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1. Introduction

Two relevant results of MacWilliams are the Extension Property and the MacWilliams Identities for linear
codes. The first one describes the isomorphisms preserving the Hamming weight between linear codes and
the second one relates the weight distribution of a linear code and its dual. In this note we revise some
recent results of several authors (mostly of J. A. Wood) which describes when the Extension Property and
the MacWilliams Identities hold in the more general settings of linear codes over modules. We basically
follow the approach of [Woo09].

We start recalling the statements of the Extension Property and the MacWilliams Identities. Let F be a
field and let n be a positive number. A monomial transformation of Fn is a map T : Fn → Fn of the form

T (a1, . . . , an) = (u1aσ(1), . . . , unaσ(n)) (a1, . . . , an) ∈ Fn,

for some σ ∈ Sn and u1, . . . , un ∈ U(F ) = F \ {0}. Observe that if T is a monomial transformation of Fn

then T is an isomorphism of Mn preserving the Hamming weight (i.e. w(f(x)) = w(x) for every x ∈ Fn).
The Extension Property states that monomial transformations are the only maps satisfying these conditions,
in a very strong way:

1.1. Theorem [Extension Property] [Mac61, Mac62] Let F be finite field, let C1 and C2 be linear codes
of length n over the alphabet F and let f : C1 → C2 be an isomorphism of vector spaces preserving the
Hamming weight. Then f extends to an α-monomial transformation of Fn.

The weight enumerator of a linear code C of length n is the following polynomial in two variables:

WC(X,Y ) =
∑
c∈C

Xn−w(c)Y w(c) =

n∑
i=0

AC,iX
n−iY j ,

where AC,i denotes the number of codewords of C of weight i.

1.2. Theorem [MacWilliams Identities] [Mac63, Mac62] Let F be a finite field of cardinality q and let C be
a linear code over the alphabet F . Then

(1.1) WC⊥(X,Y ) =
1

|C|
WC(X + (q − 1)Y,X − Y ).

The vector AC = (AC,i)i=0,1,...,n is call the weight distribution of C. As this vector determines the
coefficients of WC(X,Y ), the MacWilliams identities gives the weight distribution of a code in terms of the
weight distribution of its dual (and vice versa). More precisely, comparing the coefficients in the two sides
of the equation (1.1) we have

AC⊥,i =
1

|C|

n∑
j=0

AC,j

i∑
l=0

(
n− j
i− l

)(
j

l

)
(q − 1)i−l(−1)l.

2. Rings and modules

In this section we introduce the basic notions on rings and modules.
A ring is a set R together with two operations, a sum and a product,

R×R +→ R
(r, s) 7→ r + s

R×R ·→ R
(r, s) 7→ rs

such that the sum makes (R,+) an abelian group (with zero denoted 0 and opposite of r ∈ R denoted
−r), the multiplication is associative and has an identity 1, (i.e. 1r = r1 = r for every r ∈ R) and the
product distributes the sum (i.e. r(s+ t) = rs+ rt and (r + s)t = rt+ st for every r, s, t ∈). If the product
is commutative then we say that R is a commutative ring. The elements of R which are invertible with

Partially supported by Ministerio de Economı́a y Competitividad project MTM2012-35240 and Fondos FEDER and Fun-
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respect to the product are called units of R and form a group, denoted U(R). A division ring is a ring with
U(R) = R \ {0}; a field is a commutative division ring.

Let R be a ring. A subring of R is a subset which is a ring with the restriction of the sum and product of
R. A left ideal of R is a subgroup I of (R,+) satisfying rx ∈ I for every r ∈ R and x ∈ I. Right ideals are
defined similarly. An ideal is a left ideal which is also a right ideal.

Modules are simply vector spaces over rings (rather than over fields). More precisely, a right R-module
(or right module over R) is an additive abelian group M together with a product

M ×R → M

(m, r) 7→ mr

satisfying the following conditions for every r, s ∈ R and m,n ∈M :

(m+ n)r = mr + nr, m(r + s) = mr +ms, m(rs) = (mr)s and m1 = m.

Left modules are defined similarly. If R is commutative then every right R-module is also a left module with
multiplication rm = mr and hence we simply will call them modules. However if R is non-commutative then
right and left R-modules can be very different.

Let M be a right R-module. A submodule of M is an additive subgroup N of M satisfying nr ∈ N for
every n ∈ N and r ∈ R.

If R and S are two rings then an (R,S)-bimodule is a left R-module which is also a right S-module and
satisfies the following equality for every r ∈ R, s ∈ S and m ∈M .

r(ms) = (rm)s.

A ring homomorphism is a map f : R→ S between rings satisfying

f(r + s) = f(r) + f(s), f(rs) = f(r)f(s) and f(1) = 1.

A module homomorphism (of right R-modules) is a map f : M → N between modules satisfying the following
condition for every r ∈ R,m, n ∈M :

f(m+ n) = f(m) + f(n), f(mr) = f(m)r.

Homomorphisms of left R-modules are defined similarly. An isomorphism of rings (resp. modules) is a
bijective ring (module) homomorphism. Two rings (resp. modules) are isomorphic if there is an isomorphism
from one to the other. An endomorphism of a module M is a homomorphism M → M . An automorphism
of M is a bijective endomorphism of M .

We consider homomorphisms of right modules as left operators and homomorphisms of left modules as
right operators. More precisely, if f : M → N is a homomorphism of right (resp. left) R-modules then the
image of m ∈ M by f is denoted fm (resp. mf). If g : N → P is another homomorphism of right (resp.
left) R-modules then the composition g ◦ f is denoted gf (resp. fg).

Often it is not relevant whether we use left of right R-modules and in this case we forget the convention
of the previous paragraph and use the standard notation f(m), for action of f on m.

2.1. Examples [Rings and modules]

1. The most classical examples of commutative rings are the ring of integers, denoted Z, the fields of
rationals, Q, real numbers, R, and complex numbers, C.

Modules over Z are simply abelian groups.
2. An important family of finite commutative rings is the one formed by the ring Z/nZ. Modules over

Z/nZ are abelian groups A satisfying nA = 0.
This example can be generalized to quotient rings R/I with R any ring and I any ideal of R,

formed by the equivalence classes r + I = {r + x : x ∈ I} of the equivalent relation modulo I (r ≡ s
mod I ⇔ r − s ∈ I). The sum and product in R/I are defined in the natural way:

(r + I) + (s+ I) = (r + s) + I, (r + I)(s+ I) = rs+ I.

The map r 7→ r + I is a ring homomorphism πI : R→ R/I.
If M right R/I-module then it is also a right R-module with the product mr = m(r + I). In

that case MI = 0. Conversely, if M is a right R-module satisfying MI = 0 then M is also a right
R/I-module with the product m(r+ I) = mr. Therefore we can identify right R/I-modules with the
right R-modules M satisfying MI = 0.

3. If M is right R-module and N is a submodule of M then the quotient additive group M/N is right
R-module with the natural product:

(m+N)r = mr +N, (m ∈M, r ∈ R).

The map K 7→ K/N is a one-to-one correspondence, preserving inclusion, from the set of submod-
ules of M containing N to the set of submodules of M/N .
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4. If {Ri : i ∈ I} is a family of rings then the direct product
∏
i∈I Ri is a ring with the obvious sum and

product.
5. A classical family of example of non-commutative rings encountered in linear algebra are the matrix

rings Mn(F ), with F a field and n a positive integers. This example can be generalized to any ring
in a straightforward way.

The upper triangular matrices in Mn(R) (i.e. the matrices having 0 below the diagonal) form a
subring of Mn(R).

6. Another linear algebra example of rings is the ring of endomorphisms of a vector space. This example
can also be generalized to the ring of endomorphisms of a module where the sum and product is given
in the natural way:

(f + g)m = fm+ gm, (fg)m = f(gm).

IfM andN are rightR-modules then the set of homomorphism fromM toN is denoted HomR(M,N)
(or Hom(MR, NR), or Hom(MR, N) or Hom(M,NR), if we want to emphasize that they are right R-
modules). It is an abelian group with the following sum:

(f + g)m = fm+ gm, f, g ∈ Hom(MR, NR).

The ring of endomorphisms of M is denoted EndR(M) (or End(MR)). Then Hom(MR, NR) is an
(End(NR),End(MR))-bimodule with composition used as product.

In case M and N are left modules, Hom(RM,RN) is a (End(RM),End(RN))-bimodule with reverse
composition used as product.

7. Let R and S be rings, let SMR be an (S,R)-bimodule and NR a right R-module. Then Hom(MR, NR)
is a right S-module with multiplication given by (fs)(m) = f(sm). Similarly, if MR is a right R-
module and SNR is an (S,R)-bimodule then Hom(MR, NR) is a left S-module with multiplication
given by (sf)m = s(fm).

Similar structures are obtained using homomorphisms of left R-modules.
8. Let R be a ring. Then R is a right and left R-module in the obvious way. We denote the left R-module

as RR and the right R-module as RR.
Let M be a right R-module. If m ∈ M then the map λm : R → M given by λm(r) = mr is an

isomorphism of right R-modules M → Hom(RR,MR) ((λmr)s = λm(rs) = mrs = λmr(s)). In case
M = RR this isomorphisms is a ring isomorphism R ∼= End(RR).

9. Let M be a module and let {Ni : i ∈ I} be a family of submodules of M . Then the intersection
∩i∈INi is a greatest submodule of M contained in all the Mi. The smallest submodule containing all
the Mi is the sum∑

i∈I
Ni =

{∑
i∈I

ni, ni ∈ Ni, for every i and ni = 0 for all but finitely many i

}
.

We say that {Ni : i ∈ I} is independent if Ni ∩
∑
j 6=iNj = {0} for every i ∈ I. In this case the

sum
∑k
i=1Ni is usually denoted ⊕i∈INi (or N1 ⊕ · · · ⊕Nk if I = {1, . . . , k}) and called the (internal)

direct sum of {Ni : i ∈ I}.
If {Mi : i ∈ I} is a family of modules then the cartesian product

∏
i∈IMi is a module, with the

natural sum and product. The subset of
∏
i∈IMi formed by the tuples having only finitely many

non-zero entries is a submodule called the (external) direct sum of {Mi : i ∈ I} (denoted ⊕i∈IMi

or M1 ⊕ · · · ⊕Mk in case I = {1, . . . , k}). The elements of ⊕i∈IMi having 0 at all the coordinates
different from the i-th form a submodule Ni of M , isomorphic to Mi and ⊕i∈IMi = ⊕i∈INi. In this
way we may identify external and internal direct sums.

If Mi = M for every i then the direct product
∏
i∈IMi is denoted M I and the direct sum ⊕i∈IMi

is denoted M (I), or simply Mk if I is a finite set with k elements.
10. Let f : R → S be a ring homomorphism. Then Im f = {f(r) : r ∈ R} is a subring of S and

ker f = {r ∈ R : f(r) = 0} is an ideal of R. Moreover, f is injective if and only if ker f = {0}. If
M is a right S-module then M is also a right R-module with the multiplication mr = mf(r). This
R-module is said to be obtained by restriction of scalars.

11. If f : M → N is a module homomorphism then Im f is a submodule of N and ker f is a submodule
of M . Moreover f is injective if and only if ker f = {0}. Furthermore, if f is bijective then f−1 is
also an homomorphism.

Let {Mi : i ∈ I} be a family of modules. Then for every i ∈ I there are homomorphisms µi : Mi → ⊕i∈IMi

and πi :
∏
i∈IMi →Mi, where πi((xi)i∈I) = xi and µi(x) is the element of M having x at the i-th coordinate

and 0 at the other coordinates.
If f : ⊕i∈IMi → N is a homomorphism then fµi : Mi → N is a homomorphism. Conversely, if

fi : Mi → N is a homomorphism for every i ∈ I then the map (mi)i∈I 7→
∑
i∈I fi(mi) is the unique
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homomorphism f : ⊕i∈IMi → N such that fµi = fi for every i. This gives an isomorphism

(2.2) Hom(⊕i∈IMi, N) ∼=
∏
i∈I

Hom(Mi, N).

If f : N →
∏
i∈IMi is a homomorphism then each πif : N → Mi is a homomorphism. Moreover, if

fi : N →Mi is a homomorphism for every i ∈ I, then the map n 7→ (fi(n))i∈I is the unique homomorphism
f : N →

∏
i∈IMi such that πif = fi for every i. This gives an isomorphism

Hom

(
N,
∏
i∈I

Mi

)
∼=
∏
i∈I

Hom(N,Mi).

Suppose now that M = ⊕mi=1Mi and N = ⊕mj=1Nj . Then we have

HomR(⊕mi=1Mi,⊕nj=1Nj)
∼= ⊕mi=1 ⊕nj=1 HomR(Mi, Nj).

We can display the elements of ⊕mi=1 ⊕nj=1 HomR(Mi, Nj) in matrix form, so that for right modules, we can
identify

(2.3) HomR(⊕mi=1Mi,⊕nj=1Nj)
∼=


HomR(M1, N1) HomR(M2, N1) . . . HomR(Mm, N1)
HomR(M1, N2) HomR(M2, N2) . . . HomR(Mm, Nl)

. . . . . . . . . . . .
HomR(M1, Nn) HomR(M2, Nn) . . . HomR(Mm, Nn)

 .

