
6/15/2016

1

Asynchronous Design Seminar at

University of Verona – Lecture Notes 5

Asynchronous Control Circuits – One-Hot FSMs and PTnet
Theory

Contents

 One-Hot FSM Templates

 Linear States

 Choice States

 Hollaar’s and David’s Approaches

 SI vs. non SI operation during State Transitions

 Extensions to PTnets

 Fork/Join Structures

 Hazard-freeness of Combinational Logic

 How to check?

Asynchronous Control Circuit Design - L5 6/29/20152

6/15/2016

2

One-Hot/One-Cold Encoding

6/29/2015Asynchronous Control Circuit Design - L53

 What is unique to One-Hot/One-Cold State Codes?
State Number Sequential

Encoding

Gray

Encoding

Johnson Encoding One-hot Encoding

0 0000 0000 00000000 0000000000000001

1 0001 0001 00000001 0000000000000010

2 0010 0011 00000011 0000000000000100

3 0011 0010 00000111 0000000000001000

4 0100 0110 00001111 0000000000010000

5 0101 0111 00011111 0000000000100000

6 0110 0101 00111111 0000000001000000

7 0111 0100 01111111 0000000010000000

8 1000 1100 11111111 0000000100000000

9 1001 1101 11111110 0000001000000000

10 1010 1111 11111100 0000010000000000

11 1011 1110 11111000 0000100000000000

12 1100 1010 11110000 0001000000000000

13 1101 1011 11100000 0010000000000000

14 1110 1001 11000000 0100000000000000

15 1111 1000 10000000 1000000000000000

One-Hot/One-Cold Encoding

6/29/2015Asynchronous Control Circuit Design - L54

 One-Hot encoding is not actually an encoding per se

 Simple and unique assignment of binary codes to symbolic
states

 Very commonly used in industry, why?

 Fast in terms of CAD tools time no computation required
with respect to binary encoding states

 Fast in terms of circuit operation no encoding/decoding
logic required in the fan-in/fan-out of state variables

 One-Hot FSM is compositional easy to break to pieces

 Disadvantage?

 Number of binary signals linearly dependent on number of
states

 In many cases this is not a problem as FSMs are usually small

6/15/2016

3

One-Hot/One-Cold Encoding in

Asynchronous Design

6/29/2015Asynchronous Control Circuit Design - L55

 In asynchronous design, encoded states may
present races in state transitions

 Presented earlier in Hazards/Race analysis Methods

 One-Hot Encoding transitions are regular

 Two signal transitions per state transition

 1 0 and 0 1 depending on current/next state

 Is One-Hot Encoding race-free?

 NO! But the race is regular and can thus be rectified
by using a regular circuit structure

 One-hot Critical Race (for any n states add 0s):

 10 11 01 (2 states – unique)

 100110010011001 (3 states – not unique)

One-Hot Critical Race

6/29/2015Asynchronous Control Circuit Design - L56

 For any two state transition (for any n states add 0s):

 Correct transition: 10 11 01

 Erroneous transition: 10 00 XX

 Avoiding the Race imposes a Race Constraint

 Enter the next state before leaving the current state

 Only the first transition is acceptable: 10 11 01

 No interference between next/current state (11)

due to one-hot encoding!

 How can the Race Constraint be satisfied?

 As a timing constraint for the state set and reset paths

 By circuit modification

6/15/2016

4

One-Hot FSMs

6/29/2015Asynchronous Control Circuit Design - L57

 Regular Template Circuit Structure

 State is SR Latch

 Implemented using standard-cells or as a single latch cell

 Set and Reset conditions implemented typically in 2-level Logic

 Set condition =
Previous State AND Enter Conditions for Current State

 Reset condition = Next State (Entered)

 May be implemented as SI or Fundamental Mode

 Depends on Environment constraints

 Depends on Local Timing constraints required for Correct

operation

One-Hot FSMs – Linear FSM Example

6/29/2015Asynchronous Control Circuit Design - L58

 Each One-hot state

may be implemented

using an SR latch

 Set input

 State entering

conditions

 Reset input

 State exit conditions

 Both Active-low due

to NAND SR latch

 Regular Circuit

Structure!

