Statistical signal processing

Short overview of the fundamentals
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» Random variables

« Random processes
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Random variable and processes

Intuition: A random variable can be considered as the outcome of an

experiment. This can be
— A number (es lottery)

— A function of time (es. EGC signal)
— A function of space (es. noise in photographic images)

Random (or stochastic) process: set of random variables X, (t), X, (t),...

— The repetition of the experiment results in a set of random variables

Experimental
physical measure

> X(1)

NOTATIONS: X—RYV, x «—realization

measured function: random
variable, realization
“realizzazione del processo”

, X (t
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Deterministic and Random variables

Deterministic phenomenon Stochastic phenomenon
Precise relation between causes and » The relation between causes and
effects effects is not given in mathematical

sense

Repeatability
Predictability « There is a “stochastic regularity

among the different observations

* The “regularity” can be observed if a
large number of observations is
carried out such that the
“expectations” of the involved variables
can be inferred

Gloria Menegaz




Random variables

 Arandom variable (RV) is a real valued variable which depends on the
outcomes of an experiment A and it is such that

{X <x,X eRj} isan event

— (it gathers the outcomes of an experiment for which a probability is defined)
— The probability of the events x=-« and x=+ « is zero

p{X=—o0}=p{Xx=140}=0

» Otherwise stated: x(A) is a function which is defined over the domain A (that
corresponds to the set of possible results) and whose value is a real

number

//' X
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Random variables: resume

A random variable is a mapping between the sample space and the real line
(real-valued RV) or the complex plan (complex valued RV)

Suppose we have a probability space {S.3.P}.
Let X :S — 9 be a function mapping the sample space s into the real line such that
For each s £ 5. there exists a unique X (s) € K. Then X 1s called a random variable.

Thus arandom variable associates the points in the sample space with real numbers.

A
R Notations:
X(5) ¢ Random variables are represented by
5 e > upper-case letters,

e Values of a random variable are
denoted by lower case letters

5 ¢ =y means that y 1s the value ofa
random variable x.

Figure Random Variable
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Probability distribution function

We can define an event {X < x} = {s/ X(s) < x,s €8S}
The probability
F,(x)=P{X < x} 15 called the probability distribution function.
Given F,(x), we can determine the probability of any event mvolving values of the
random variable x.

e F,(x) isa non-decreasing function of X.

A

v

o F . (—0)=0
o Fy(»)=1

¢ Pix<X=xi=F,(x)-F;(x)

Gloria Menegaz




Discrete and Continuous RV

* The distinction concerns the values that can be taken by the RV
— Continuous: there is no restriction of the set of values that x can take

— Discrete: there exists a countable sequence of distinct real numbers x; that the
RV can take

* Discrete RV
— Probability mass function replaces the distribution function

P, =P{x=x]}

me{xi}zl

* Mixed RV: combination of the two types
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Examples

Continuous RV Discrete RV
Fx(X) 4 Px(X) 4
X X
fy (X) fx(x)
X . X1 x2 x3 X ]

Deltas allow to derive the pdf of a
discrete variable.The height of the
deltas represents the probability of the
event.
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Mixed variable

Fy(X) &

Examples

v

fx(x)

Xvy
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Probability density function

If F,(x)1s differentiable f,(x)= a’iF +(x) 1s called the probability density function and
X

has the following properties.

o [ (x) 1s a non- negative function

o [fed=

o Plx,<X=x,)= ffﬁx)dx

_Il
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Joint random variables

« Given two random variables defined over the same space S, then

Foy (X, y)=P{x<X,y<Y} jointdistribution function

J P (%)= Fy (x,0) the events x=+ and y=+ are certain
R (¥)=F ()
Fy (X,—oo):O -
$ the events x=-« and y=-« have probability zero
Fuy (—oo, Y) =0
82
fX,Y (X’ y) — % Fx Y (X; Y)

Fey (% y) = j f fy v (X, y)dxdy

—00 —00
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Marginal density functions

fx(x)=4Fy(x)