If moreover we display the elements ⊕ki=1Mi and ⊕lj=1Nj as column vectors we can interpret the action of
a matrix on a column vector using the standard matrix arithmetics:

f1,1 f2,1 . . . fm,1
f1,2 f2,2 . . . fm,2
. . . . . . . . . . . .
f1,n f2,n . . . fm,n




x1

x2

...
xm

 =



∑n
i=1 fi,1xi∑n
i=1 fi,2xi

...∑m
i=1 fi,nmi

 .

In particular we can identify

(2.4) EndR(⊕mi=1Mi) ∼=


HomR(M1,M1) HomR(M2,M1) . . . HomR(Mm,M1)
HomR(M1,M2) HomR(M2,M2) . . . HomR(Mk,Ml)

. . . . . . . . . . . .
HomR(M1,Mm) HomR(M2,Mm) . . . HomR(Mm,Mm)


and

(2.5) EndR(Mm) ∼= Mm(EndR(M))

For left R-modules we use the transposes of the previous matrices.
Let M be a module and let X be a subset of M . The submodule of M generated by X is the smallest

submodule of M containing X. We will denote this submodule as XR for right modules, and RX for left
modules. The submodule generated by X can be described both as the intersection of all submodules of M
containing X and as the set of R-linear combinations of elements of X. We say that M is generated by X if
it coincides with the submodule generated by X. A module is said to be finitely generated if it is generated
by a finite set and cyclic if it is generated by one element.

A module M is said to be free if it is of the form R
(I)
R for some set I. If M is an arbitrary right R-

module and I is a set M I ∼= Hom(RR,MR)I ∼= HomR(R(I),M). This isomorphism maps m = (mi) to the
homomorphism ρm : R(I) → M mapping (ri)i∈I ∈ R(I) to

∑
i∈I miri. The image of ρm is

∑
i∈I miR, the

submodule of M generated by the coordinates of M . If the coordinates of m generates M (for example
I = M and mi = i for every i) then ρm is surjective and hence M is isomorphic to an epimorphic image of
R(I), by the First Isomorphism Theorem. This shows that every module is an epimorphic image of a free
module. It also shows that a module is finitely generated if and only if it is a quotient of Rn for some positive
integer n and it is cyclic if and only if it is a quotient of R.

3. Modules as alphabets

Let M be a module. We consider M as the alphabet to construct codes so that we only consider codes
which are submodules of Mn for some positive integer n. More precisely a linear code of length n in the
alphabet M is a submodule of Mn. The Hamming weight of an element x ∈ Mn is the number w(x) of
non-zero entries of x. One specially relevant case is the one on which M = RR (or RR).

A monomial transformation on Mn is a map f : Mn →Mn of the form

f(m1, . . . ,mn) = (α1mσ(1), . . . , αnmσ(n)), (m1, . . . ,mn) ∈Mn
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for some σ ∈ Sn and α1, . . . , αn ∈ Aut(MR).
We say that the alphabet M satisfies the extension property (EP for short) for length n if every isomor-

phism f : C1 → C2 preserving the Hamming weight, with C1 and C2 linear codes of length n on the alphabet
M , extends to a monomial transformation of Mn. We say that the alphabet M has the EP if it has the EP
for every length.

In the remainder of the section we construct a module without the EP. For that we fix a finite field F
with cardinality q and positive integers n and m. Let R = EndF (Fm) and M = HomF (Fn, Fm). Then M is
a left R-module (see Examples 2.1.6). We will show that if n > m then the alphabet M as right R-module
does not have the EP.

We need some preparation. Suppose that n ≥ m and let

[
n
m

]
q

denote the number of subspaces of Fn

dimension m. We start proving

[
n
m

]
q

=

{
1, if m = 0;∏m−1
i=0

qn−i−1
qm−i−1 , if m 6= 0.

Indeed, the case m = 0 is obvious. Suppose that m 6= 0 and let αn,m denote the number of lists (v1, . . . , vm)
formed by m linearly independent elements of Fn. To construct one of these lists we first select v1 ∈ Fn\{0},
then v2 ∈ Fn\Fv1, v3 ∈ Fn\Fv1+Fv2, and so on. Thus we have qn−1 options for v1, qn−q options for v2 and

in general qn−qi−1 for vi. This gives αn,m =
∏m−1
i=0 (qn−qi). Two of these lists (v1, . . . , vn) and (w1, . . . , wn)

generate the same subspace of Fn if and only if there is an invertible matrix A = (aij)1≤i,j≤m such that
wi =

∑m
j=1 aijvj . Clearly the number of these invertible matrices is αm,m. Thus (v1, . . . , vm)→ 〈v1, . . . , vm〉

gives a surjective map from the set of list with m linearly independent elements of Fn to the set of m-
dimensional subspaces of Fn, and the preimage of each subspace is a subset with αm,m elements. Therefore

[
n
m

]
q

=
αn,m
αm,m

=

m−1∏
i=0

qn − qi

qm − qi
=

m−1∏
i=0

qn−i − 1

qm−i − 1
,

as desired.
We now prove the following recursion formula for 1 ≤ m < n:

(3.6)

[
n
m

]
q

q(
m
2 ) =

[
n− 1
m

]
q

q(
m
2 ) +

[
n− 1
m− 1

]
q

qn−1+(m−1
2 ) (1 ≤ m ≤ n− 1).

Indeed, using the well known formula m− 1 +
(
m−1

2

)
=
(
m−1

1

)
+
(
m−1

2

)
=
(
m
2

)
we have

[
n− 1
m

]
q

q(
m
2 ) +

[
n− 1
m− 1

]
q

qn−1+(m−1
2 )

=

(
m−1∏
i=0

qn−1−i − 1

qm−i − 1

)
q(

m
2 ) +

(
m−2∏
i=0

qn−1−i − 1

qm−i−1 − 1

)
qn−1+(m−1

2 )

=

∏m−2
i=0 (qn−1−i − 1)∏m−1
i=0 (qm−i − 1)

(
(qn−m − 1)q(

m
2 ) + qn−1+(m−1

2 )(qm − 1)
)

=

∏m−2
i=0 (qn−1−i − 1)∏m−1
i=0 (qm−i − 1)

(
qn+(m

2 ) − q(
m
2 )
)

=

∏m−1
i=0 (qn−1−i − 1)∏m−1
i=0 (qm−i − 1)

q(
m
2 ) =

[
n
m

]
q

q(
m
2 )

3.1. Lemma [Cauchy Binomial Theorem] For every positive integer n we have

n−1∏
i=0

(1 + qiX) =

n∑
m=0

[
n
m

]
q

q(
m
2 )Xm.
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Proof. We argue by induction on n with the case n = 1 been an obvious consequence of

[
1
0

]
q

=

[
1
1

]
q

= 1

and
(

0
2

)
=
(

1
2

)
= 0. For the induction step we use that

[
k
0

]
q

=

[
k
k

]
q

= 1 for every k and (3.6) as follows

n−1∏
i=0

(1 + qiX) =

(
n−1∑
m=0

[
n− 1
m

]
q

q(
m
2 )Xm

)
(1 + qn−1X)

=

[
n− 1

0

]
q

q(
0
2)Xm +

n−1∑
m=1

([
n− 1
m

]
q

q(
m
2 ) +

[
n− 1
m− 1

]
q

qn−1+(m−1
2 )

)
Xm

+

[
n− 1
n− 1

]
q

qn−1+(n−1
2 )

=

[
n
0

]
q

q(
0
2)Xm +

n−1∑
m=1

[
n
m

]
q

q(
m
2 )Xm +

[
n
n

]
q

q(
n
2)

=

n∑
m=0

[
n
m

]
q

q(
m
2 )Xm.

�

Evaluating X = 1 and X = −1 in the formula of the Cauchy Binomial Theorem (Lemma 3.1) we obtain

n∑
m=0

[
n
m

]
q

q(
m
2 ) = 2

n−1∏
i=1

(1 + qi)(3.7)

n∑
m=0

(−1)m
[
n
m

]
q

q(
m
2 ) =

{
1, if n = 0;

0, if n > 0.
.(3.8)

3.2. Example [Wood] Let F be a finite field, let n > m > 0 and consider the ring R = EndF (Fm) and the
left R-module M = HomF (Fn, Fm). Then there is a positive integer N and two linear codes C+ and C− of
MN satisfying the following conditions:

1. one of the coordinates is 0 for all the codewords of C+ but no coordinate is 0 for all the codewords of
C−.

2. There is an isomorphism f : C+ → C− preserving the Hamming weight.

By 1, the isomorphism f does not extend to a monomial transformation of MN and hence the alphabet does
not satisfies the EP.

Proof. Let V = Fn as an n-dimensional vector space over F . Let S = EndF (V ). Then M is an (R,S)-
bimodule (see Examples 2.1.6). For every subspace W of V let us fix λW ∈ S with Im λW = W . Let

N =
∏n−1
i=1 (1 + qi), N+ =

∑n
m=0,m even

[
n
m

]
q

q(
m
2 ) and N− =

∑n
m=0,m odd

[
n
m

]
q

q(
m
2 ). By (3.7), 2N =

∑n
m=0

[
n
m

]
q

q(
m
2 ) = N+ + N− and by (3.8) N+ −N− = 0. Therefore N = N+ = N−. Let λ : V → V 2N

be the map associating to each v ∈ V the vector obtaining by putting
(

dimW
2

)
times the element λW (v)

for each subspace W of V . (Here we have preselected a certain order in the coordinates of V 2N so that
we always use the same map λW in a given coordinate. The order chosen is not relevant but it should
be fixed from the beginning. In that way the coordinates of V 2N are parametrized by the subspaces of V
and each subspace of V of dimension k parametrizes

(
k
2

)
different coordinates.) Let λ+ : V → V N be the

composition of λ with the projection on the coordinates parametrized by subspaces with even dimension and
λ− : V → V N be the composition of λ with the projection on the coordinates parametrized by subspaces with
odd dimension. We now construct two homomorphisms of left R-modules g+, g− : M → MN associating
each f ∈ M = HomF (Fm, V ) with the vector formed by the compositions fλW , with W of even dimension
for g+ and W of odd dimension for g−.

We claim that w(g+(f)) = w(g−(f)). Indeed, each coordinate of g+(f) or g−(f) is of the form f ◦ λW
and it is zero if and only if W ⊆ ker f . Thus if we set

δ(W ) =

{
0, if W ⊆ ker f ;

1 if W 6⊆ ker f.
,
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and u = dim ker f , then u > 0 because n > m and

w(g+(f))− w(g−(f)) =
∑
W≤V

(−1)dimW q(
dimW

2 )δ(W )

=
∑
W≤V

(−1)dimW q(
dimW

2 ) −
∑

W≤ker f

(−1)dimW q(
dimW

2 )

=

n∑
k=0

(−1)k
[
n
k

]
q

q(
k
2) −

u∑
k=0

(−1)k
[
u
k

]
q

q(
k
2) = 0− 0 = 0

by (3.8). This proves the claim.
Moreover, if f 6= 0 then there fλV 6= 0 and hence either g+(f) 6= 0 or g−(f) 6= 0. Actually both are

non-zero because they have the same Hamming weight. This shows that g+ and g− are injective and hence
the map g+(f) 7→ g−(f) is a well defined homomorphism preserving the Hamming weight from C+ = Im g+

to C− = Im g−. One of the coordinates is zero for all the elements of C+, namely the one corresponding to
W = 0. However, no coordinate is zero for all the elements of C−. Indeed, each coordinate of the codewords
of C− is parametrized by one non-zero subspace W of V (of odd dimension). If w ∈ W \ {0} then there is
f ∈ M with f(w) 6= 0. Then the coordinate of g+(f) parametrized by W is f ◦ λW 6= 0. This finishes the
proof. �

4. Semisimple rings and modules

Let M be a module (whether it is left of right module it is irrelevant for the moment and only in case it
is relevant the side we will mention it). If M = {0} then we denote M = 0 and it has a unique submodule,
namely M . Otherwise it has at least two different modules, namely M and 0. We say that M is simple if it
has exactly two submodules. A module is said to be semisimple if it is a sum of simple submodules.

4.1. Lemma [The Schur’s Lemma] Let M and N be two simple modules. If f : M → N is a non-zero
homomorphism then f is an isomorphism. If M is a simple module then EndR(M) is a division ring.

Proof. Let f : M → N be a non-zero homomorphism. Then Im f 6= 0 and ker f 6= M . As 0 and M are
the only submodules of M and 0 and N are the only submodules of N , we have Im f = N and ker f = 0.
Therefore f is bijective and hence it is invertible. �

An obvious consequence of the Schur Lemma (Lemma 4.1) is that if M and N are two simple modules
then either M ∼= N or HomR(M,N).

4.2. Proposition Let M =
∑k
i=I Si with each Si a simple submodule of M and let N be a submodule of

M . Then

1. There is a subset J of I such that M = N ⊕⊕j∈JSj. In particular, there is a submodule P of M such
that M = N ⊕ P .

2. There is a subset J of I such that M = ⊕j∈JSj.
3. Every simple submodule of M is isomorphism to some Si.
4. N and M/N are semisimple.
5. A direct sum of semisimple modules is semisimple.