6/15/2016

5

One-Hot FSMs – Choice FSM Example

6/29/2015Asynchronous Control Circuit Design - L59

 Choice can easily be
implemented

 Reset condition for
state s1 is the Set
condition of
s2 OR s3

 Transforms to AND
due to active-low
Reset

 Similarly for return
from Choice

 Reset for
predecessors is Set
of successor

Scale-of-Two Loops

6/29/2015Asynchronous Control Circuit Design - L510

 For correct
operation Set and
Reset conditions
must be
Mutually-
Exclusive

 If the predecessor
and successor states
are the same this
correctness
condition is violated
if Set/Reset
conditions overlap in
time

 What if both x and
z are high in RHS?

6/15/2016

6

Scale-of-Two Loops - Solutions

6/29/2015Asynchronous Control Circuit Design - L511

 To ensure

Mutually-Exclusive

Set and Reset

signals we can

either:

 Add

intermediate

dummy state (SI

operation)

 Add transition

signals to Reset

conditions

(normally ignored)

One-Hot Race

6/29/2015Asynchronous Control Circuit Design - L512

 Is this approach

Race-Free?

 NO!!!

 Why not?

 It does not

enforce One-Hot

Race-Free

behaviour:

 10 11 01

 Can it be made
Race-Free?

6/15/2016

7

One-Hot Race

6/29/2015Asynchronous Control Circuit Design - L513

 Can it be made Race-
Free?

 Yes

 Two approaches:

 Ensure Set path is
faster than Reset path
(for two or more
states!!!)

 SI Solution:

 Add a propagate gate
(current state and
NOT previous state)

 PR = CS.PS’

 Use PR_sn instead of
sn

General One-Hot FSM State Structure

6/29/2015Asynchronous Control Circuit Design - L514

 Propagate gate (pr_sn) ensures SI operation

6/15/2016

8

What about Hazards? Is this a Hazard-free

Approach?

6/29/2015Asynchronous Control Circuit Design - L515

 It is possible for the Set and Reset Logic to contain Logic

Hazards

 How can this be resolved?

 Hazards may be analysed using Fundamental or SI Analysis

Techniques

 Logic Hazards can be removed by restructuring Set/Reset

Logic

Other Observations about One-Hot FSMs

6/29/2015Asynchronous Control Circuit Design - L516

 It is possible to extend One-Hot FSMs to model FSMs

with Forks and Joins!

 Allow multiple One-hot states to be high between fork and

join states

 How?

 Modify reset conditions

6/15/2016

9

CMOS One-Hot FSMs

6/29/2015Asynchronous Control Circuit Design - L517

 Possible to implement

One-Hot FSMs at

Transistor-Level

 Set and Reset

Conditions become

Pull-up and Pull-

down networks of

State-storing gates

Example where CSC has no Solution!

6/29/2015Asynchronous Control Circuit Design - L518

DAC’06: Carmona and Cortadella: “State Encoding of Large Asynchronous Controllers”

6/15/2016

10

Contents

 Fundamental Definitions

 Net, Marking, etc.

 PTnet Classes

 Siphons/Deadlocks and Traps

 Handles

 S-Covers and T-Covers

 An Algorithm for S-Covering FCPTnets

6/29/201519 Asynchronous Control Circuit Design - L5

PTnet Definitions

6/29/2015Asynchronous Control Circuit Design - L520

 Definition [PTnet]:

 A Place Transition net (or PTnet) is a triple N = (S, T, F), where

 S is the set of places,

 T is the set of transitions (S ∩T = Ø)

 F ≤ (S x T) U (T x S) is the flow relation

 Elements of S U T are called nodes

 pre-set •x of x in (S U T) is given by

 •x = {y in S U T | (y, x) in F}

 post-set x• of x in (S U T) is given by

 x• = {y in S U T | (x, y) in F}

 A Marking M is a function M: SN

 A Marked PTnet <N, M0> is a PTnet with an initial marking

6/15/2016

11

PTnet Definitions

6/29/2015Asynchronous Control Circuit Design - L521

 A transition t in T is enabled at marking M iff:

 For all p in •t: M(p) > 0

 When t fires at M a new marking M’ is produced:

 M’(p) = M(p) – F(p, t) + F(t, p) (F is characteristic function of F)

 M[t>M’ denotes that M’ is reachable from M by the

occurrence of transition t

 The set of markings reachable from the initial marking M0

by the occurrence of a sequence of transitions

σ = t1t2…tn =is denoted by R(N, M0)

PTnet Definitions – Net Subclasses

6/29/2015Asynchronous Control Circuit Design - L522

 Definition [S-graph – State Machine]:

 A net N = (S, T, F) is called an S-graph or State Machine, iff each

transition has exactly one input place and one output place

 for all t in T: |•t| = 1 = |t•|

 Definition [T-graph – Signal Transition Graph]:

 A net N = (S, T, F) is called an T-graph or STG, iff each place has

exactly one input transition and one output transition

 for all s in S: |•s| = 1 = |s•|

6/15/2016

12

 Definition [Free-Choice]:

 N is called free-choice iff all p in S such that |p•|>1,

•(p•) = p

 Definition [Asymmetric-Choice]:

 N is called asymmetric-choice (or simple net) iff for every two
places p1, p2, p1•∩ p2• ≠ Ø p1• ≤ p2• or p1• ≥ p2•

PTnet Definitions – Net Subclasses

6/29/2015Asynchronous Control Circuit Design - L523

PTnet Definitions – Net Subclasses

6/29/2015Asynchronous Control Circuit Design - L524

 Definition [General PTnet]:

 N is called general PTnet iff for every two places
p1, p2, p1•∩ p2• ≠ Ø p1• ≤ p2• or p1• ≥ p2•

6/15/2016

13

Asymmetric or Symmetric Confusion

6/29/2015Asynchronous Control Circuit Design - L525

 Cases where Choice and

Concurrency are combined

are referred to as confusion

 Symmetric Confusion

 t1, t3 are concurrent but in

conflict with t2

 Asymmetric Confusion

 t1, t2 are in conflict,

if t3 fires before t1!

 t1, t3 are concurrent

s1 s2

t1 t2 t3

t1 t2

t3
s1 s2

s3

PTnet Classification Revisited

6/29/2015Asynchronous Control Circuit Design - L526

MG

SM FC

AC

PT

6/15/2016

14

PTnet Definitions - Subnets

6/29/2015Asynchronous Control Circuit Design - L527

 Definition [S-Components and T-Components]:

 N’ = (S’, T’, F’) is a subnet of N = (S, T, F) iff
S’ ≤ S, T’ ≤ T and F’ = F ∩ ((S’ x T’) U (T’ x S’))

 N’ is an S-component (T-component) of N iff

N’ is a strongly connected S-graph (T-graph) and|
T’ = •S’∩S’• (S’ = •T’∩T’•).

 N’ is generated by a set X’ ≤ S ∩T iff:

S’ = (X’ ∩ S) U •(X’ ∩T) U (X’ ∩T)•

T’ = (X’ ∩T) U •(X’ ∩ S) U (X’ ∩ S)•

PTnet Definitions – Behavioural Properties

6/29/2015Asynchronous Control Circuit Design - L528

 Definition [Bounded Net]:

 A marked net (N, M0) is bounded iff:

 for all p in S, there exists k in N, s.t. for all markings M
reachable from M0: M(p) ≤ k

 Definition [Structurally Bounded Net]:

 A net N is structurally bounded iff it is bounded for any initial
marking M0.

 Definition [Liveness]:

 A transition t in T is live in (N, M0) iff:

 For all M in R(N, M0) there exists M’ in R(N, M): M’ enables t.

 The marked net (N, M0) is live iff all t in T are live.

 N is structurally live iff there exists initial marking M0 such that
(N, M0) is live

6/15/2016

15

PTnet Definitions – Graph Properties

6/29/2015Asynchronous Control Circuit Design - L529

 Definition [Path]:

 A path of a net N=(S, T, F) is an alternating sequence

π = (x0f0x1…fr-1xr) of elements X = S U T such that:

for all I, 0 ≤ i ≤ r – 1: fi = (xi, xi+1) in F

 A path is elementary iff all xi are distinct except x0 and xr

 A circuit is a path such that x0 = xr

 A circuit is elementary iff it is elementary as a path

 Definition[Alternating Circuit]

 Let N = (S, T, F) be a net. A circuit Γ of N (not necessarily

elementary) is an alternating circuit iff for all arcs in Γ of the

form (p, t) the equality •t = {p} holds

PTnet Definitions - Subnets

6/29/2015Asynchronous Control Circuit Design - L530

 Definition [Well-formed Net]:

 A Net N is well-formed if there exists a marking M0 of N

such that (N, M0) is a live and bounded system

 Thus, the net is not necessarily live at the current

marking…

 Theorem [S-Components and Well-Formed Nets]:

 Well formed Nets are covered by S-Components

6/15/2016

16

PTnet Definitions – Siphons and Traps

6/29/2015Asynchronous Control Circuit Design - L531

 Definition [Siphons (Deadlocks) and Traps]:

 Let N = (S, T, F) be a net.