— oD

and fp(y)= | fyy(x.y)dx

— o

£ 00 = [ o (X, Y0l

fy (x) = T fyy (X, y)dx
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Conditional density function

Conditional density of Y given X

fle(y|x :X): fle(y|x)

Conditional distribution function
y

.[ fov (X,u)du

|:YIX(ylx):_Oo fx (X)
Thus
fxv (X’ Y) fxv (X’ Y)
R A C ()

Gloria Menegaz




Independent RV

Let X and Y be two random variables characterised by the joint density function

FX:I'(I'-.}") = P{X <x,Y < y}

and fﬁr{.tj-'):;—é}. ,:5:1'(1'-..1’)

Then X and ¥ are independent if| £, ,(x/y)=fi(x) Yxe®R

and equivalently

Frr(x.y)= fe(x)fy(3) | where f,(x) and f;(v) are called the marginal

density functions.
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Independent RV

In case of more than two RV are involved

X, X, ..., X, are independent —

Fux,.x. (X0 %00 %) = Fe (%) Fe (%) Fy (%)
1xz...xn(x1’xz ----- Xn): fxl(xl)fxz(xz)---f
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Moments of a RV

Expectations: provide a description of the RV in terms of a few parameters
instead of specifying the entire distribution function or the density function

m, =E{X*}= j x* £, (x)dx
Mean (expectation value)

n
m, =u, =E{X}= Z XP(X,)  discrete random variable
i—1

Hy = j Xfx (X)dX continuous random variable

For any piecewise constant function g(x), the expectation value is
Y =g(X)

400

E{Y}=E{g(X)}= j g(x) f, (x)dx

—00
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Moments of a RV

» Second order moment

 Variance
— Measures the dispersion of the distribution around the mean
— 0,: standard deviation

+00

o = I(X_ﬂx )2 fy (x)dx

—00
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Joint moments

Joint moment of order (k+r)

+00 400

m,, =E{X"Y"}= j J‘xkyr f., (X, y)dxdy

—00 —00

Central joint moment

400 +00

Hyr = E{XkYr}: j J.(X_lux )k(y_ﬂv )r fyy (X, y)dxdy

—00 —00

2

Hyg =0 x

2

Hop =0
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Joint moments

Covariance
+00 +00

Hii = Oxy = E{XlYl}: J‘ I(X_ﬂx)(y_ﬂv) fyy (X, y)dxdy

—00 —00

— (XY} E{XHY} = E{XY}— pos

Correlation coefficient
— Measures the “similarity” among two random variables

o(X,Y) = E{(X_ﬂxz)(Y_ﬂY)} - Oyy
\/E{(X—yx)} E{(Y - )} OxOv
p(X.Y)<1
X|* = (x,x) szf
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Uncorrelated RV

Two RV are uncorrelated iif
oy =0
E{XY}=E{X}E{Y}

— Warning: uncorrelation does not imply statistical independence BUT statistical
independence implies uncorrelation

— Two uncorrelated RV are also independent iif they are jointly Gaussian

Uncorrelated RV can de dependent
Independent RV are uncorrelated
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Orthogonal RV

Orthogonality condition

E{XY}=0

For zero-mean RV orthogonality < independence

Cov(X,Y)=E{XY}-E{X}E{Y}=E{XY}=0
{E{XY =0 — Cov(X,Y)=0
E{X}=E{Y}=0
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Sum of uncorrelated variables

« If Zis the sum of X and Y that are uncorrelated, its variance is given by the
sum of the respective variances

L=X+Y

2 2 2
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Characteristic function

Expectation of the exponential function

My (@) =E{el"} = Teiwx f, (X)dx

1 +00 o
fx(x):g__[oe‘xMx(a))dx

o'M
ow"

=]

w=0

n-order moment of X

The characteristic function only depends on the moments of X and can be used to
estimate the pdf
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Law of large numbers