Proof. 1. Let Σ be the set formed by the subsets J of I for which the family {N,Sj : j ∈ J} is independent.
This is set is inductive because the union of a totally ordered subset of Σ also belongs to Σ. By the Zorn’s
Lemma, Σ has a maximal element, say J . We claim that M = N ⊕⊕i∈JSj . Otherwise there is some i ∈ I
such that Si 6⊆ N ⊕⊕i∈JSj . As Si is simple we have Si ∩ (N ⊕⊕i∈JSj) = 0 and then it is easy to see that
J ∪ {i} is a subset of Σ properly containing J . This contradicts the maximality of J and finishes the proof.

2 is a direct consequences of 1 for N = 0.
3. Let S be a simple submodule of M then M = S ⊕ P = P ⊕⊕j∈JSj for some submodule P of M and

some J ⊆ I. Then S ∼= M/P ∼= ⊕j∈JSj and this implies that J has cardinality 1 and S is isomorphic to Mj

if J = {j}.
4. Clearly M/N =

∑
i∈I(N + Si)/N and every (N + Si)/N is either 0 or simple. Eliminating the zero

summands we deduce that M/N is semisimple. Moreover, by 1, M = N ⊕ P for some submodule P of M .
Then N ∼= M/P and hence N is semisimple.

5 is obvious. �

Let M be a semisimple module. By Proposition 4.2.2, M is a direct sum of simple modules. We can group
the direct summands by isomorphisms classes, so that M ∼= Sm1

1 ⊕ · · ·⊕Smk

k with Si1 6∼= Si2 for i1 6= i2. The
following proposition describes isomorphism classes between semisimple modules.
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4.3. Proposition Consider semisimple modules

M ∼= M1 ⊕ · · · ⊕Mm and N ∼= N1 ⊕ · · · ⊕Nn
where each Mi and each Ni is simple. Then M ∼= N if and only if m = n and there is σ ∈ Sm such that
Mi
∼= Nσ(i).

Proof. The sufficient condition is clear. Suppose that M and N are isomorphic. We may assume without
loss of generality that 0 ≤ m ≤ n. We argue by induction on m. The case m = 0 is obvious. Suppose m > 1
and he induction hypothesis. Let f : M → N be an isomorphism. Let µi : Mi → M and πi : N → Ni, the
canonical embedding and projection. Let M ′i = f−1(Mi) for every i = 1, . . . , n. Then M =

∏n
i=1M

′
i and each

M ′i is simple. Moreover, by Proposition 4.2.1, there is J ⊆ {1, . . . ,m} such that M = ⊕n−1
i=1 M

′
j ⊕ ⊕j∈JMj .

Then M ′n
∼= M/⊕n−1

i=1 M
′
i
∼= ⊕j∈JMj . As M ′n is simple, |J | = 1. By permuting the Nj one may assume that

J = {m}. Then Nn ∼= M ′n
∼= Mm and M/ ⊕n−1

i=1 M ′i
∼= M/Mm

∼= ⊕m−1
i=1 Mi. By the induction hypothesis

m− 1 = n− 1 and after a permutation one may assume that Ni ∼= M ′i
∼= Mi for every i. �

Proposition 4.3 also holds for semisimple modules which are infinite direct sums of simple modules (see
e.g. [Pie82, 2.5]). This shows that if {Si : i ∈ I} is a set of representatives of the isomorphism classes of

simple right R-modules, then every semisimple right R-module M has a unique expression as M ∼= ⊕i∈IS(αi)
i

for some cardinals αi. Then αi is called the the multiplicity of Si at M .

4.4. Theorem [The Wedderburn-Artin Theorem] The following conditions are equivalent for a ring:

1. The left module RR is semisimple.
2. The right module RR is semisimple.
3. There are division rings D1, . . . , Dk and positive integers n1, . . . , nk such that

(4.9) R ∼= Mn1
(D1)× · · · ×Mnk

(Dk).

Proof. 3 implies 1 and 2. Suppose that R = Mn1(D1) × · · · ×Mnk
(Dk) with Di a division ring and ni a

positive integer for every i = 1, . . . , k. For every i = 1, . . . , k and every j = 1, . . . , ni let Cij be the subset of
R formed by the elements for which all the non-zero entries are at the j-th column of Mni

(Di) and let Rij
be the subset formed by the elements of R with all the non-zero entries are at the j-th row of Mni

(Di). It
is easy to see that R = ⊕ki=1 ⊕

ni
j=1 Cij = ⊕ki=1 ⊕

ni
j=1 Rij , that each Cij is a minimal left ideal of RR and Rij

is a minimal right ideal of RR. Thus RR and RR are semisimple. This proves that 3 implies 1 and 2.
2 implies 3 and 1 implies 3. By symmetry we only prove the first. Suppose that RR is semisimple. By

Proposition 4.2.2, RR = ⊕i∈ISi for some simple right ideals of R. We claim that I is finite. Indeed, there is
a finite subset J of I such that 1 =

∑
i∈J sj . If s ∈ Si with i 6∈ J then s = 1s =

∑
j∈J sjs ∈ S∩

∑
j∈J Sj = 0.

Thus Si = 0, which yields a contradiction because Sj is simple. This shows that J = I, so that I is finite,
as claimed. Grouping the Si which are isomorphic we have RR = ⊕ki=1Mi and Mi = ⊕ni

j=1Tij with each Rij
a simple right ideal of R and Ti1j1

∼= Ti2j2 if and only if i1 = i2. Thus, if Ti = Ti1, then

HomR(Ti1j1 , Ti2j2) ∼=

{
0, if i1 6= i2;

EndR(Ti) = Di if i1 = i2 = i;

and each Di is a division ring by the Schur’s Lemma (Lemma 4.1). By (2.5), we have

HomR(Mi,Mj) =

{
0, if i 6= j;

EndR(Mi) ∼= EndR(Tni
i ) ∼= Mni

(Di) if i = j.

By (2.4),

R ∼= End(RR) ∼=


HomR(M1,M1) HomR(M2,M1) . . . HomR(Mk,M1)
HomR(M1,M2) HomR(M2,M2) . . . HomR(Mk,Ml)

. . . . . . . . . . . .
HomR(M1,Mk) HomR(M2,Mk) . . . HomR(Mk,Ml)

 =

k∏
i=1

Mni
(Di).

�

If RR (equivalently RR) is semisimple then we say that R is a semisimple ring. If R is a semisimple
ring then the expression of R as in (4.9) is called the Wedderburn decomposition of R. The direct factors
Mni

(Di) are called the Wedderburn components ofR. The proof of Theorem 4.4 shows that if the Wedderburn
decomposition of R is as in Theorem 4.4.3 then R has exactly k simple left R-modules up to isomorphism
and k simple right R-modules up to isomorphisms. Moreover, one can take C1, . . . , Ck as representatives
of the simple left R-modules, where each Ci is one column of Mni

(Di). Similarly, taking one row Ri of
each Wedderburn component Mni(Di), we obtain a set R1, . . . , Rk of representatives of the simple right
R-modules. Moreover RR ∼= ⊕ki=1C

ni
i and RR ∼= ⊕ki=1R

ni
i .
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In case R is finite the all the division rings are finite and hence they are fields by the following well known
theorem of Wedderburn.

4.5. Theorem [Wedderburn] Every finite division ring is a field.

Suppose that R is a semisimple ring. The proof of Theorem 4.4, as well as Proposition 4.2.3 shows that
if S1, . . . , Sk are representatives of the minimal right ideals up to isomorphisms then R ∼= Sn1

1 ⊕ · · · ⊕ S
nk

k

for some unique positive integers n1, . . . , nk. Furthermore R has exactly k isomorphism classes of minimal
left ideals, say T1, . . . , Tk and R ∼= Tn1

1 ⊕ · · · ⊕ Tnk

k (for the same positive integers). Moreover, every right
R-module is a direct sum of copies of Si’s and every left R-module is a direct sum of Tj ’s. This is clear for
free modules and then it is true for all modules because every module is a quotient of a free module. This
proves

4.6. Corollary If R is a semisimple ring then every R-module is semisimple and every right (left) simple
module is isomorphic to a minimal right (left) ideal of R.

5. The socle and the Jacobson radical

Let M be a module. The socle of M , denoted Soc(M), is the sum of all simple submodules of M . Clearly
Soc(M) is the unique maximal semisimple submodule of M . In general, it could occur that Soc(M) = 0 but
in this case M must be infinite.

Let N be a submodule of M . The the map K 7→ K/N gives a one-to-one correspondence from the set
of submodules of M containing N to the submodules of M/N . Then M/N is simple if and only if N is a
maximal submodule of M , i.e. N and M are different and they are the only submodules of M containing N .
The annihilator of M is

Ann(MR) = {r ∈ R : Mr = 0}.
Clearly Ann(MR) is an ideal of R. Therefore if Sr denotes the class of all simple right R-modules of R then

rad(RR) =
⋂
S∈Sr

Ann(SR)

is a two-sided ideal of R. Similarly

rad(RR) =
⋂
S∈Sl

Ann(SR)

where Sl denotes the class of simple left R-modules. Actually, rad(RR) = rad(RR) (see [Pie82, Proposi-
tion 4.3]). This ideal is called the Jacobson radical of R and it is usually denoted J(R). If M is a semisimple
right R-module then MJ(R) = 0 and hence we can see M as a right R/J(R)-module.

We can give an alternative description of J(R). If M is a module then a maximal submodule of M is a
submodule N of M which is maximal among the submodules of M different from M . By Examples 2.1.3, N
is a maximal submodule of M if and only if M/N is simple. The maximal right ideals of R are the maximal
submodules of RR. Maximal left ideals are defined similarly.

5.1. Proposition J(R) is the intersection of the maximal left ideals of R and it is also the intersection of
the right ideals of R.

Proof. By symmetry it is enough to prove the first statement. Let J be the intersection of the maximal right
ideals of R. Let M be a maximal right ideal of R. Then S = R/M is a simple right R-module. Therefore
0 = SJ(R) = (M + J(R))/M and therefore J(R) ⊆M . This shows J(R) ⊆ J .

If S is a simple right R-module and s ∈ S \ {0} then S = sR and hence the maps ρs : R→ S, associating
r with sr, is surjective. Thus S ∼= R/ ker ρs and hence ker ρs is a maximal ideal of M . Thus J ⊆ ker ρs and
hence SJ = 0. This shows J ⊆ J(R). �

It is easy to see that if R is semisimple then J(R) = 0. Furthermore, by the description of left and right
ideals of R/J(R) it is clear that J(R/J(R)) = 0. For finite rings we have

5.2. Proposition If R is a finite ring then R is semisimple if and only if J(R) = 0. In particular R/J(R)
is semisimple.

Proof. Suppose that J(R) = 0. Then there are maximal right ideals I1, . . . , Ik of R with I1 ∩ · · · ∩ Ik = 0.
Then the map r → (r+I1, . . . , r+Ik) is an injective homomorphism R→ ⊕ki=1R/Ii. As each R/Ii is simple,
we deduce that R is semisimple by Proposition 4.2. �

5.3. Remark Assume that I is an ideal of R with R/I semisimple. Then J(R/I) = 0 and hence the
intersection of the maximal ideals of R containing I is precisely I. Therefore J(R) ⊆ I.
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5.4. Example Let F be a field and consider the ring R =

(
F F
0 F

)
of upper triangular 2 × 2 matrices.

Then J(R) =

(
0 F
0 0

)
, Soc(RR) =

(
0 F
0 F

)
and Soc(RR) =

(
F F
0 0

)
Proof. Clearly, I1 =

(
F F
0 0

)
and I2 =

(
0 F
0 F

)
are maximal right ideals of R. Therefore J =(

0 F
0 0

)
⊆ J(R). On the other hand R/J ∼= F ×F , which is semisimple. Thus J = J(R) by Remark 5.3.

Clearly J(R) is a minimal left ideal and a minimal right ideal. Moreover, J1 =

(
F 0
0 0

)
is a minimal

left ideal and J2 =

(
0 0
0 F

)
a minimal right ideal. Therefore I1 = J1 + J(R) ⊆ Soc(RR) and I2 =

J2 +J(R) ⊆ Soc(RR). As R is not semisimple and I1 and I2 are maximal we deduce that I1 = Soc(RR) and
I2 = Soc(RR). �

By Example 2.1.2, the right R/J(R)-modules can be identified with the right R-modules M such that
MJ(R) = 0 and these are precisely the semisimple modules of R. Thus, the number of isomorphism classes
of right R-modules coincides with the number of isomorphisms classes of right R/J(R) which is also the
number of simple components of R/J(R). Using this it is easy to prove the following

5.5. Lema Let R be a finite ring and let M be a semisimple module. Then M is cyclic if and only if for
every simple R-module S, the multiplicity of S in M is at most the multiplicity of S in R/J(R).

5.6. Lemma If R is a finite ring and M is a finite non-zero right R module then MJ(R) 6= M .

Proof. As M is finite, it has a maximal submodule N (i.e. a submodule maximal among the submodules
different from M). Then M/N is simple and hence (M/N)J(R) = 0. Therefore MJ(R) ⊆ N ⊂ M1 and
therefore MJ(R) 6= 0. �

The following is an obvious consequence of Lemma 5.6.

5.7. Corollary If R is a finite ring then J(R)n = 0 for some n.

Let R be a finite ring and let x ∈ R such that xn = 0 for some n ≥ 1. Then (1 + x)(1 − x + x2 − · · · +
(−1)n−1xn−1) = 1, so that 1 + x ∈ U(X). If u ∈ U(R) and x ∈ J(R) then u−1x ∈ J(R) and therefore
(u−1x)n = 0 for some n. Therefore u+ x = u(1 + u−1x) ∈ U(R). This shows that

(5.10) U(R) + J(R) ⊆ U(R).