 D ≤ S is a siphon (deadlock) iff D ≠ Ø and •D ≤ D•

 Θ ≤ S is a trap iff Θ ≠ Ø and Θ• ≤ •Θ

 A siphon (deadlock) or trap is minimal iff

there exists no deadlock or trap D’ such that D’ ≤ D

 A siphon (deadlock) or trap is strongly-connected iff

the subnet generated by D U •D is strongly connected

 Commoner’s Theorem

 An FC System is live iff each siphon contains a marked trap

 Each cycle is marked

PTnet Definitions – Siphons and Traps

6/29/2015Asynchronous Control Circuit Design - L532

 Theorem[Minimal Siphon for General PTnets]

 Let N = (S, T, F) be a net, D ≤ S a siphon of N and ND the subnet of N

generated by D U •D.

 D is minimal iff there exists a circuit Γ in ND (not necessarily elementary)

that passes through all places of D such that for every transition t in Γ
either:

 |•t ∩ D| = 1 (if net is FC) or

 |•t ∩ D| ≥ 2 and the places of (•t ∩ D) belong to an

alternating circuit D

p1 p2

6/15/2016

17

PTnet Definitions – Siphons and Traps

6/29/2015Asynchronous Control Circuit Design - L533

 The set {s1, s2} is a siphon; the set {s3, s4} is a trap

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L534

 1:

 s0 is a siphon (minimal)

 s1 is a trap

 2:

 {s0, s1} is a siphon

 NOT minimal,

as structurally {s0}, {s1} are also

siphons

s0 s1t0

s1

s2t0

s0

1

2

6/15/2016

18

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L535

 Siphon

 D = {s0, s1, s3}

 •t0 = {s1, s3}

 |•t0 ∩ {s1, s3}| = 2

 D is not minimal

 Minimal Siphon

 {s0, s3}

t1

t3

t0

t2
s0

s2

s1

s3

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L536

 Minimal Siphon

 {s0, s1}

 Minimal Trap

 {s2}
s0

t0

t1

s3

s1 t2 s2

6/15/2016

19

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L537

 Minimal Siphon

 {s2}

 Minimal Traps

 {s4}, {s5}
t3

t0

t1

s0 s1 s4

s2

t2

s3 t4 s5

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L538

 Minimal Siphon

 {s0, s1}

s0 s1

t0

t1

t2 s2

s4t3s3

s5

t4

s6

t5

6/15/2016

20

Siphon/Trap Examples

6/29/2015Asynchronous Control Circuit Design - L539

 Minimal Siphons/Traps

 {s0, s1}

 {s3, s4}
s0

t0

t1

s4

t2

t3

s1

s3

Siphon Example and Complexity

6/29/2015Asynchronous Control Circuit Design - L540

 Places s0, s1, s3 are

choice places to all

others

 Minimal Siphon

 {s0, s1, s2}

 Are NOT Siphons

 {s0, s1}, {s1, s2}, {s0, s2}

 {s0}, {s1}, {s2}

 Complexity ~O(S, T)

s0

s2

s1

6/15/2016

21

Siphon Example and Complexity

6/29/2015Asynchronous Control Circuit Design - L541

 Free-Choice structure between

multiple place siphons

 Minimal siphons = {s0}, {s1}, {s3}

 Siphons

 {s0}, {s1}, {s3}

 {s0, s1}, {s0, s2}, {s1, s2}

 {s0, s1, s2}

 The number of Siphons is

WC Exponential!

 Should not aim to explore ALL siphons

s0

s1

s2

PTnet Definitions – Graph Properties

6/29/2015Asynchronous Control Circuit Design - L542

 Definition [Handle]:

 Let N’ be a partial subnet of N.

 An elementary path π = (x0f0x1…fn-1xn) is a handle of N’

iff π ∩ N’ = {x0, xn}

…
x0 xn

N-N’ N’

6/15/2016

22

PTnet Examples

PTnet Examples - 1

6/29/2015Asynchronous Control Circuit Design - L544

s1 s2

t2

t1

t3 s3

t4

t5

s2

t1

t2

s1
t3

s4

s4

t4

B’, L
B, L’

B, L

1. 2.

6/15/2016

23

PTnet Examples - 2

6/29/2015Asynchronous Control Circuit Design - L545

B’, L’

4. 5.

B’, L

PTnet Examples - 3

6/29/2015Asynchronous Control Circuit Design - L546

6.

B’, L’ B, L

7.