« Let X, X,,..., X, be a sequence RV and let their expected value be 1y

« Then, let 4, be the RV corresponding to their sum

N

N
Uy = iz X. then, if the RV are uncorrelated and have finite variance
i=1

- 1
Ly — le N E Ly (mean square convergence)
—>00 I_l |

Then, if all the RV have the same mean s, = x,
iy = iy

2 A A~
oy, = E{la-E{a)T|
The variance in the estimation of the expected value can be made
arbitrarily small by adding a sufficiently large number of RV.
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Central limit theorem

The distribution of the sum of n independent RV having means ,; and
variance 0?; is a RV having mean and variance given by the following

relations
X = Zn: X,
i=1
Hx :Z’uxi
i=1

n
2 2
O x _ZO- Xi
i=1

and its pdf is given by the convolution of the pdfs of the RV

f, (x) = f, (xl)* f. (xl)** f, (Xn) It converges to a Gaussian

irrespectively of the type of
the single pdfs
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Central limit theorem
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ECG xontrol amplitude

ECG test amplitude
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Random processes

A random process can be defined as an indexed famuly of random wvariables

{X(r). teT} whereT i1s an index set which may be discrete or continuous usually
denoting time.

¢ The random process 1s defined on a common probability space {S.3, P}.

. A random process 1s a function of the sample point & and index variable ¢ and
may be written as X'(z.&).

. For a fixed #(=1,), X(#,.£) 1s a random variable.

. For a fixed &(=&,). X(7.&,) is a single realization of the random process and
is a determunistic function.

. When both 7 and £ are varying we have the random process X (7. &).

The random process X(z,&) 1s normally denoted by X(7).
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Random processes

realizations (functions of time)

X(t.s,)

L~ Ay
M\W‘u’f ]

MMMP J_,mw“w«ﬂw N

et

X(f”gl) % m @ W 40 @ @ W | @ i
: 1

> f
Figure Random Process

Space of realizations
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Random processes

In a stochastic or random process there is some indeterminacy in its future
evolution described by probability distributions. Even if the initial condition

(or starting point) is known, there are many possibilities the process might

go to, but some paths are more probable and others less

Single realizations are deterministic functions

X(t,A;) /\ |
N e
N /N
N2V

X(t,A,)
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Random processes

random variables

A RV X; is associated to any time
instant ti and it is defined by the set of
values taken by all the realizations at
t=t.

The set of functions concerning all the
values of t completely define the
Random process

Gloria Menegaz




Random variables

« The set of values taken by the realizations x,(t) in a given instant t.
generates a sequence describing a random variable X(t )

« This random variable can be described by a probability density function

X(tn) 1

t=t

fx X, X (th’xtz""’xtn):fx X xtn(XuXz’-'-’xn’tlitz’---’tn)

t Mo MMy
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Random processes

To describe X (f) we have to use joint density function of the random variables at
different 7.

For any positive integer n., X(f;).X(7,).....X(f,) represents n jointly distributed

random variables. Thus a random process can be described by the joint distribution
function F

Fo0X G0 () (K1 Xa Xy ) = F (X, X50X, B F 8, ).V EN and Vi €T

Otherwise we can determine all the possible moments of the process.

E(X(1))= p.(r) = mean of the random process at 7.

Ry(t,.t,) = E(X(t))X(t,)) = autocorrelation function at 7.7,

Ry (t,15.1;) = E(X(¢,).X(#,). X (#;))= Triple correlation function at #,.f,,7;, etc.
We can also define the auto-covariance function C.(7,.7,) of X (f) given by

Cy(ty.1y) = E(X () — 1y ()X (1) — 15 (1,))
=Ry (fy.1)) = iy (1) 1y (1)
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Parameters