6. Injective modules

Let R be a ring and let E be and M be a R-modules. We say that E is M -injective if for every submodule
N of M and every homomorphism f : N → E there is a homomorphism f : M → E extending f , i.e.
f(n) = f(n) for every n ∈ N . One says that E is injective if it is M -injective for every module M .

6.1. Proposition Let {Ei : i ∈ I} be a family of modules and let M be a module. Then
∏
i∈I Ei is

M -injective if and only if Ei is M -injective for every i ∈ I.

Proof. Let E =
∏
i∈I Ei.

Suppose that each Ei is M -injective. Let N be a submodule of a module M and let f : N → E be a
homomorphism. For every i ∈ I let πi : E → Ei be the projection on the i-th coordinate and let fi = πif .
As Ei is injective there is a homomorphism gi : M → Ei such that gi(n) = πif(n) for every n ∈ N . Let
g : M → E be the unique homomorphism satisfying πig = gi for every i. Then πig(n) = gi(n) = πif(n) for
every n ∈ N and hence g(n) = f(n) for every n ∈ N . This shows that E is M -injective.

Conversely, assume that E is M -injective and let f : N → Ei be a homomorphism. Let µi : Ei → E be the
natural embedding of Ei into the i-th coordinate of E. As E is M -injective Then there is a homomorphism
g : M → E such that g(n) = µif(n). Then πig(n) = πiµif(n) = f(n). Thus Ei is N -injective. �

6.2. Proposition Let E be a module.

1. If E is M -injective and N is a submodule of M then E is M/N -injective.
2. Let {Mi : i ∈ I} be a family of modules. If E is Mi-injective for every i ∈ I and every j ∈ J then E

is ⊕i∈IMi-injective.

1⊂ denotes proper inclusion.
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Proof. 1. Suppose that E is M -injective. Every submodule of M/N is of the form K/N for some submodule
K of M containing N . Let f : K/N →M be a homomorphism with K as above. Let π : M →M/N be the
canonical homomorphism and let πK : K → K/N denote its restriction to K. As E is M -injective, there is
a homomorphism g : M → E with g(k) = fπK(k) for every k ∈ K. Then f(N) = 0 and hence there is a
homomorphism g : M/N → E with gπ = g. Therefore g(k+N) = gπK(k) = g(k) = fπK(k) = f(k+N) for
every k ∈ K. This shows that E is M/N -injective.

2. Suppose that E is Mi-injective for every i ∈ I. Let M = ⊕i∈IMj , let N be a submodule of M and
let f : N → E be a homomorphism. Using Zorn’s Lemma we may assume that N is maximal in the set of
submodules of N1 of ⊕i∈IMi for which there is a homomorphism N1 → E extending f . It is then enough to
show that under this maximality assumption N = M . By means of contradiction we assume that N 6= M .

For every i ∈ I let µi : Mi →M be the embedding of Mi into the i-th coordinate. As N 6= M there is j ∈ I
such that µj(Mj) 6⊆ N . Let g : µ−1

j (N)→ E be given by g(m) = fµj(m) for m ∈ µ−1
j (N). By assumption,

there is h : Mj → E such that h(m) = g(m) for every m ∈ µ−1
j (N). Let h1 : N1 = N + µj(Mj) → E be

defined by

h1(n+ µj(m)) = f(n) + h(m), (n ∈ N,m ∈Mj).

This is well defined because if n1 +µj(m1) = n2 +µj(m2), with n1, n2 ∈ N and m1,m2 ∈ K then n1−n2 =

µj(m2 −m1) ∈ N and hence m2 −m1 ∈ µ−1
j (N). Then f(n1) − f(n2) = f(n1 − n2) = fµj(m2 −m1) =

g(m2−m1) = h(m2−m1) = h(m2)−h(m1) and hence f(n1)+h(m1) = f(n2)+h(m2). As h1 extends f and
N is properly contained in N1, we obtain the desired contradiction from the maximality assumption. �

6.3. Theorem [Baer’s Criterion of Injectivity] Let R be a ring and let E be a right R-module. Then E is
injective if for every ideal I of R and every homomorphism f : I → E there is m ∈M such that f(x) = mx
for every x ∈ I.

Proof. Every homomorphism RR →M is of the form r 7→ mr for some m ∈M . Thus the property that for
every ideal I of R and every homomorphism f : I → E there is m ∈ m such that f(x) = mx for every x ∈ I
means precisely that E is R-injective. Then, by Proposition 6.2, E is M injective for every quotient M of
every free module. As every module is of this form we deduce that E in injective. �

Applying Baer’s Criterion to the case where R = Z we obtain the following:

6.4. Corollary A Z-module (i.e. an abelian group) M is injective if for every m ∈ M and every positive
integer n there is n ∈M with m = dn.

Using Corollary 6.4 we deduce.

6.5. Example Q and Q/Z are injective Z-modules.

If f : M → N is a homomorphism of modules and E is a module then the following map is a homomorphism
of abelian groups:

Hom(f,E) : HomR(N,E) → HomR(M,E)

φ 7→ φ ◦ f.

Hom(−, E) defines a contravariant functor from the category of modules to the category of abelian groups,
i.e.

Hom(g ◦ f,E) = Hom(f,E) ◦Hom(g,E) and Hom(1M , E) = 1EndR(M)

for every module M and every “composable” homomorphisms f and g. A sequence of homomorphisms of
modules

· · · →Mi−1
fi−1−→Mi

fi−→Mi+1 → . . .

is said to be exact if ker fi = Im fi for every i. For example, if f : M → N is a homomorphism, then f is

injective if and only if 0 → M
f−→ N is exact. Similarly f is surjective if M

f−→ N → 0 is exact. A short
exact sequence is an exact sequence of the form

0→M ′ →M →M ′′ → 0

6.6. Proposition If

0→M ′
f→M

g→M ′′ → 0

is a short exact sequence then

0→ HomR(M ′′, E)
Hom(g,E)−→ HomR(M,E)

Hom(f,E)−→ HomR(M ′, E)

is exact.
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Proof. As g is surjective, if g ◦ φ = g ◦ ψ then φ = ψ. This shows that Hom(g,E) is injective. Moreover
Hom(f,E) ◦ Hom(g,E) = Hom(g ◦ f,E) = Hom(0, E) = 0 and therefore Im Hom(g,E) ⊆ ker Hom(f,E).
Assume that φ ∈ ker Hom(f,E). Then φ ◦ f = 0, and therefore ker g ⊆ Im f ⊆ kerφ. Thus the map
ψ : M ′′ → E given by ψ(x) = φ(y) if x = g(y) is a well defined homomorphism. Indeed, if x = g(y1) = g(y2)
then y1−y2 ∈ ker g ⊆ kerφ and hence φ(y1) = φ(y2). It follows easily that ψ ∈ HomR(M ′′, E) and φ = ψ ◦g.
This shows that φ ∈ Im Hom(g,E) and finishes the proof. �

By Proposition 6.6, E is injective if and only if Hom(f,E) is surjective for every injective homomorphism
f or R-modules if and only if Hom(−, E) maps short exact sequences to short exact sequences.

Given an abelian group A let A∗ = HomZ(A,Q/Z) and given a homomorphism f of abelian groups let
f∗ = Hom(f,Q/Z). For every abelian group A, A∗ is an abelian group and for every homomorphism f of
abelian groups, f∗ is s group homomorphism.

In case R is a ring and M is right R-module then, considering M as an (Z, R)-bimodule, we can see M∗

is a left R-module (see Examples 2.1.7). Similarly if M is a left R-module then M∗ as a right R-module. If
f is a homomorphism of modules then so is f∗. Clearly R∗ is an (R,R)-bimodule.

6.7. Lemma For every R-module there is an isomorphism of abelian groups ΦM : HomR(M,R∗) → M∗

such that if f : M → N is a homomorphism of R-modules then the following diagram is commutative

HomR(N,R∗)
Hom(f,R∗)−→ HomR(M,R∗)

ΦN ↓ ↓ ΦM

N∗
f∗−→ M∗

Proof. We define ΦM by setting ΦM (f)(m) = f(m)(1) for m ∈ M and f ∈ HomR(M,R∗). We also define
ΨM : M∗ → HomR(M,R∗), by setting Φ(g)(m)(r) = g(mr) for m ∈M , r ∈ R and g ∈M∗. The reader can
easily check that ΦM and ΨM are homomorphisms, that they are inverse to each other and that the diagram
is commutative. �

6.8. Proposition If R is a ring then R∗ is injective as left and right module.

Proof. By symmetry it is enough to prove the right version. Consider a short exact sequence of right
R-modules

0→M1 →M →M2 → 0

By Lemma 6.7 we have a commutative diagram which vertical isomorphisms

0 → HomR(M2, R
∗) → HomR(M,R∗) → HomR(M1, R

∗) → 0
↓ ↓ ↓

0 → M∗2 → M∗ → M∗1 → 0

By Example 6.5, Q/Z is injective as abelian group and hence the lower sequence of the diagram is exact.
Then the upper sequence is exact too. This shows that R∗ is injective as right R-module. �

The following proposition shows a connection between the EP and a condition closely related to injectivity.

6.9. Proposition [DLP04] Let R be a finite ring and let M be a finite module. Then the following conditions
are equivalent.

1. M has the EP for length 1.
2. Every isomorphism f : C1 → C2 for C1 and C2 linear codes of length 1 in the alphabet M extends to

an automorphism of M .
3. Every injective homomorphisms C →M for C a submodule of M extends to an automorphism of M .
4. Every injective homomorphisms C →M for C a submodule of M extends to an endomorphism of M .

Proof. 1 ⇔ 2 ⇔ 3 ⇒ 4 are all obvious.
4 ⇒ 3. Suppose that M satisfies condition 4 and let f : C → M be an injective homomorphism with

C a submodule of M . Then Soc(M) is semisimple and Soc(C) is a submodule of Soc(M). Then, by
Proposition 4.2.1, Soc(M) = Soc(C)⊕N for some submodule N of Soc(M). As Soc(M) is semisimple, so is
N and hence N ∩C ⊂ N ∩ Soc(M) = 0. Therefore there is a unique homomorphism f1 : C1 = C ⊕N →M
with such that f1 acts as the f on C and as the identity on N . By hypothesis f1 extends to an endomorphism
g of M . Then Soc(ker g) ⊆ Soc(M) ∩ ker g = Soc(C1) ∩ ker g ⊆ C1 ∩ ker g = 0. Then Ker g = 0, because
ker g is finite. Therefore g is an injective endomorphism of M . As M is finite g is also surjective and hence
g is an automorphism. �

A module M satisfying the conditions of Proposition 6.9 is said to be pseudoinjective.
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7. Characters of finite abelian groups

In this section A is a finite abelian group which we denote additively. Recall that A∗ = Hom(A,Q/Z)(=
HomZ(A,Q/Z). Moreover, for a homomorphism of abelian groups f : A → B let f∗ = HomZ(f,Q/Z) :
B∗ → A∗.

7.1. Proposition Let A and B be finite abelian groups. Then

1. There is an isomorphism λ : A→ A∗ satisfying

(7.11) λ(a)(b) = λ(b)(a) (a, b ∈ A).

Hence |A| = |A∗|.
2. The map ΦA : A→ A∗∗ defined by

ΦA(a)(χ) = χ(a) (a ∈ A,χ ∈ A∗).

is a group isomorphism such that for every homomorphism of abelian groups f : A→ B the following
diagram is commutative:

A
f−→ B

ΦA ↓ ↓ ΦB

A∗∗
f∗∗−→ B∗∗

Proof. 1. Assume first that A is cyclic. Then A ∼= Z/nZ for some non-negative integer n and we may assume

without loss of generality that A = Z/nZ. Then, the map λ : A→ A∗ given by λ(i+ nZ)(j + nZ) = ij
n + Z

is an injective group homomorphism satisfying (7.11). If χ ∈ A∗ then χ is determined by χ(1). As n1 = 0,
necessarily nχ(1) = 0 and hence χ(1) = i

n + Z for some integer i = 0, 1, . . . , n − 1. Then χ(j + nZ) =

jχ(1 + nZ) = j( in + Z) = ij
n + Z = λ(i+ nZ)(j + nZ). Thus χ = λ(i+ nZ). This shows that λ is surjective

and therefore it is an isomorphism.
Suppose now that A and B are two finite abelian groups and λA : A → A∗ and λB : B → B∗ are

isomorphisms satisfying (7.11). Then λ(a1, b1)(a2, b2) = λA(a1)(a2) + λB(b1)(b2) defines an isomorphism
λ : A×B → (A×B)∗ satisfying (7.11).

In the general case A = A1×· · ·×Ak, with each Ai cyclic. Arguing by induction on k with the conclusions
of the two previous paragraphs we deduce that there is an isomorphism λ : A→ A∗ satisfying (7.11).

