Introduction to Wavelets

Discrete Wavelet Transform

- A wavelet is a function of zero average centered in the neighborhood of t=0 and is normalized $_{\!\!\!+\!\infty}$

$$\int_{-\infty}^{+\infty} \psi(t) dt = 0$$
$$\|\psi\| = 1$$

• The translations and dilations of the wavelet generate a family of functions over which the signal is projected

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right)$$

• Wavelet transform of f in L²(R) at position u and scale s is

$$Wf(u,s) = \left\langle f, \psi_{u,s} \right\rangle = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{s}} \psi^* \left(\frac{t-u}{s}\right) dt$$
$$s = 2^j$$
$$u = k \cdot 2^j$$

Fourier versus Wavelets

Recipe

- **1** Take a wavelet and compare it to a section at the start of the original signal.
- 2 Calculate a number, C, that represents how closely correlated the wavelet is with this section of the signal. The higher C is, the more the similarity. More precisely, if the signal energy and the wavelet energy are equal to one, C may be interpreted as a correlation coefficient.

Note that the results will depend on the shape of the wavelet you choose.

Recipe

3 Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the whole signal.

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

5 Repeat steps 1 through 4 for all scales.

Wavelet Zoom

 WT at position u and scale s measures the local correlation between the signal and the wavelet

Thus, there is a correspondence between wavelet scales and frequency as revealed by wavelet analysis:

- (small) Low scale $a \Rightarrow$ Compressed wavelet \Rightarrow Rapidly changing details \Rightarrow High frequency ω .
- (large) High scale $a \Rightarrow$ Stretched wavelet \Rightarrow Slowly changing, coarse features \Rightarrow Low frequency ω .

Frequency domain

• Parseval $Wf(u,s) = \int_{-\infty}^{+\infty} f(t)\psi^*_{u,s}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega)\Psi^*_{u,s}(\omega)d\omega$

The wavelet coefficients Wf(u,s) depend on the values of f(t) (and $F(\omega)$) in the time-frequency region where the energy of the corresponding wavelet function (respectively, its transform) is concentrated

- time/frequency localization
- The position and scale of high amplitude coefficients allow to characterize the temporal evolution of the signal
- Time domain signals (1D) : Temporal evolution
- Spatial domain signals (2D) : Localize and characterize spatial singularities

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \Leftrightarrow \Psi_{u,s}(\omega) = \sqrt{s} \Psi(s\omega) e^{-j\omega t}$$

Stratching in time \leftrightarrow Shrinking in frequency (and viceversa)

Wavelet representation = approximation + details

approximation \leftrightarrow scaling function details \leftrightarrow wavelets

Wavelets and linear filtering

• The WT can be rewritten as a convolution product and thus the transform can be interpreted as a linear filtering operation

$$Wf(u,s) = \left\langle f, \psi_{u,s} \right\rangle = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{s}} \psi^* \left(\frac{t-u}{s}\right) dt = f * \overline{\psi}_s(u)$$
$$\overline{\psi}_s(t) = \frac{1}{\sqrt{s}} \psi^* \left(\frac{-t}{s}\right)$$
$$\hat{\overline{\psi}}_s(\omega) = \sqrt{s} \hat{\psi}^*(s\omega)$$

 $\hat{\psi}(0) = 0$

 \rightarrow band-pass filter

Wavelets & filterbanks

Quadrature Mirror Filter (QMF)

Multi-scale analysis

Bi-dimensional wavelets

Fast wavelet transform algorithm (DWT)

Decomposition step

Fast wavelet transform algorithm (DWT)

Reconstruction Step

Fast DWT for images

Decomposition Step

Fast DWT for images

Subband structure for images