Expectation value of a random process

My (£) = E{X ()} = [ xfy, (X

Autocorrelation: expectation of the product of the RV at instants t, and t,

Ry (t11t2) - E{X (tl) X (tz )} - jjxlx2 fX(tl)X(tz) (X1’ Xz)dxldxz

Autocovariance: corresponding central moment

Cy (t, 1) =E{(X (t,)— a1 (1,)
t,t,)=

) X (tz)_ﬂx (tz))} =Ry (tivtz)_/ux (tl)lux (tz)
Cx (Lut;) ! (

(
Ry (tl 2)_,Ux (tl)lux tz)
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Parameters

Mutual correlation

Ry (tl’tZ) = E{X (tl)Y (tz )} = J.jx1y2 fX(tl)Y(tz) (X1’ Xz)dxldxz

Covariance
Cyv (tl’tZ) = E{(X (tl)_:ux (tl))(Y (tz)_ﬂv (tz))} =Ry (tytz)_ﬂx (t1)ﬂv (tz)

Cyv (1) = Ry (1,6 ) — 25 (1) 2 (1)

— Warning
Ry # Rix

C:XY # CYX
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Uncorrelated processes

» If the covariance of two random processes X(t) and Y(t), evaluated at time
instants t, and t,, is zero for any t, and t,, then the two processes are
uncorrelated

Cyy ('[1,'[2) =0,Vvt,t, >
Ryv (tl’tz) = Hy (tl);uv (tz)’Vt1’t2
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Stationarity

A random process X (7) 1s called strict-sense stationary if its probability structure is

invariant with time. In terms of the joint distribution function

P . e = ]
FX{z]j,XU:) _____ _1'.3_,,)(1'1:7”52-----ln) = E-'L'{r1+ru}_3{(r3+rc.j ):{r,,-z.g(xplz-----xn) vne N and Vi,.7, €T

The pdfs which define the random process are time-invariant, i.e. they don’t change
when moving the origin of the time axis.
X(t;) and X(t;+7) have the same probability distribution function

For a stationary random process the following relations hold

fxw (X) = T (%)
1:X(H)X(tz) (Xl’ XZ) — fX(tl+At)X(t2+At) (le Xz) th , At
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Stationary random processes

The first order probability density function don’t depend on time
The second order pdfs only depend on the time delay 7=t —t,

Thus
— The expectation value is independent on time
— The covariance and autocorrelation depend on the time lag

A random process X (7) 1s called wide sense stationary process (WSS) if
ity (1) = constant
R, (#.t,) = R;(f, —t,) 1s a function of time lag.

For a Gaussian random process, WSS implies sfrict sense stationarity, because this

process 1s completely described by the mean and the autocorrelation functions.

The autocorrelation function R, (7)=EX(7+7)X(7) 1s a crucial quantity for a WSS

Process.
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Autocorrelation funct of WSS processes

The value of R in the origin (t=0) is the second order moment and
corresponds to the maximum value

R, (z) = E{X ()X (t+7)}

Ry (0) = E{Xz(t)} = K
Ry (7)) <R (0) Vr

Ry (7)) =E{X@)Y(t+7)} >

Ry (-7) = E{X ()Y (t-7)} >
lettingt'=t—-z >t=t+7—>

Ry (—7) =E{X({t'+ 7)Y ()} =Ry (7)
Ryy (=7) =Ry« (7)

Ry (=7) =Ry (7) Fx e (X) = fx o (¥) = T (X)

“‘Symmetry”
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Autocorrelation funct of WSS processes

The autocorrelation function of a wide sense stationary process is
symmetric about the origin

The width of the autocorrelation function is related to the correlation among
the signal samples

— If R(z) drops quickly the samples are weakly correlated which means that they go
through fast changes with time

— Viceversa, R(t) drops slowly the samples take “similar” values at close time
instants, thus slow signal changes are expected

— R(1) is related to the frequency content of the signal
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Example: Filtered White Gaussian Noise

Correlated WiGHN
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Example: Filtered White Gaussian Noise

Correlated WiGN
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Time averages

* From a practical point of view, it is preferable to deal with a single sequence
rather than an infinite ensemble of sequences.