2. Proving that ΦA is a group homomorphism and that the diagram is commutative is straightforward.
To show that Φ is injective we write A = 〈a1〉 × · · · × 〈ak〉, and assume that ai has order di. If 0 6= a ∈ A
then a =

∑k
i=1 eiai with 0 ≤ ei < di and some ej 6= 0. Then the map χ : A → Q/Z associating

∑k
i=1 xiai

with
xj

di
+ Q/Z is an element of A∗ with Φ(a)(χ) = χ(a) = ei

di
+ Z 6= 0. Thus Φ is injective and hence it is a

bijection because A and A∗∗ have the same cardinality, by 1. �

So far we have used additive notation for all the abelian groups. However we need now to use the
multiplicative group U(C) and we use also multiplicative notation for the group Hom(A,U(C)), so that if
f, g ∈ Hom(A,U(C)) and a ∈ A then (fg)(a) = f(a)g(a). The map x 7→ e2πix is a group homomorphism
from the additive group of Q → U(C). The kernel of this homomorphism is Z and hence it induces an
injective homomorphism

Φ : (Q/Z,+)→ U(C).

Therefore we have a group homomorphism

Φ∗ : A∗ = HomZ(A,Q/Z) → Hom(A,U(C))

f 7→ f∗ = Φ ◦ f

We claim that Φ∗ is an isomorphism. Indeed, if χ ∈ Hom(A,U(C)) then Im χ ⊆ Im Φ = Set of roots of
unity of C. As Φ is injective, there is a unique f ∈ HomZ(A,Q/Z) with χ = Φ ◦ f = f∗.

Let CA be the set of maps A → C endowed with a structure of vector space over C with the Hermitian
product

〈f, g〉 =
1

|A|
∑
a∈A

f(a)g(a).

In particular the elements of the form φ∗ with φ ∈ A∗ belong to C∗.

7.2. Proposition Let A be a finite abelian group. Then

1. If χ ∈ A∗ then ∑
a∈A

χ∗(a) =

{
|A|, if χ = 0;

0, otherwise.
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2. If a ∈ A then ∑
χ∈A∗

χ∗(a) =

{
|A|, if a = 0;

0, otherwise.

3. {χ∗ : f ∈ A∗} is an orthonormal basis of CG.

Proof. 1. Let χ ∈ A∗. If χ = 0 then χ∗(a) = 1 for every a ∈ A and hence
∑
a∈A χ∗(a) = |A|. Suppose

otherwise that χ 6= 0. As χ∗(A) is a finite subgroup of a field, it is cyclic, say generated by ζ = χ∗(b), and
suppose that ζ has order n. Then n > 1, because χ 6= 0, and hence

∑n
i=1 ζ

i = 0. Moreover, [A : kerχ] = n
and 0, b, 2b, . . . , (n − 1)b is a set of representatives of A/ kerχ. Therefore, every element of A has the form
ib+ c with i = 0, 1, . . . , n− 1 and c ∈ kerχ. Thus∑

a∈A
χ(a) =

n−1∑
i=0

∑
c∈kerχ

χ(ia+ c) = | kerχ|
n−1∑
i=0

ζi = 0.

2. Let a ∈ A. Let Φ : A → A∗∗ be the isomorphism of the proof of Proposition 7.1.2. Then Φ(a) = 0 if
and only if a = 0. By 1, applied to A∗ we have∑

χ∈A∗
χ∗(a) =

∑
χ∈A∗

Φ(a)∗(χ) =

{
|A∗| = |A|, if a = 0;

0, otherwise.

3. Let χ, φ ∈ A∗. As φ∗(a) is a root of unity, φ∗(a) = φ∗(a)−1. As the map χ 7→ χ∗ is a group
homomorphism form the additive group of A∗ to the multiplicative group Hom(A,U(C)), we have 〈χ∗, φ∗〉 =

1
|A|
∑
a∈A χ∗(a)φ∗(a)−1 = 1

A

∑
a∈A(χ− φ)∗(a). Then, by 1,

〈χ∗, φ∗〉 =

{
1, if χ = φ;

0, otherwise.

This shows that the elements of {χ∗ : χ ∈ A∗} are orthonormal. As its cardinality coincides with the
dimension of CA they form an orthonormal basis. �

Let B be a subgroup of A and let π : A → A/B be the natural homomorphism. If φ ∈ (A/B)∗ then
φ ◦ π ∈ A∗. Moreover, φ 7→ φ ◦ π defines an injective group homomorphism (A/B)∗ → A∗ whose image is

(A∗ : B) = {χ ∈ A∗ : B ⊆ kerχ}.
Therefore

(A/B)∗ ∼= (A∗ : B).

Thus, B 6= 0 if and only if |A/B| < |A| if and only if |(A∗ : B)| < |A∗| if and only if B 6⊆ kerχ for some
χ ∈ A∗. This proves the following:

7.3. Lemma Let A be a finite abelian group and let B be a subgroup of A. Then B 6= 0 if and only if
χ(B) 6= 0 for some χ ∈ A∗.

Recall that if R is a ring then R∗ is an (R,R)-bimodule.

7.4. Lemma Let R be a finite ring and let r ∈ R. Then r = 0 if and only if rR∗ = 0 if and only if R∗r = 0.

Proof. By Lemma 7.3, rR∗ = 0 if and only if χ(Rr) = 0 for every χ ∈ R∗ if and only if Rr = 0 if and only
if r = 0. Similarly R∗r = 0 if and only if r = 0. �

8. The Extension Property for module alphabets

Let R be a finite ring. A Frobenius R-bimodule is an (R,R)-bimodule M such that RM ∼= RR
∗ and

MR
∼= R∗R. ClearlyR∗ is a FrobeniusR-bimodule. LetM be a FrobeniusR-bimodule. Then |M | = |R∗| = |R|

and RM
∗ ∼=R R

∗∗ ∼=R R and M∗R
∼= RR. Therefore M∗ is cyclic both as left and right module. A left (resp.

right) generator of M∗ is an element χ ∈ M∗ such that the unique homomorphism of left (resp. right)
R-modules R→M∗ mapping 1 to χ is an isomorphism. The following proposition characterizes the left and
right generators of M .

8.1. Proposition Let R be a finite ring, let M be a Frobenius R-bimodule and let χ ∈ M∗. Then the
following conditions are equivalent:

1. χ is a left generator of M∗.
2. χ is a right generator of M∗.
3. kerχ does not contain any non-zero submodule of RM .
4. kerχ does not contain any non-zero submodule of MR.
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Proof. Suppose that χ is not a left generator. Therefore the map R → M∗ given by r 7→ rχ is not an
isomorphism. As R and M∗ have the same cardinality this means that there is r ∈ R \ {0} with rχ = 0.
Thus χ(Mr) = (rχ)(M) = 0. Therefore Mr ⊆ kerχ. Hence Mr is submodule of RM contained in kerχ. If
f : M → R∗ is an isomorphism then R∗r = f(Mr). By Lemma 7.4, R∗r 6= 0 and hence Mr is a non-zero
submodule of kerχ. This proves 3 implies 1. 4 implies 2 is proved similarly.

Suppose that χ is a left generator of M∗ and let N be a submodule of MR contained in kerχ. Let
φ ∈ M∗. As χ is a left generator there is r ∈ R such that φ = rχ. Then φ(N) = (rχ)(N) = χ(Nr) = 0.
Therefore N ⊆ ker g for every g ∈M∗. By Lemma 7.3, N = 0. This proves 1 implies 4. 2 implies 3 is proved
similarly. �

8.2. Lemma Let R be a finite ring and let M be a finite left R-module. Let m1,m2 ∈ M such that
Rm1 = Rm2. Then there is u ∈ U(R) such that m2 = um1.

Proof. Suppose fits that R = Mn(F ) with R a field and let S be the first columns of R (i.e. the subset of R
formed by the elements having all the non-zero entries in the first column). Then R is semisimple and S is
the only simple left R-module up to isomorphisms. Then we may assume that M = Sm for some positive
integer m. Then we may identify M with Mn,m(F ) and in fact we may identify R with End(FnF ) and M with
Hom(FmF , F

n
F ). The assumption Rm1 = Rm2 implies that m1 and m2 have the same image, say V . By the

properties of vectors spaces there is a subspace W of Fn such that Fn = V ⊕W . Let u be the automorphism
of Fn given by um1(x) = m2(x) for every x ∈ Fn and u(w) = w for every w ∈W . The reader should check
that u is well define. Clearly u ∈ U(R) and um1 = m2.

Suppose next that R is semisimple. Then R = Mn1
(F1) × · · · ×Mnk

(Fk), with Fi a field for every i, by
the Wedderburn-Artin Theorem (Theorem 4.4) and the Wedderburn Theorem (Theorem 4.5). Let ei denote
the identity of the i-component Mni(Fi) of R. Then 1 = e1 + · · · + ek, M = e1M ⊕ · · · ⊕ ekM and each
Mei is a left Rei-module (with Rei ∼= Mni

(Fi)). As each ei commutes with all the elements of R we have
Reim1 = eiRm1 = eiRm2 = Reim1. By the previous case, for every i = 1, . . . , k there is ui ∈ U(Rei) with

uieim1 = uieim2. Then u =
∑k
i=1 ui is a unit of R and um1 =

∑k
i=1 ueim1 =

∑k
i=1 uieim1 =

∑k
i=1 eim2 =

m2, as desired.
Finally, consider the general case and considerN = Rm1/J(R)m1 as leftR/J(R)-module. ThenR/J(R)(m1+

J(R)m1) = R/J(R)(m2 + J(R)m1) and hence there is u1 ∈ R and x ∈ J(R) such that m2 − u1m1 = xm1

and u1 + J(R) is invertible in R/J(R). Then u1u2 = 1 + y with y ∈ J(R) and hence u1 ∈ U(R) and
u = u1 + x ∈ U(R), by (5.10), and m2 = um1. �

8.3. Theorem [GNW04] Let R be a finite ring and let M be a Frobenius R-bimodule. Then MR has the EP.

Proof. Let C1 and C2 be linear codes of Mn
R and let f : C1 → C2 be an isomorphism preserving the Hamming

weight. Let πi : Mn → M be the projection onto the i-th component for i = 1, . . . , n and let λi be the
restriction of πi to C1 and µi the restriction of λif to C1. By Proposition 7.2.1, for every x ∈ C1, we have

n∑
i=1

∑
χ∈M∗

χ∗(λix) = |M |w(x) = |M |w(fx) =

n∑
i=1

∑
χ∈M∗

χ∗(λifx) =

n∑
i=1

∑
χ∈M∗

χ∗(µix).(8.12)

Let φ be a right generator ofM∗. Then (8.12) can be rewritten as
∑n
i=1

∑
r∈R(φr)∗(λix) =

∑n
i=1

∑
r∈R(φr)∗(µix)

or equivalently

(8.13)

n∑
i=1

∑
r∈R

φ∗(rλix) =

n∑
i=1

∑
r∈R

φ∗(rµix).

We claim that (8.13) implies that there are σ ∈ Sn and u1, . . . , un ∈ U(R) such that λσ(i) = uiµi for
every i = 1, . . . , n. We argue by induction. Actually the same argument is valid for the case n = 1 and
the induction step. Every map αi,r : x 7→ φ∗(rλix) and every map βi,r : x 7→ φ∗(rµix) is an element of
Hom(C1,U(C)). Thus, if C∗1 = {ψ1, . . . , ψk} then we can express (8.13) as a linear combination of the ψi∗
where the coefficient of ψi∗ in the right (left) side coincides with the number of αi,r (βi,r) equal to ψi∗.
Actually, ψ1∗, . . . , ψk∗ are linearly independent over C, by Proposition 7.2.3, and hence the coefficients on
both sides coincides. This implies that for every i = 1, . . . , n and r ∈ R there is at least one j = 1, . . . , n and
one s ∈ R such that αi,r = βj,s.

Consider the left R-module Hom(C1,MR) with the following equivalent relation

λ ∼ µ⇔ λ = uµ for some u ∈ U(R)

and the following reflexive and transitive relation

λ 4 µ⇔ λ = rµ for some r ∈ R.
Then∼ and4 are compatible and hence4 induces a reflexive and transitive relation inX = Hom(C1,MR)/ ∼.
Lemma 8.2 implies that this relation is also antisymmetric, i.e. the induced order 4 in X is a partial order.
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Thus among the ∼-classes of the maps λ1, . . . , λn, µ1, . . . , µn there is one maximal element with respect to
4. Interchanging the roles of C1 and C2 (and replacing f by f−1) and reordering the λi if needed we may
assume that the class of λn is maximal. By the previous paragraph there is j = 1, . . . , n and s ∈ R such that
αn,1 = βj,s. Reordering the µi’s (which correspond to replacing f by its composition with the monomial
transformation permuting the j-th and n-th coordinates), one may assume without loss of generality that
j = n. Therefore φ(λnx) = φ(sµnx) for every x ∈ C1. Therefore Im (λn− sµn) ⊆ kerφ. As Im (λn− sµn) is
a submodule of MR and φ is a right generator of M∗ we deduce that Im (λn− sµn) = 0, by Proposition 8.1,
and hence λn = sµn. Then λn 4 µn. By the maximality of the ∼-class of λn we deduce that λn ∼ µn, i.e.
λn = unµn for some un ∈ U(R). In case n = 1 we have finished to prove the claim. For the induction step
we have ∑

r∈R
φ∗(rλnx) =

∑
r∈R

φ∗(runµnx) =
∑
r∈R

φ∗(rµnx)

and subtracting this from (8.13) we obtain

n−1∑
i=1

∑
r∈R

φ∗(rλix) =

n−1∑
i=1

∑
r∈R

φ∗(rµix).