6/15/2016

24

Minimal Siphons and S-Components

– Esparsa/Kemper Algorithm

Get Handle Algorithm

6/29/2015Asynchronous Control Circuit Design - L548

 N is strongly-connected FC-Net with S, S’ ≤ P U T

 S ∩ S’ = Ø, p in S, t in S’, t is in •p, Outputs handle H = (x0, x1, …, xn-2, t, p) or 0

 Num(v) values:

 num(v) == -1 v in S, start point of handle, num(v) ==0 v in S’, not visited before

 num(v) > 0 v has been visited before and either (a) no handle was found or

(b) has been reached again. In both cases v cannot belong to the handle

Algorithm Get_Handle(S, S’, F, t, p) Algorithm handle-DFS(v)

// S ∩ S’ = ø, p in S, t in S’ and t is in •p //

i = 1; Stack = empty;

forall x in S’ num(x) = 0;

forall x in S num(x) = -1;

push(Stack, p);

if (handle-DFS(t) == 0)

{

return NULL;

printf(“No handle exists\n”);

}

else

{

return Stack; // Stack contains Handle //

}

num(v) = i; i = i + 1;

push(Stack, v);

forall (w in •v)

if (num(w) == -1) // start node of handle //

{

push(Stack, w);

return 1;

}

forall (w in •v)

if (num(w) == 0) // new non-start node //

if (handle-DFS(w) == 1) return 1;

pop(Stack, v);

return 0;

6/15/2016

25

Get Minimal Siphon (Deadlock) Algorithm

6/29/2015Asynchronous Control Circuit Design - L549

 N = (P, T, F) strongly-connected FC-Net with p in P

 D is minimal deadlock D ≤ P, containing P

 To be an S-Component, minimal deadlock D must satisfy:

 It is strongly connected

 For all t in D: |•t∩D| = |t•∩D| = 1

Algorithm Get_Minimal_Deadlock(P, T, F, p, D, Td)

Pc = {p}; Tc = 0; // current sets of Places and Transitions

while (there exists p’ in Pc, there exists t in •p’ and t not in Tc)

{

H = Get_Handle((Pc U Tc), (P U T)-(Pc U Tc), F, p’, t);

Pc = Pc U (H ∩ P); // discard multiple instances of places

Tc = Tc U (H ∩ T); // and transitions

}

D = Pc; Td = Tc;

return D, Tc; // return Deadlock places and transitions

S-Covering - Example

6/29/2015Asynchronous Control Circuit Design - L550

 Original Net: s1 s2

s3 s4 s5 s6

s7 s8

t1 t2

t3 t4 t5 t6

t7

6/15/2016

26

S-Covering – Example – S-Cover

6/29/2015Asynchronous Control Circuit Design - L551

s1

s3 s5

s7

t1 t2

t3 t4 t5

t7

s2

s4 s6

s8

t2

t4 t6

t7

t1

T-Covering – Example T-Cover

6/29/2015Asynchronous Control Circuit Design - L552

s1 s2

s3 s4 s5

s7 s8

t1

t3 t4

t7

s1 s2

s4 s5 s6

s8

t2

t5 t6

t7

s7

6/15/2016

27

S-Cover for non Well-formed Net

6/29/2015Asynchronous Control Circuit Design - L553

s0

t0

t1

s4

t2

t3

s1

s3

s0

t0

t1
s1

s0

t0

t1

s4

t2

t3

s1

s3

Minimal Siphons – Cordone et. al

(PIPE2) Algorithms

6/15/2016

28

Rules for Siphon Extraction/Minimisation

6/29/2015Asynchronous Control Circuit Design - L555

 Definition [PTnet Reduction Function RED]

 Let G = (P, T, F) be a PTnet and ~P ≤ P.

 The reduction function RED is defined as follows:

 ~G = red(G, ~P), where the reduced net ~G = (~P, ~T, ~F) is

defined by:

 ~T = {t in T | (•t U t•) ∩ ~P ≠Ø}

 ~F(p, t) = F(p, t), ~F(t, p) = F(t, p), forall p in ~P, t in ~T

 Rule 1 [place subset reduction]

 Let G = (P, T, F) be PTnet and ~P ≤ P

 Set of siphons of G contained in ~P is the same as

siphons of reduced net ~G = red(G, ~P)

Rules for Siphon Extraction/Minimisation

6/29/2015Asynchronous Control Circuit Design - L556

 Places with empty subset and places with all net

transitions as post-set are special cases!