* When the pdfs are independent of time (e.g. for stationary processes), it is
reasonable to expect that the amplitude distribution of a long sequence
corresponding to a single realization should be approximately equal to the
probability density

— Similarly, the arithmetic average of a large number of samples of a single
realization should be very close to the mean of the process.

 Time averages

— NB: Such time averages are functions of an infinite set of RV, and thus are
properly viewed as RV themselves!
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Time averages of single realizations

.1
m, <X(t)> T|er; - j x(t)dt emporal mean
_ 2\ _ o1 T 2 mean square value
MSE, _<x(t) >_T“Elﬁj x(t)" dt
1 T
R, (7)= Tll_r)TOIOE J X(t)x(t +7)dt temporal autocorrelation
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Ergodicity

When temporal averages are equal with probability 1 (namely for almost all
the realizations) to the corresponding ensemble averages the process is
said to be ergodic

Random processes

Stationary processes

Ergodic processes

Gloria Menegaz




Ergodicity

Ergodicity implies stationarity
— Otherwise the ensemble averages would depend on time, which contradicts the
hypothesis

Temporal averages are the same for almost all the realizations
— So that we can talk about “temporal average”

Temporal and ensemble averages are the same

For ergodic processes, a single realization is sufficient to completely
characterize the process!

(X)) =

T

[ xdt=E{X ()} =

T

L+1

(X)X (t+7)) _||m—=] X (t) X" (t+7)dt =E { X (1) X" (t+7)}
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Discrete time formulation
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Discrete time formulation for RP

The temporal axis is sampled and the integer valued index n is used. All the
rest remains the same

— It's only a matter of using different notations and replacing integrals in time domain
with discrete summations

A sequence {x[n]} is considered one of an ensemble of sample sequences

A random process is an indexed set of random variables X_

— The family of random variables is characterized by a set of probability distribution
functions that in general may be functions of the index n (unless it is stationary)

— In the case of discrete time signals, the index n is associated to the discrete time
variable

— Anindividual RV X, is described by the probability distribution function
P, (%,,n)=Pr(X, <x,,n) )

where X, denotes the RV and x,, is a particular value.

— The probability density function is obtained from (1) by differentiation and
represents the probability of the RV to be in the infinitesimal interval dX,, around x,
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Discrete time random processes

Each variable X_ is a random variable. The values it takes over the different
realizations of the corresponding process are its observations

Ensemble averages

— Since a random process is an indexed set of RV, it can be characterized by
statistical averages of the RV comprising the process (over the different
realizations). Such averages are called ensemble averages.

Definitions
— Average, or mean

oP, (X,,n)
OX

mxn :E{Xn}: jprn(Xn,n)dX pxn(xn’n):

n

— where E denotes the expectation.
— In general, the expected value (mean) depends on n
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Discrete time random processes

— Mean square value (average power)
rms[X, 1=E{[ X, [} = [IXF py, (%, n)dx

— Variance

o’y =var[X,1=E{| (X, =m )P} = [ % py, (X, n)dx

=E{I X, F}-Imy =0’

In general, the mean and the variance are functions of time (index n), while they

are constant for stationary processes
— The absolute value has been introduced to allow dealing with complex random
processes (X, and Y, are real random processes)

W =X, +]JY,
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Discrete time random processes

Autocorrelation sequence

o o0

Pxx [nvm] :E{anm*} = _[ J‘ anm*pxn,xm (Xn,n,Xm,m)ande

—00 —00

— Samples of X, and X, are taken on different realizations

Autocovariance sequence
Y [ M] = E{(X, —m, )(X, =My )} = pe [n,m]—-m, m, °

Cross-correlations and cross-covariance are obtained in the case the same
quantities are evaluated between two different processes (ex. X, and Y )
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Uncorrelation and Independence

* In general, the average of the product of 2 RV is not equal to the product of
the averages. If this is the case, the RV are said to be uncorrelated