Then the claim follows by the induction hypothesis.
The claim then shows that for every x = (x1, . . . , xn) ∈ C1 we have

f(x) = (µ1(x), . . . , µn(x)) = (u1λσ(1)(x), . . . , unλσ(n)(x)) = (u1xσ(1), . . . , unxσ(n)),

that is f is the restriction to C1 of the monomial transformation

T (x1, . . . , xn) = (u1xσ(1), . . . , unxσ(n)).

(Observe that for every u ∈ U(R) the map m 7→ um is an element of Aut(MR)) �

If M is a finite right R-module and r ∈ R then the map ρr : M → M given by ρr(m) = mr is a group
homomorphism. Using Proposition 7.1.2, for every r ∈ R, m ∈M and χ ∈M∗ we have

ΦM (mr)(χ) = (ΦMρr(m))(χ) = ((ρ∗∗r Φ)(m))(χ) = (ΦM (m)ρ∗r)(χ) = ρ∗r(χ)(m) = χρr(m) = χ(mr)

= (rχ)(m) = ΦM (m)(rχ) = (ΦM (m)r)(χ).

Therefore ΦM (mr) = ΦM (m)r for every m ∈M and every r ∈ R. In other words ΦM is an isomorphism of
R-modules.

8.4. Lemma If M is a finite simple R-module then so is M∗. In particular, if M is a finite semisimple
module then so is M∗.

Proof. If M∗ is not simple then there is a short exact sequence 0→ N1 →M∗ → N2 → 0 with N1 6= 0 and
N2 6= 0. Then 0→ N∗2 →M∗∗ → N∗1 → 0 is a short exact sequence with N∗1 6= 0 and N∗2 . Thus M∗∗ is not
simple. As M ∼= M∗∗, M is not simple. �

8.5. Lemma Let R be a finite ring and M a finite right R-module. Then

(M/MJ(R))∗ ∼= (M∗ : MJ(R)) = Soc(M∗).

Proof. Applying the functor −∗ to the short exact sequence 0→MJ(R)→M →M/MJ(R)→ 0 we obtain

a short exact sequence 0→ (M/MJ(R))∗
f→M∗ → (MJ(R))∗ → 0. As M/MJ(R) is a R/J(R)-module and

R/J(R) is semisimple then so is M/MJ(R) as R-module. Then (M/MJ(R))∗ is semisimple, by Lemma 8.4,
and hence so is (M/MJ(R))∗ ∼= f((M/MJ(R))∗) = (M∗ : MJ(R)). Thus (M∗ : MJ(R)) ⊆ Soc(M∗). For
the reverse inclusion observe that J(R)Soc(M∗) = 0, as Soc(M∗) is semisimple. Thus, if χ ∈ Soc(M∗),
m ∈M and r ∈ J(R) then χ(mr) = (rχ)(m) = 0(m) = 0. This shows that Soc(M∗) ⊆ (M∗ : MJ(R)). �

Let R be a finite ring and let S1 and S2 be two simple modules. Then every homomorphism f : S1 → S2

is either 0 or an isomorphism, by the Schur’s Lemma (Lemma 4.1). This implies that S1
∼= S2 if and

only if S∗1
∼= S∗2 . Thus, if S1, . . . , Sk is a set of representatives of the right R-modules then S∗1 , . . . , S

∗
k is

a set of representatives of the left R-modules. This implies that if (R/J(R))R ∼= Sn1
1 ⊕ · · · ⊕ Snk

k then

RR/J(R) ∼= S∗1
n1 ⊕ · · · ⊕ Snk

k
∗ ∼= (R/J(R)R)∗. Therefore

(8.14) RR/J(R) ∼= (R/J(R)R)∗ and R/J(R)R ∼= (RR/J(R))∗.

8.6. Proposition Let R be a finite ring and let M be a finite R-module. Then the following conditions are
equivalent.

1. Soc(M) is cyclic.
2. For every simple R-module S the multiplicity of S in Soc(M) is not greater than the multiplicity of

S in R/J(R).
3. M is isomorphic to a submodule of R∗ (in the appropriate side).
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Proof. The equivalence of 1 and 2 is a consequence of Lemma 5.5.
3 implies 2. Suppose that M is isomorphic to a submodule of R∗R. Then Soc(M) is isomorphic to a

submodule of Soc(R∗R) and hence Soc(M) is isomorphic to a submodule of (RR/J(R))∗ ∼= R/J(R), by
Lemma 8.5 and (8.14). Then 2 follows, by Lemma 4.2.1.

1 implies 3. Suppose that Soc(M) is cyclic (and suppose that M is a right R-module). Then Soc(M) is
isomorphic to a submodule of R/J(R)R ∼= (RR/J(R))∗ ∼= Soc(R∗), by Lemma 8.5 and (8.14). Then Soc(M)
is isomorphic to a submodule of R∗. �

We are ready to obtain the characterization of the finite modules over finite rings that satisfies the EP.

8.7. Theorem [Woo09] Let R be a finite module and let M be a finite module. Then the following conditions
are equivalent.

1. The alphabet M has the EP.
2. M is pseudoinjective and Soc(M) is cyclic.

Proof. We suppose that M is a right R-module.
2 implies 1. Suppose that M is pseudoinjective and Soc(MR) is cyclic. By Proposition 8.6, one may

assume that M is a submodule of R∗R. Let C1 and C2 be linear codes of Mn and let f : C1 → C2 be an
isomorphism preserving the Hamming weight. As M is a submodule of R∗R, we can see C1 and C2 as linear
codes of (R∗R)n and f as an isomorphism preserving the Hamming weight. As R∗ is a Frobenius R-bimodule,
by Theorem 8.3, R∗ has the EP. Therefore there is σ ∈ Sn and u1, . . . , un ∈ Aut(R∗R) such that f extends
to the following monomial transformation of (R∗)nR:

T (x1, . . . , xn) = (u1xσ(1), . . . , unxσ(n)) x1, . . . , xn ∈ R∗.
Write T = DP where P (x1, . . . , xn) = (xσ(1), . . . , xσ(n)) and D(x1, . . . , xn) = (u1x1, . . . , unxn). Then
P restricts to a monomial transformation mapping C1 to a linear code C3 of Mn. Let Cj,i denote the
projection of Cj into the i-th coordinate. Then Cj,i is a linear code of length 1 over M and x 7→ uix defines
an injective homomorphism Di : C3,i → C2,i which preserves the Hamming weight. As M is pseudoinjective,
the alphabet M has the EP for linear codes of length 1, by Proposition 6.9. Therefore, Di extends to
an automorphism τi of M . Then f is the restriction to C1 of the following monomial transformation
F (x1, . . . , xn) = (τ1xσ(1), . . . , τnxσ(n)). This shows that the alphabet M has the EP.

1 implies 2. Conversely, suppose that the alphabet M has the EP. Then certainly M has the EP for
length 1 and hence M is pseudoinjective by Proposition 6.9. It remains to show that Soc(M) is cyclic. We
argue by contradiction, so suppose that Soc(M) is not cyclic. Then, by Lemma 5.5, there is a simple right
R-module S such that the multiplicity of S in Soc(M) is greater than the multiplicity of S in R/J(R).
This implies that one of the Wedderburn components of R/J(R) is of the form A = Mm(F ) for a field
F and if S is the first column of Mm(F ), seen as R-module by extension of scalars via the projection
R→ R/J(R)→Mm(F ), then Soc(M) contains Sn for some n > m. We can identify P = Sn with Mn,m(F ).
In this way P = Mn,m(F ) is seen as a right A-module and then it is considered as a right R-module by
restriction of scalars. By Example 3.2, and having in mind that A ∼= EndF (Fm) and P ∼= HomF (Fn, Fm),
there is a positive integer N and codes linear codes C± of PN together with an isomorphism f : C+ → C−
of A-modules preserving the Hamming weight such that for one coordinate all the elements of C+ have zero
in that coordinate while this not happen for the elements of C− with respect to any coordinate. Actually
HomR(C+, C−) = HomA(C+, C−) and hence we can see f as an isomorphism of R-modules. Morever,
P ⊆ Soc(M) ⊆ M and we can then consider f as an isomorphism of linear codes of MN preserving the
Hamming weight, which certainly cannot be extended to a monomial transformation. This yields the desired
contradiction. �

9. The extension property for ring alphabets

In this section we consider the special case when we consider a finite ring R as alphabet. The Frobenius
property for R is going to be the key ingredient in this case.

Let R be a finite ring. As R and R∗ have the same cardinality they are isomorphic as left (resp. right)-
module, if and only if RR

∗ (resp. R∗R) is cyclic. Actually both conditions are equivalent by the following
lemma.

9.1. Lemma Let χ ∈ R∗. Then χ generates RR
∗ if and only if χ generates R∗R

Proof. Suppose R∗ = Rχ. Let I be a right ideal of R contained in kerχ. Then I ⊆ ker(rχ) for every r ∈ R
and hence I ⊆ kerφ for every φ ∈ R∗. Thus I = 0, by Lemma 7.3. This proves that kerχ does not contain
any right ideal of R. Then χ generates R∗R, by Proposition 8.1. �

Therefore we have

9.2. Proposition The following conditions are equivalent for a finite ring R.
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1. R is Frobenius as (R,R)-bimodule.
2. RR ∼= RR

∗.
3. RR ∼= R∗R.

We say that R is a Frobenius ring if it is Frobenius as (R,R)-bimodule.

9.3. Theorem Let R be a finite ring. Then the following conditions are equivalent.

1. R is a Frobenius ring.
2. The alphabet RR has the EP.
3. The alphabet RR has the EP.

Proof. By symmetry (and Proposition 9.2) it is enough to show that RR ∼= R∗R if and only if RR has the EP.
By Theorem 8.3, R∗R has the EP and therefore if RR ∼= R∗R then RR has also the EP. Conversely, suppose
that RR has the EP. Then Soc(R) is cyclic by Theorem 8.7 and hence RR is isomorphic to a submodule of
R∗R by Proposition 8.6. Since R and R∗ have the same cardinality we deduce that R ∼= R∗R. �

We close this section with other alternative characterizations of finite Frobenius rings which will be useful
in the subsequent sections.

9.4. Theorem [Hon01] The following conditions are equivalent for a finite ring:

1. R is Frobenius.
2. Soc(RR) ∼= (R/J(R))R.
3. Soc(RR) ∼= R(R/J(R)).

The Goldie dimension of a module M is the maximum positive integer n such that there is a family with
n independent non-zero submodules of M . Let GD(M) denote the Goldie dimension of M . Clearly, if N is
a submodule of M then GD(N) ≤ GD(M). Using Proposition 4.2 it is easy to see that if M is the direct
sum of n simple modules then GD(M) = n.

If M is finite module then GD(Soc(M)) = GD(M). Indeed, if {Ni : i ∈ I} is an independent family
of non-zero submodules of M then Soc(Ni) 6= 0 for every i (because Ni is finite) and obviously {Soc(Ni) :
i ∈ I} is an independent family of non-zero submodules of M . Therefore GD(M) ≤ GD(Soc(M)). Thus
GD(M) = GD(Soc(M)).

Let R be a ring. An element e ∈ R satisfying e = e2 is said to be idempotent. Two elements x, y ∈ R
with xy = yx = 0 are said to be orthogonal. Observe that if e1, . . . , en are orthogonal idempotents of R then
{Re1, . . . , Ren} is independent. Indeed, if x ∈ Re1 ∩

⋂n
j=2Rei. Then x = xe1 = x2e2 + · · · + xnen. Then

x = xe1 = x2e2e1 + · · ·+ xnene1 = 0.

9.5. Lemma Let R be a finite ring and let E1, . . . , En mutually orthogonal idempotents of R/J(R) with
E1 + · · · + En = 1. Then there are mutually orthogonal idempotents e1, . . . , en in R with 1 = e1 + · · · + en
and Ei = ei + J(R) for every i.

Proof. This is a consequence of the fact that R/J(R) is semisimple and J(R)n = 0 for some n. For the
details see Proposition 27.1, Proposition 27.4 and Theorem 27.6 in [AF92]. �

9.6. Lemma If R is a finite ring then GD(RR) = GD(Soc(RR)) ≥ GD((R/J(R)R).

Proof. Let R/J(R) = S1 ⊕ · · · ⊕ Sn with each Si a simple module. Then GD(R/J(R))) = n. By (2.3) and
the isomorphism R/J(R) ∼= End(R/J(R)) there are non-zero orthogonal idempotents E1, . . . , En in R/J(R)
with 1 = E1 + · · · + En (take in the matrix form the idempotents having 1 in one diagonal entry and zero
in all the other entries). By Lemma 9.5, there are non-zero orthogonal idempotents e1, . . . , en in R. Then
GD(R) ≥ n. �

9.7. Proposition [DLP04] Let R be a finite ring. Then R is Frobenius if and only if Soc(RR) is cyclic if
and only if Soc(RR) is cyclic.

