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Introduction to Wavelets
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Discrete Wavelet Transform

• A wavelet is a function of zero average centered in the neighborhood of t=0 and is 
normalized 

• The translations and dilations of the wavelet generate a family of functions over 
which the signal is projected

• Wavelet transform of f in L2(R) at position u and scale s is
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Wavelet transform

Ψu,s(t)

t

t

Ψ0,s(t)

Wf(0,s) ⇔ correlation for u=0
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Wavelet transform

Ψu,s(t)
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Ψn2j,s(t)

u=n 2j

Wf(n 2j,s) ⇔ correlation for u=n 2j
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Wavelet transform

Ψu,s(t)
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u= (n+1) 2j

Wf((n+1)2j,s) ⇔ correlation at 
u=(n+1)2j
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Changing the scale

Ψu,s(t)

Ψu,s(t)

Ψu,s(t)

finer 

coarser 

s=2j+1

s=2j

s=2j+2

multiresolution
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Fourier versus Wavelets
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Scaling
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Shifting

t t
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Recipe
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Recipe
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Wavelet Zoom

• WT at position u and scale s measures the local correlation between the 
signal and the wavelet

(small)

(large)

small scale large scale
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Frequency domain

• Parseval

The wavelet coefficients Wf(u,s) depend on the values of f(t) (and F(ω)) in the 
time-frequency region where the energy of the corresponding wavelet function 
(respectively, its transform) is concentrated

•• time/frequency localizationtime/frequency localization
• The position and scaleposition and scale of high amplitude coefficients allow to characterize the 

temporal evolutiontemporal evolution of the signal

• Time domain signals (1D) : Temporal evolution
• Spatial domain signals (2D) : Localize and characterize spatial singularities

Stratching in time ↔ Shrinking in frequency (and viceversa)
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Example

approximation

details

Wavelet representation = approximation + details approximation ↔ scaling function
details ↔ wavelets
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A different perspective
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Haar pyramid [Haar 1910]

sig0

sig1

sig2

sig3

Haar basis function Haar waveletϕ2
0

signal=approximation at scale n + details at scales 1 to n

details
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What wavelets can do?
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Wavelets and linear filtering

• The WT can be rewritten as a convolution product and thus the transform 
can be interpreted as a linear filtering operation
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→ band-pass filter



19

Wavelets & filterbanks
Quadrature Mirror Filter (QMF)
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Analysis or decomposition
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Analysis or decomposition
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Synthesis or reconstruction

upsampling
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Multi-scale analysis
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Famous wavelets
Haar

Mexican hat
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Daubechie’s
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Bi-dimensional wavelets
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Fast wavelet transform algorithm (DWT)

Decomposition step
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Fast wavelet transform algorithm (DWT)
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Filters
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Fast DWT for images
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Fast DWT for images
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Subband structure for images

cD1(h)

cD1(v) cD1(d)

cD2(v) cD2(d)

cD2(h)cA2