7/XX (m’n):O_> E{anm}: E{Xn}E{Xm}:mZXn

2
@ (mn)=0>  E{XY,}=E{X,}E{Y,}=m, m,

« Statistically independent processes

(3) pxnym (Xn ) n1Ym ) m) — p)(n (Xn ! n) me (Ym ! m)

— Condition (3) is stronger than condition (2): statistically independent processes
are also uncorrelated, but NOT viceversa.
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Stationary random processes

A stationary random process is characterized by an equilibrium condition in
which the statistical properties are invariant to a shift in the time origin.
Accordingly

— The first-order probability distribution is independent of time
* The pdfis the same for all n

— The joint probability distributions are also invariant to a shift in the time origin
— The first order averages, like the mean and variance, are independent of time

— The second order averages, like the autocorrelation, depend on the time
difference (m-n)

— Slightly different notations: X, —X[n]

(1) Hy = E{X[n]} = U Independent of n
oy, = E{l(XIn] -4 )} = E{l (X[N]- ) [} = o

n

Oy [n,n+m]=E { X[n]X *[m]} =0y [m] De%?nn:z:itffpnthe
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Stationary random processes

Strict stationarity: the full probabilistic description is time invariant

Wide-sense stationarity: the probability distributions are not time-invariant
but the relations (1) still hold

— In particular, relations (1) show 2-nd order stationarity

Linear operations preserve wide-sense stationarity

— Filtering by a linear time invariant system (LTIS) conserves wide-sense
stationariety
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Time averages

* From a practical point of view, it is preferable to deal with a single sequence
rather than an infinite ensemble of sequences. When the pdfs are
independent of time (e.g. for stationary processes), it is reasonable to
expect that the amplitude distribution of a long sequence corresponding to a
single realization should be approximately equal to the probability density

— Similarly, the arithmetic average of a large number of samples of a single
realization should be very close to the mean of the process.

« Time averages

L
(X,)=lim Z Time average of a random process

L—oo 2 _|_

(XpemXy )= lim Z x . X%~ Autocorrelation sequence
Lo 2L _|_ L

— NB: Such time averages are functions of an infinite set of RV, and thus are
properly viewed as RV themselves!
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Ergodicity

« For an ergodic process, time averages coincide with ensemble averages
— That is, for a single realization (sequence {x[n]})

(X[n]) = I|m— Z x[n]=E{X,} =,

n——L

(x[n+m]x{n] >

n+m m - {X x } Pxx [m]: R[m]

n——L

— Sample means and variances are estimates of the corresponding RV, and as
such are corrupted by estimation errors.

1 L-1

M, ==> x[n]
L n=0
. 1 L-1 )
O-x :_Zl X[n]_mx |
L n=0
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Ergodic random processes

« We don't need to keep the index n for X_ and we can abbreviate it with X

« Let's consider a zero-mean wide-sense stationary random process
— The autocorrelation and the autocovariance coincide
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Covariance matrix

Given a sequence of RV, X,, X,,...,X_, we can calculate the covariance
between any couple of them, and organize the results in a matrix

— The sequence of RV represent the observations at given time instants

Referring to the continuous time case
— The formalization generalizes to the discrete time by replacing t,—n

Cyx (tl’tz):E{(x )( tz))}:Rxx (tlitz)_,ux (tl)/uX (tz
)

Cy (tl’tl):E{( (tl) My (tl ) } x2:012
Cy (L) = E{ (t) =2y (1)) (X( ))} =Cp, =0y x, =01,
Cy (tl’t3) =E {( t1 — Hy ts))( ))} =C,; = Ox,x, = 013

Cx (tl’tn): E{(X (tl)_:ux (tl))(x (tn)_:ux (tn ))} = C1,n = lexn = O1n
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Covariance matrix

These data can be put in matrix form

B . 2
C, C, - C, O, Oy, -+ Oy,
2
c, C, - C, O, O, - Oy,
C: j—
2
_Cnl C., - Cn_ | O O 0 O ]