Proof. Suppose S1, . . . , Sk are representatives of the simple right R-modules and that R/J(R) ∼= Sn1
1 ⊕

· · · ⊕ Snk

k and Soc(RR) ∼= Sm1
1 ⊕ · · · ⊕ Smk

k . Then
∑k
i=1mk = GD(Soc(R)) = GD(R) ≥ GD(R/J(R)) =

n1+· · ·+nk. If R is Frobenius then Soc(RR) ∼= R/J(R), by Theorem 9.4, hence Soc(RR) is cyclic. Conversely,
if Soc(RR) is cyclic then, by Proposition 8.6, mi ≤ ni for every i. Then necessarily mi = ni for every i and
hence Soc(RR) ∼= (R/J(R))R. Then R is Frobenius by Theorem 9.4. �

10. The MacWiliams Identities for group alphabets

In order to have MacWilliams identities for module alphabets we need a notion of dual which satisfies
properties alike the following ones holding for linear codes C and D with alphabet a finite field F :

(D1) If C ⊆ D then D⊥ ⊆ C⊥.
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(D2) C⊥⊥ = C.
(D3) |C| |C⊥| = |F |n.
(D4) WC⊥(X,Y ) = 1

|C|WC(X + (|F | − 1)Y,X − Y ).

The notion of weight enumerator can be extended to arbitrary abelian groups and in particular to modules.
More precisely, if A is an abelian group and C is a subgroup of An (i.e. a Z-submodule) then the weight
enumerator of C is the following polynomial in two variables:

WC(X,Y ) =
∑
c∈C

Xn−w(c)Y w(c) =

n∑
i=0

AC,iX
n−iY j ,

where AC,i denotes the number of codewords of C of weight i.
Our aim now is to obtain some notion of dual code for linear codes over module alphabets satisfying

properties similar to (D1)-(D4). For the moment we are going to consider only abelian groups.
Let A be a finite abelian group. For every vector space V over C let V A denote the set of maps A→ V .

We endow V A with structure of vector space over C, by setting

(f + g)(a) = f(a) + g(a) and (αf)(x) = αf(x) (f, g ∈ V A, a ∈ A,α ∈ C).

The Fourier transform of f ∈ V A is the map f̂ ∈ V A∗ defined by

f̂(χ) =
∑
a∈A

χ∗(a)f(a) (χ ∈ A∗).

10.1. Proposition [Fourier Inversion Formula] If A is a finite abelian group, a ∈ A and f ∈ V A then

f(a) =
1

|A|
∑
χ∈A∗

χ∗(−a)f̂(χ).

Proof. By Proposition 7.1 we have∑
χ∈A∗

χ∗(−a)f̂(χ) =
∑
χ∈A∗

χ∗(−a)
∑
b∈A

χ∗(b)f(b) =
∑
b∈A

∑
χ∈A∗

χ∗(b− a)

 f(b) = |A|f(a)

�

10.2. Theorem [Poisson Summation Formula] Let H be a subgroup of a finite abelian group A and let V be
a vector space over C. Then for every a ∈ A and f ∈ V A we have∑

h∈H

f(a+ h) =
1

[A : H]

∑
χ∈(A∗:H)

χ∗(−a)f̂(χ).

In particular, for a = 0 we have ∑
h∈H

f(h) =
1

[A : H]

∑
χ∈(A∗:H)

f̂(χ).

Proof. By Proposition 7.2.1, ∑
h∈H

χ(h) =

{
|H|, if χ ∈ (A∗ : H);

0, if χ ∈ A∗ \ (A∗ : H).

Combining this with the Fourier Inversion Formula (Proposition 10.1) we have∑
h∈H

f(a+h) =
1

|A|
∑
χ∈A∗

χ∗(−a)f̂(χ)
∑
h∈H

χ∗(−h) =
|H|
|A|

∑
χ∈(A∗:H)

χ∗(−a)f̂(χ) =
1

[A : H]

∑
χ∈(A∗:H)

χ∗(−a)f̂(χ).

�

Consider the complex algebra C[X,Y ] of polynomials in two variables X and Y with coefficients in C,
and consider the map f : A→ C[X,Y ] given by

f(a) = X1−w(ai)Y w(ai).

For every χ ∈ A∗, we have

f̂(χ) =
∑
a∈A

χ∗(a)f(a) =
∑
a∈A

χ∗(a)X1−w(a)Y w(a) = χ(0)X + Y
∑

a∈A\{0}

χ(a) = X − Y + Y
∑
a∈A

χ(a)

Therefore, using Proposition 7.2.1, we have

(10.15) f̂(χ) =

{
X − (|A| − 1)Y, if χ = 0;

X − Y, otherwise.
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Let us keep denoting as f the map An → C[X,Y ] given by

f(a1, . . . , an) =

n∏
i=1

f(ai) =

n∏
i=1

X1−aiY ai .

By (2.2) we have (An)∗ ∼= (A∗)n. We consider this isomorphism as an equality. Then we can consider each
χ = (χ1, . . . , χn) ∈ (A∗)n as an element of (An)∗ and we have

(10.16) f̂(χ) = f̂(χ1, . . . , χn) =
∑

(a1,...,an)∈An

n∏
i=1

χi∗(ai)f(ai) =

n∏
i=1

∑
ai∈A

χi∗(ai)f(ai) =

n∏
i=1

f̂(χi).

Combining (10.15) and (10.16) we deduce

(10.17) f̂(χ) = (X + (|A| − 1)Y )n−w(χ)(X − Y )w(χ).

If C is a linear code of An (i.e. a subgroup of A) then C⊥ = ((An)∗ : C) is a subgroup of (An)∗. Using
(2.2) to identify (An)∗ and (A∗)n, we can see C⊥ as a linear code of (A∗)n (i.e. a subgroup of (A∗)n). On
the other hand, identifying (An)∗∗ with An we can define D⊥ = (An : D) for D a subgroup of (An)∗. Clearly
D⊥ is a subgroup of An and C ⊆ C⊥⊥. Furthermore C⊥ ∼= (An/C)∗ and therefore |C| |C⊥| = |A|n. Thus
|C| = |C⊥⊥| and thus C = C⊥⊥. This proves the first three statements of the following Theorem.

10.3. Theorem Let A be a finite abelian group and let C be a subgroup of An. Then

1. C⊥ is a subgroup of A∗.
2. C⊥⊥ = C.
3. |C| |C⊥| = |A|n.
4. WC⊥(X,Y ) = 1

|C|WC(X + (|A| − 1)Y,X − Y ) [MacWilliams Identities].

Proof. The first equality in the next calculations is just the definition of the weight enumerator, the second
one follows from the Poisson Inversion Formula (Theorem 10.2) and the third one follows from (10.17):

WC(X,Y ) =
∑
x∈C

f(x) =
1

[An : C]

∑
χ∈((An)∗:C)

f̂(χ) =
1

|C⊥|
∑
χ∈C⊥

(X + (|A| − 1)Y )n−w(χ)(X − Y )w(χ)

=
1

|C⊥|
WC⊥(X + (|A| − 1)Y,X − Y ).

Then statement 4 follows interchanging the roles of C and C⊥. �

Theorem 10.3 is very similar to the goal we addressed at the beginning of this section, except that C and
C⊥ live in a different ambient spaces. To avoid this we introduce the following notion.

A biadditive map is a map β : A×B → C, where A, B and C are abelian (additive) groups, satisfying

β(a+ a′, b) = β(a, b) + β(a′, b) and β(a, b+ b′) = β(a, b) + β(a, b′) (a, a′,∈ A, b, b′ ∈ B).

In that case we have group homomorphisms

A
βl−→ HomZ(B,C) and B

βr−→ HomZ(A,E)

with
βl(a)(b) = βr(b)(a) = β(a, b) (a ∈ A, b ∈ B).

Moreover, if n is a positive integer then β induces a biadditive map

β : An ×Bn → C

with
β((a1, . . . , an), (b1, . . . , bn)) = β(a1, b1) + · · ·+ β(an, bn).

Let β be a biadditive map. Then β is said to be non-degenerate if both βl and βr are injective.
Suppose that A and B are finite groups and that β : A × B → Q/Z is a non-degenerate additive map.

Then βl : A→ B∗ and βr : B → A∗ are injective and therefore

|A| ≤ |B∗| = |B| ≤ |A∗| = |A|
by Proposition 7.1. Therefore |A| = |B| = |A∗| = |B∗| and hence βl and βr are isomorphisms. Thus
A ∼= B∗ ∼= B.

Clearly the extension of β to a biadditive map β in An×Bn is also non-degenerate and therefore it induces
isomorphisms βl, βr : An → (Bn)∗ ∼= (B∗)n. If C is a subgroup of An then we define the right annihilator

r(C) = β−1
r (C⊥) = {b ∈ Bn : β(C, b) = 0}

and for a subgroup D of Bn we define the left annihiliator

l(C) = β−1
l (D⊥) = {a ∈ An : β(a,D) = 0}.
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Applying Theorem 10.3 we obtain

10.4. Corollary Let A and B be finite abelian groups and let β : A × B → Q/Z be a non-degenerate
biadditive map. Then the left and right annihilators l and r in An satisfy the following properties for every
subgroup C of An and every subgroup D of Bn:

1. r(C) is a subgroup of Bn and l(D) is a subgroup of An.
2. l(r(C)) = C and r(l(D)) = D.
3. |C| | r(C)| = |D| | r(D)| = |A|n = |B|n.
4. Wr(C) = 1

|C|WC(X + (|A| − 1)Y,X − Y ) and Wl(D) = 1
|D|WC(X + (|B| − 1)Y,X − Y ).

A biadditive map β : A × A → E is said to be symmetric if β(a, b) = β(b, a) for every a, b ∈ A.
Clearly the left and right annihilators coincides for symmetric bilinear forms. Corollary 10.4 implies that if
β : A× A → Q/Z is a symmetric non-degenerate biadditive map then using the annihilators to define dual
codes, conditions (D1)-(D4) hold. Next proposition ensures the existence of such biadditive map for every
finite abelian group.

10.5. Proposition Every finite abelian group A admits a non-degenerate symmetric biadditive map A×A→
Q/Z.

Proof. To prove this we observe that
β : A×A∗ → Q/Z

(x, χ) 7→ χ(x)

defines a non-degenerate biadditive map. By Proposition 7.1.1, there is an isomorphism λ : A→ A∗ satisfying
λ(a)(b) = λ(b)(a) for every a, b ∈ A. Then β′(a, b) = β(a, λ(b)) defines a non-degenerate symmetric biadditive
map A×A→ Q/Z. �

11. MacWilliams identities for module alphabets

We now address the question of finding a notion of dual in module alphabets. In the previous section we
have seen how biadditive maps helps to define a notion of dual on group alphabets. The classical biadditive
map used to define dual codes of linear codes over field alphabets is the product in F which when extended
to a biadditive map in Fn gives the standard dot product:

Fn × Fn → F
((a1, . . . , an), (b1, . . . , bn)) 7→ a1b1 + · · ·+ anbn.

If F is replaced by an arbitrary ring R then the dot product is not symmetric anymore and if C is a submodule
of RR

n then r(C) is a submodule of Rnn. Similarly, if D is a submodule of RnR then l(D) is a submodule
of RR

n. Therefore, it is natural to expect that the dual operator should associate right linear codes to left
linear codes and vice versa. Thus the conditions (D1)-(D4) should vary slightly. We start translating the
notion of biadditive map to this context.

Let R and S be rings, let RP be a left R-module, QS a right S-module and RES an (R,S)-bimodule. A
map β : P ×Q→ E is said to be bilinear if it is biadditive and satisfies the following condition

β(rp, q) = rβ(p, q) and β(p, qs) = β(p, q)s, (r ∈ R, p ∈ P, q ∈ Q, s ∈ S).

Equivalently, β is bilinear if and only if for every p ∈ P the map

Q
βl(p)−→ E

q 7→ β(p, q)

is a homomorphism of right S-modules and for every q ∈ Q the map

P
βr(q)−→ E

p 7→ β(p, q)

is a homomorphism of left R-modules. Other equivalent versions are βl : P → Hom(QS , ES) is a homomor-
phism of left R-modules, or equivalently βr : Q→ Hom(RP,RE) is a homomorphism of right S-modules.

If β : P ×Q→ E is a bilinear map and n is a positive integer then the extension β : Pn×Qn → E is also
bilinear. If C is a submodule of Pn then the right annihilator

r(C) = {q ∈ Qn : β(C, q) = 0}
is a submodule of Qn. Similarly, if D is a submodule of Qn then the left annihilator

l(D) = {p ∈ Pn : β(p,D) = 0}
is a submodule of Pn. Moreover the following properties holds for all submodules C and C ′ of Pn and all
submodules D and D′ of Qn.
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1. If C ≤ C ′ then r(C ′) ⊆ r(C).
2. If D ≤ D′ then r(D′) ⊆ r(D).
3. C ⊆ l(r(C)) and D ⊆ r(l(D)).

11.1. Theorem [Woo09] Let R and S be finite rings, P a finite left R-module, Q a finite right S module
and E a finite (R,S)-bimodule. Let β : P ×Q→ E be a non-degenerate bilinear map and suppose that there
is χ ∈ E∗ such that kerχ does not contain non-zero submodules of neither RE nor ES. Let β′ = χ ◦ β. Let
l′ and r′ be the left and annihilator maps associated to β′. Then the following properties hold:

1. β′ is a non-degenerate biadditive map.
2. For every positive integer n and every submodule C of Pn we have r(C) = r′(C), l(r(C)) = C,
|C| | r(C)| = |P |n and Wr(C)(X,Y ) = 1

|C|WC(X + (|P | − 1)Y,X − Y ).