 Rule 2 [empty subset places]

 Let G = (P, T, F) be PTnet and _P ≤ P such that •_P = Ø

 Then, minimal siphons of G are minimal siphons of

~G = red(G, P - _P), plus the individual places in _P

 Rule 3 [all net transitions in post-set places]

 Let G = (P, T, F) be a PTnet such that P• = T

 Then P is a siphon

6/15/2016

29

Rules for Siphon Extraction/Minimisation

6/29/2015Asynchronous Control Circuit Design - L557

 Places in post-set of transitions with empty pre-set
cannot belong to a siphon and can be eliminated

 If all transitions are in post-set of some place, T = P• then
P is a siphon (see Rule 3)

 Rule 4 [trap places elimination]

 Let G = (P, T, F) be a PTnet and let _T ≤ T be such that

 •_T = Ø. Then, if _P = _T•, G has same siphons as

 ~G = red(G, P - _P)

 Rule 5 [redundant places]

 Let G = (P, T, F) be a PTnet and S ≤ P a siphon of G.

 If there exists _p in S: for all t in _p• either
(t• ∩ S) > {_p} or
(•t ∩ S) = Ø, then S – {_p} is also a siphon of G

Rules for Siphon Extraction/Minimisation

6/29/2015Asynchronous Control Circuit Design - L558

 Rule 6 [Siphon Minimality]

 Let G = (P, T, F) be a PTnet and S ≤ P a siphon of G.

 S is minimal for G, iff all reduced nets:

 ~Gp = red(G, S-{p}) for all p in S do not contain siphons

 Rule 7 [Siphon Decomposition into Smaller Siphons]

 Let G = (P, T, F) be a PTnet and ~P = {p1, p2, …, pn} ≤ P

 The set of Siphons of G NOT containing ~P is the Union

where Si is the set of siphons of the reduced net:

~Gi = red(G, P – {pi}), i.e. containing the n places except i.

n

i iS1

6/15/2016

30

Find a Siphon - Algorithm

6/29/2015Asynchronous Control Circuit Design - L559

 ~P is a set of places (one or more) which should be

contained in the siphon

 Elimination based on Rule 4 (trap places)

Algorithm Find_Siphon(G, ~P, P)

while (1)

{

if ((exists p in P ∩ ~P) && (exists t in •p such that t not in P•))

{

S = Ø; // Rule 4 //

return;

}

if ((exists p in P - ~P) && (exists t in •p such that t not in P•))

G = red(G, P – {p}); // modifies local P and G//

else

{

S = P;

return;

}

}

Algorithm Find_Min_Siphon(G, ~S, ~P, P)

while (exists p in (P - ~P) ∩ ~S such that (•t ∩ ~S) < {p} or

(t• ∩ ~S) = Ø) // Rule 5 //

~S = ~S – {p};

while (1) {

if (~S < P) G = red(G, ~S); Pnew = P - ~P;

if (Pnew == Ø)

{

S = S~;

return; // found minimal siphon //

}

forall (p in Pnew) // find smaller siphons of Pnew //

{

Gp = red(G, P – {p}); Pnew = Pnew – p;

Sp = Find_Siphon(Gp, ~P, P);

if (Sp != Ø)

{

~S = Sp;

break; // found smaller siphon – to outer loop //

}

}

}

Find a Minimal Siphon - Algorithn

6/29/2015Asynchronous Control Circuit Design - L560

 Computes one minimal siphon S ≤ ~S and containing ~P

6/15/2016

31

Algorithm Find_All_Min_Siphons(G, ~P, P)

SS = Ø; // Minimal Siphon Set //

while ((~P == Ø) && (exists p in P such that •p = Ø)) {

S = {p}; SS = SS U {S}; G = red(G, P – {p}); // Rule 2 //

}

~S = Find_Siphon(G, ~P, P);

if (~S == Ø) return;

S = Find_Min_Siphon(G, ~S, ~P, P);

SS = SS U S;

Pnew = S - ~P; Pold = Ø;

if (Pnew == Ø) return;

forall (p in Pnew) {

Gp = red(G, P – {p});

SSp = Find_All_Min_Siphons(Gp, ~P U Pold, P); // Rule 7 //

SS = SS U SSp;

Pnew = Pnew – {p}; Pold = Pold U {p};

}

Find all Minimal Siphons - Algorithm

6/29/2015Asynchronous Control Circuit Design - L561

 Find_All_Min_Siphons(G, Ø) returns all minimal siphons of G

 Worst-case complexity is O(2n)

 Due to Recursive call for Rule 7