The matrix element at position (n,m) represents the covariance between the
RV X, and X_. If the two RV are uncorrelated, the element is null. THUS

The covariance matrix of uncorrelated RV is diagonal
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Covariance matrix

A

observation for RV X1

random variables

n=1  n=2 n=3

Vectors of RV can be built by gathering the RV in a column vector

X
I

Gloria Menegaz




Covariance matrix

Each RV X corresponds to k observations that can be put in vector form as
well

Xo=|Xy Xo o Xy

Then, the covariance matrix can be written as

Gloria Menegaz




= E<

Covariance matrix

(Xi— )

(XZ._IUZ) [(Xi—a) (X pt,) (Xy=t) ]t =
L(Xn = 4)._

| (Xl_ﬂl)z (xl :ul)(xn_lun)_ Z_-lz 2122
L)) |
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Covariance matrix for WSS processes

* For wide sense stationary processes

Ry (=7) =R (7)
Cy (-7)=Cy (7)

« Thus the covariance matrix is symmetric about the diagonal

[ S cee ] Soe 2
CI\\ Cp Ci On_ Op " Oy
\\ \\\ 2
C = Cp Cz\ Con _| G2 Oy 7 Oy
\\ \\\ 2
_Cln C2n Ch\T _Gln GZn a\n_
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Gaussian Random Process

For any positive mteger n, X(7,), X (7,),....X(7,) represent n jomntly random
variables.  These »  random  variables define a random  vector
X =[X(#).X(,),...X(t,)]'. The process X (7)1s called Gaussian if the random vector
[X (). X(t,).....X(¢,)] 1s jomtly Gaussian with the joint density function given by

1

—XCX
fX(r)X’(r} r(r)(x1 XyseXy) = here | Cw = E(X — 7 _ 1
1 -4 (8) X (1, ) V122 n where | Cx = E(X—py)(X—py)
(-\/2;:) Jdet(Cy)

and py = E(X)=[E(X)).E(X,)....E(X,)]".

C,: covariance matrix
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Gaussian random processes

Gaussian process Covariance matrix

The columns of the matrix The matrix is symmetric
are iid RV The elements out of the diagonal
are close to zero
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Covariance matrix: properties

The covariance matrix is symmetric and nonnegative definite

The elements along the principal diagonal are the variances of the elements
of the random vector

The elements out of the principal diagonal are the correlation coefficients
between couples of elements

Uncorrelated vector elements correspond to a diagonal covariance matrix

Is it possible to define a linear transformation mapping the RP X to the RP
such that the RP Y has a covariance matrix in diagonal form?
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Karunen-Loeve transform

« The KLT is a linear transform that maps the random process X to a random

process Y whose covariance matrix is diagonal < whose components are
uncorrelated

— If X'is a generalized Gaussian, then the components of Y are independent
« For Gaussian processes, uncorrelation is necessary and sufficient for independence

- Given a wide sense stationary process X, with covariance matrix C,, we
look for a linear transform T such that Y=TTX such that C, is diagonal

« It can be proved that T consists of the eigenvectors of C,

C.d =Ad k=0,.,N-1

O=[¢g, & -+ ¢y.|  eigenvectors matrix (eigenvectors are the columns)
A =diag (4, 4,...4y,) (diagonal) eigenvalues matrix
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Properties

The eigenvector matrix is square (NxN), unitary and orthogonal
— The eigenvectors form an orthonormal basis

QD=

Ol=0'
1 1=

.
-y . u— | . = é‘l Jpu— . .
) =a10,=0, =4 |2
Projection on a basis

Yo Xo dy Xo
y ao,o aQN_l Xl 31 “
y=| "t |=AX=| ¢ - : = .
ay 10 ay ~1,N-1
RIEN Xnor ] L8 | Xnoa
N -1
Y; :<ai’x>: a; Xy
k=0
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KLT

Projection on the eigenvector basis

Analysis

Synthesis

Yo % || %
go| Nt |—arg—| A || &
_yN—l_ _¢N—1T__XN—1_
yi:<¢Ti’X>
y=0'X

ol =" >x=(0") y=ay

X =y
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The KLT diagonalizes the covariance matrix