3. For every positive integer n and every submodule D of Qn we have l(D) = l′(C), r(l(D)) = D,
|D| | l(D)| = |Q|n and Wl(D)(X,Y ) = 1

|D|WC(X + (|Q| − 1)Y,X − Y ).

Proof. (1) Obviously β′ is biadditive. Let q ∈ Q with β′(P, q) = 0. Then the map βl(q) : P → E is a
homomorphism of left R-modules and hence Im βl(q) is a submodule of RE contained in the kernel of χ.
By assumption, Im βl(q) = 0 and therefore β(P, q) = 0. As β is non-degenerate we have q = 0. Similarly, if
β′(p,Q) for some p ∈ P we have p = 0. This proves that β′ is non-degenerate.

2 and 3. Let C be a submodule of Pn. Obviously r(C) ⊆ r′(C). Let b ∈ r′(C). Then β(C, b) = βl(b)(C) is a
submodule of RE contained in kerχ. Therefore β(C, b) = 0 and hence b ∈ r(C). Then r(C) = r′(C). Similarly
l(D) = l′(D) for every submodule D of Qn. The rest of the properties follow from Corollary 10.4. �

12. MacWilliams identities for ring alphabets

An important example of non-degenerate bilinear map is the multiplication map

R×R → R
(r, s) 7→ rs

for R any arbitrary ring. We will refer to this as the standard bilinear map of R. Its right annihilator
operator r maps left ideals of R to right ideals of R and its left annihilator operator l maps right ideals of
R to left ideals of R. If we want that l and r could serve to define a notion of dual for linear codes in the
alphabet R, l and r must be mutually inverse operators, in other words they should satisfy the following
condition: We say that a ring R satisfies the double annihilator condition if it satisfies

l(r(I)) = I, for every left ideal I of R(12.18)

r(l(J)) = J, for every right ideal J of R.(12.19)

12.1. Theorem Let R be a finite ring. Then the following conditions are equivalent:

1. R satisfies the double annihilator condition.
2. RR is injective.
3. RR is injective.

Proof. We prove that 1 and 2 are equivalent. By symmetry, 1 and 3 are also equivalent.
First of all observe that

(12.20) l(I1 + I2) = l(I1) ∩ l(I2) and r(J1 + J2) = r(J1) ∩ r(J2)

for every left ideals I1 and I2 and right ideals J1 and J2.
1 implies 2. Suppose that R satisfies the double annihilator condition. If J1 and J2 are right ideals of R

then, by (12.20) we have l(J1 ∩ J2) = l(r(l(J1)) ∩ r(l(J2))) = l(r(l(J1) + l(J2))) = l(J1) + l(J2). Similarly, if
I1 and I2 are left ideals of R then r(I1 ∩ I2) = r(I1) + r(I2).

To see that RR is injective we apply Baer Criterion (Theorem 6.3). Let J be a right ideal of R and
let f : J → R be a homomorphism of right R-modules. As R is finite there are r1, . . . , rk ∈ J such that
J = r1R + · · · + rkR. We have to show that there is a ∈ R such that f(x) = ax for every x ∈ J . We
argue by induction on k. Suppose first that k = 1 and let s = f(r1). Then sx = f(r1x) for every x ∈ R
and therefore s r(Rr1) = 0. In other words s ∈ l(r(Rr1)) = Rr1 and hence s = ar1 for some a ∈ R.
Therefore f(r1x) = sx = ar1x for every x ∈ R. Thus f(x) = ax for every x ∈ J , as desired. Suppose
that k > 1 and let J1 = r2R + · · · + rk−1R. By the case k = 1 there is a1 ∈ R such that f(x) = a1x
for every x ∈ r1R. Moreover, by induction hypothesis there is a2 ∈ R such that f(x) = a2x for every
x ∈ J1. Then a1 − a2 ∈ l(r1R ∩ J1) = l(r1R) + l(J1). Write a1 − a2 = a′1 − a′2 with a′1 ∈ l(r1R) and
a′2 ∈ l(J1) and let a = a1 − a′1 = a2 − a′2. Let x ∈ J . Thus x = x1 + x2 with x1 ∈ r1R and x2 ∈ J1. Then
f(x) = f(x1) + f(x2) = a1x1 + a2x2 = (a+ a′1)x1 + (a+ a′2)x2 = a(x1 + x2) = ax.

2 implies 1. Suppose that RR is injective.
Claim 1 : l(J1 ∩ J2) = l(J1) + l(J2) for all right ideals J1 and J2 of R.
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Indeed, the inclusion l(J1) + l(J2) ⊆ l(J1 ∩ J2) is clear. Conversely, let x ∈ l(J1 ∩ J2). Then the map
f(a1 + a2) = xa2, for a1 ∈ J1 and a2 ∈ J2, is a well defined homomorphism f : J1 + J2 7→ R. As RR is
injective there is y ∈ R such that xa2 = y(a1 + a2) for every a1 ∈ J1 and a2 ∈ J2. In particular, ya1 = 0 for
every a1 ∈ J1 and xa2 = ya2 for every a2 ∈ J2 and hence y ∈ l(J1) and x−y ∈ l(J2), so that x ∈ l(J1)+l(J2).
This finishes the proof of Claim 1.

Claim 2 : R satisfies (12.18).
Suppose first that I = Rr for some r ∈ R and let s ∈ l(r(I)). Let f : I → R be the map defined by

f(rx) = sx. This is well defined because if rx = 0 then x ∈ l(I) and hence sx = 0. By hypothesis, there is
a ∈ R such that sx = f(rx) = arx for every x ∈ R. Applying this for x = 1 we deduce that s = ar ∈ I.
Thus l(r(I)) = I, as desired.

Now let I an arbitrary left ideal of R. As R is finite, I =
∑n
i=1Rri for some ri ∈ R then, using (12.20)

and Claim 1 we have

l(r(I)) = l

(
r

(
n∑
i=1

Rri

))
= l

(
n⋂
i=1

r(Rri)

)
=

n∑
i=1

l(r(Rri)) =

n∑
i=1

Rri = I.

This finishes the proof of Claim 2.
Claim 3 : Every simple left R-module is isomorphic to a left ideal of R.
Let S be a simple left R-module. Fix 0 6= s ∈ S and let I = {r ∈ R : rs = 0}. Then I is the kernel

of the map R → S given by r 7→ rs. As S = Rs, because S is simple, this map is surjective and therefore
g(r + I) = rs defines an isomorphism g : R/I → S. By Claim 2, l(r(I)) = I 6= R = l(0) and hence r(I) 6= 0.
Let 0 6= r ∈ r(I). Using again that S is simple we deduce that S ∼= h(S), so that S is isomorphic to a left
ideal of R. This finishes the proof of Claim 3.

Claim 4 : Every simple right R-module is isomorphic to a right ideal of R.
Let S1, . . . , Sn be representatives up to isomorphisms of the simple left modules. For every i = 1, . . . , n,

let Pi be the sum of the left ideals of R isomorphic to Si and

Bi = Pi ∩ l(J(R)).

Then Soc(RR) = P1 ⊕ · · · ⊕ Pn and Pi and Bi are a two-sided ideal of R for every i. Moreover, by Claim
3, Pi 6= 0 for every i = 1, . . . , n. By Lemma 5.6, if PiJ(R)k 6= 0 then PiJ(R)k 6= PiJ(R)k+1. As R is
finite we deduce that there is k ≥ 0 such that PiJ(R)k 6= 0 and PiJ(R)k+1 = 0. Then 0 6= PiJ(R)k ⊆ Bi.
Thus Bi 6= 0. As BiJ(R) = 0, we deduce that Bi is a non-zero semisimple right R-module and hence it
contains a minimal right ideal Ti. We claim that if Ti ∼= Tj then i = j. Indeed, let f : Ti → Tj be an
isomorphism of right R-modules. As RR is injective, there is r ∈ R such that f(x) = rx for every x ∈ Ti.
Then Tj ⊆ Pj ∩ rPi ⊆ Pj ∩ Pi = 0, a contradiction. Therefore RR contains at least n non-isomorphic
simple right R-modules. As the number of simple right R-modules coincides with the number of simple left
R-modules, and this number is n we deduce that every simple right R-module is isomorphic to a right ideal
of R. This finishes the proof of Claim 4.

Claim 5 : If M is a non-zero right R-module then Hom(M,RR) 6= 0.
By Lemma 5.6, M 6= MJ(R). Hence M/MJ(R) is a non-zero semisimple right R-module. Thus there is

a non-zero homomorphism M → S for some simple right R-module. By Claim 4, S is isomorphic to a left
ideal of R and hence there is a non-zero homomorphism M → R. This finishes the proof of Claim 5.

We are ready to finish the proof by showing that R satisfies (12.19). Let J be a right ideal of R and let
M = r(l(J))/J . Let f ∈ Hom(M,RR). Composing f with the natural homomorphism r(l(J)) 7→ r(l(J))/J
we have a homomorphism r(l(J)) → R vanishing on J . Since RR is injective there is r ∈ R such that
f(x + J) = rx for every x. Then r ∈ l(J) and hence f(r) = rx = 0 for every x ∈ r(l(J)). In other words
f = 0. This shows that Hom(M,RR) = 0 and therefore M = 0, by Claim 5. Thus r(l(J)) = J , as desired. �

Observe that every Frobenius finite ring satisfy the double annihilator condition because RR ∼= R∗R and
R∗R is injective by Proposition 6.8.

12.2. Theorem [Woo09] Let R be a finite ring. If R is satisfies the double annihilator condition but it is not
Frobenius then R has a left ideal I such that |I| | r(I)| < |R| and a right ideal J such that |J | | l(J)| < |R|.

Proof. Suppose that R satisfies the double annihilator condition but it is not Frobenius. By Proposition 9.7,
Soc(RR) is not cyclic and hence, by Proposition 8.6, there is a simple left R-module I such that the multi-
plicity n of I on Soc(RR) is greater that the multiplicity of I in R/J(R). As Soc(RR) contains a submodule
isomorphic to I, we may assume without loss of generality that I is a left ideal of R. As I is simple I = Rx
for every 0 6= x ∈ I. Let λx : R → R be given by λx(r) = xr. Then r(I) = kerλx ∼= R/Im λx = R/xR.

Therefore |I| | r(I)| = |Rx|
|xR| |R|.

By the description of the simple left modules of R, I can be seen as a column of a matrix ring Mm(F )
for some field F such that Mm(F ) is one of the Wedderburn components of R/J(R). Then the multiplicity
of I on R/J(R) is m < n. Then I is considered as an R-module by restrictions of scalars via the natural
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homomorphism R→ R/J(R) and the projection R/J(R)→Mn(F ). Then Im can be seen as Mm,n(F ) as a
left Mm(F )-module and then as a left R-module by extension of scalars. Observe that Mm(F ) ∼= EndF (Fm)
and Mm,n(F ) ∼= Hom(Fn, Fm). Furthermore F ∼= End(RI) and hence S = EndRI

n ∼= Mn(F ) ∼= EndF (Fn).
As In ⊆ Soc(RR) ⊆ R, every element s ∈ S can be seen as homomorphism from a left ideal of R to R.
Thus, as RR is injective, by Baer Criterion (Theorem 6.3), for every s ∈ S there is r ∈ R such that xs = xr
for every x ∈ In. We have |Rx| = |I| = |F |m. On the other hand, identifying RI with the first column of
Mm,n(F ) and taking x the matrix having 1 in the (1, 1) entry and zero in all the other entries. Then xS is
the first row of Mm,n(F ) and it is contained in xR (after some identification of In inside R). Thus

|Rx|
|xR|

≤ |F |
m

|F |n
< 1.

Therefore

|I| | r(I)| = |Rx|
|xR|

|R| < |R|,

as desired. �

12.3. Theorem [DLP04, Woo09] The following conditions are equivalent for a finite ring R.

1. R is Frobenius.
2. The left and right annihilators of the standard bilinear map of R satisfies the following conditions:

(a) For every positive integer n and every sumodule C of RR
n we have l(r(C)) = C and |C| | r(C)| =

|R|n.
(b) For every positive integer n and every sumodule D of RnR we have r(l(D)) = D and |D| | l(D)| =
|R|n.

Moreover, in that case the MacWilliams identities hold: i.e.

Wr(C)(X,Y ) =
1

|C|
WC(X + (|R| − 1)Y,X − Y ) and Wl(D)(X,Y ) =

1

|R|
WC(X + (|R| − 1)Y,X − Y ).

Proof. 1 implies 2. Suppose that R is Frobenius. Then there is χ ∈ R∗ which generates RR
∗. By Lemma 9.1,

χ also generates RR
∗ and χ does not contain any non-zero left or right ideal of R. By Theorem 11.1, statement

2 and the MacWilliams Identities hold.
2 implies 1. Suppose thatR satisfies 2. In particular l(r(I)) = I for every left ideal I ofR and r(l(I)) = I for

every right ideal J ofR. In other wordsR satisfies the double annihilator condition. Moreover, |I| | r(I)| = |R|
for every left ideal I of R. Then R is Frobenius by Theorem 12.2. �

References

[AF92] F. W. Anderson and K. R. Fuller, Rings and categories of modules, second ed., Graduate Texts in Mathematics,

vol. 13, Springer-Verlag, New York, 1992. MR 1245487 (94i:16001)
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