].

4. 2. and 3. show that nondeterministic automata have the same modeling power as

deterministic automata.

5. Let fobs(x0,obs, t) = S where t ∈ Po[L(Gnd)].

Then x ∈ S iff there exists s ∈ L(Gnd) such that x ∈ fnd(y, s) for some y ∈ x0 and

Po(s) = t.

Hence, S is the set of all states Gnd could be in after observing t, namely, S is the state

estimate of Gnd after t.

Except for the inclusion of unobservable events, the above construction is the standard

conversion of a nondeterministic automaton to a deterministic one that you can find in books

on automata theory.

S. Lafortune - Last revision: September 2004 26& %

' $

2.4: REGULAR LANGUAGES AND FINITE-STATE
AUTOMATA

& %

' $
EECS 661 - Chapter 2 2.4: Regular Languages and Finite-State Automata

2.4: Regular Languages and Finite-State Automata

The Class of Regular Languages

• Definition: A language K is said to be regular, i.e., K ∈ R, if there exists a

(deterministic) finite-state automaton G that marks it, i.e, Lm(G) = K.

• Not all languages are regular:

{anbn : n = 0, 1, 2, . . .} 6∈ R.

Intuition: We need to memorize the number of a’s to do the right number of b’s; but the

number of a’s can be arbitrarily large, so any finite number of states will not suffice.

This can be formally proved using the Pumping Lemma:

Pumping Lemma (1961): Let L be an infinite regular language. Then there exist

subtraces x, y, and z such that (i) y 6= ε and (ii) xynz ∈ L for all n ≥ 0.

Intuition: Since L has infinite cardinality, then there must be a cycle in any finite-state

automaton that marks it.

• R can also be defined using the notion of regular expressions, which are a means of

representing languages using events (including ε) and the following three operations:

concatenation, or (denoted +), and Kleene-closure (*).

S. Lafortune - Last revision: September 2004 28& %

' $
EECS 661 - Chapter 2 2.4: Regular Languages and Finite-State Automata

Properties of the Class of Regular Languages

Theorem: The class R is closed under:

1. Union

2. Concatenation

3. Kleene-closure

4. Complementation (w.r.t. E∗)

5. Intersection

Proof: Sketch.

1. Create a new initial state and connect it, with two ε transitions, to the two initial states of

the respective automata.

2. Connect the marked states of G1 to the initial state of G2 by ε transitions. Unmark all the

states of G1.

3. Add a new initial state, mark it, connect it to the old initial state by an ε transition. Then

add ε transitions from every marked state to the old initial state.

4. Use the complement operation.

5. Take the product of the two automata.

S. Lafortune - Last revision: September 2004 29& %

' $
EECS 661 - Chapter 2 2.4: Regular Languages and Finite-State Automata

State Space Minimization

• For K ∈ R, define ||K|| to be the minimum of |XA| among all finite-state automata A,

with complete transition function, that mark K. The automaton that achieves this

minimum is called the canonical recognizer of K.

Examples:

||∅|| = ||E∗|| = 1.

If E = {a, b} and L = {a}∗, then ||L|| = 2.

• || · || has nothing to do with ⊆ for languages.

Also, ⊆ does not imply a “subgraph” relationship among the canonical recognizers.

This “subgraph” idea is very useful so we formalize it:

• Subautomaton Relation: Consider two automata with same event set E:

G1 = (X1, E, f1, xo1) and G2 = (X2, E, f2, xo2). (Here we ignore marking.) We say that

G1 is a subautomaton of G2, denoted

G1 v G2

if

f1(x01, s) = f2(x02, s) for all s ∈ L(G1) .

Note that this condition implies that X1 ⊆ X2, x01 = x02, and L(G1) ⊆ L(G2).

S. Lafortune - Last revision: September 2004 30& %

' $
EECS 661 - Chapter 2 2.4: Regular Languages and Finite-State Automata

Algorithm for Identifying Equivalent States

Step 1: Flag (x, y) for all x ∈ Xm, y /∈ Xm.

Step 2: For every pair (x, y) not flagged in Step 1:

Step 2.1: If (f(x, e), f(y, e)) is flagged for some e ∈ E, then:

Step 2.1.1: Flag (x, y).

Step 2.1.2: Flag all unflagged pairs (w, z) in the list of (x, y). Then, repeat this step

for each (w, z) until no more flagging is possible.

Step 2.2: Otherwise, that is, no (f(x, e), f(y, e)) is flagged, then for every e ∈ E:

Step 2.2.1: If f(x, e) 6= f(y, e), then add (x, y) to the list of

(f(x, e), f(y, e)).

S. Lafortune - Last revision: September 2004 31& %