X-MYT T, 1(X-M,)=C;

p"lﬂ

KLT

C,=®'C,d=A

\'\\ 15‘
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Principal Component Analysis (PCA)

* Principal component analysis (PCA) involves a mathematical procedure
that transforms a number of possibly correlated variables into a smaller
number of uncorrelated variables called principal components. The first
principal component accounts for as much of the variability in the data as
possible, and each succeeding component accounts for as much of the
remaining variability as possible.

 This is derived from the KLT

— Due to its properties of signal decorrelation the KLT can be used for compression
by reducing the size of the dataset
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PCA

Algorithm
1. Find the mean vector and the covariance Cx
2. Find the eigenvalues (Ai, i=0,..,N-1) and sort them in descending order, and sort
the eigenvectors ¢i, i=0,..,N-1 accordingly
3. Choose a lower dimensionality m<N (following an energy-based criterion)

4. Construct an Nxm transform matrix composed by the m eigenvectors
corresponding to the largest eigenvalues

¢m—1 ]

basis vectors

o :[¢0

3

D' X
mY

y Analysis
X

Synthesis

]
S

3
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Example
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Example
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Karunen-Loeve Transform

Y=T"X

C, =T'C, T = A diagonal matrix of the eigenvalues

C,v. =Av. eigenvector equation for C,

v, eigenvector associated to the eigenvalue A

T=[v, v, -~ Vy,]| Thecolumns are the eigenvectors

The matrix T transforms X into Y whose covariance matrix is diagonal
with elements A, = var[y,]
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Properties of the KLT

It is optimal for Gaussian sources

— namely it minimizes the MSE between the vector and its approximation when
only k out of K transform coefficients are retained

It basically removes the redundancy in the input vector allowing better
compression performance

The KLT transforms a Gaussian random vector to a Gaussian random
vector with statistically independent components.

— If the vector is not Gaussian, the components of Y will be uncorrelated but not
independent

Under some conditions, it is well approximated by the DCT, which in
addition allows fast algorithms for its implementation

- JPEG
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What about ergodicity?

» The hypothesis of ergodicity (which encloses stationarity) is often assumed
in applications. This is because it allows to focus on the single realization to

estimate the probability density function (and its parameters) of a random
process

 What does this mean?

— For 1D signals (ECG, EEG): the measurements correspond to the realizations,

and thus are used to study the signals through the estimation of the stochastic
parameters

— However, for 1D signals many realizations of a given process are often available
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Images

/

/

X

Each image is the realization of a 2D
random process X

The process consists of NxM RV

The observations of each RV “run
orthogonally to the image plan”, that is,
gather the pixel values at position (n,m)
in the set of images

Ensemble averages should be evaluated
on such RV

Assuming stationarity and ergodicity
facilitates the task by allowing to perform
all the computations on the single image
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Images

Stationarity X (

R
— Averages are assumed to be equal Cx (

— What matters is the distance among
the pixels: C,(d) is the same
irrespectively of the direction

—7
—T

Ergodicity

— All the calculations are performed
locally: instead of looking at different
realizations, the different moments are
calculated on the image

Simplification /
— Columns represent the RV
— Rows represents the realizations
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A X X2 X3

observations

v

realizations

Images

« The covariance matrix is symmetric
about the major diagonal

» Covariances and correlations are
evaluated between columns

« Limit: the stationarity and ergodicity
assumptions are asymptotic: they
assume that the number of realizations
(k) and the size of each realization (n
in 1D, NxM in 2D) tend to infinity.
When dealing with signals of finite size
the hypothesis are not satisfied and
the estimations are “poor”
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Example
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Other solution

Consider the image as a set of subimages

X

Assuming that the stationarity holds also
locally, each subimage is considered as
a realization. The covariance matrix is
calculated on subimages.

Xy
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