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Statistical signal processing

Short overview of the fundamentals
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Outline

• Random variables

• Random processes
– Stationarity
– Ergodicity

• Spectral analysis
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Random variable and processes

• Intuition: A random variable can be considered as the outcome of an 
experiment. This can be

– A number (es lottery)
– A function of time (es. EGC signal)
– A function of space (es. noise in photographic images)

• Random (or stochastic) process: set of random variables
– The repetition of the experiment results in a set of random variables

• NOTATIONS: X↔RV, x ↔realization

Experimental 
physical measure

x(t) measured function: random 
variable, realization
“realizzazione del processo”

1 2( ), ( ), , ( )nX t X t X t…
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Deterministic and Random variables

Deterministic phenomenon

• Precise relation between causes and 
effects

• Repeatability

• Predictability

Stochastic phenomenon

• The relation between causes and 
effects is not given in mathematical 
sense

• There is a “stochastic regularity”
among the different observations

• The “regularity” can be observed if a 
large number of observations is 
carried out such that the 
“expectations” of the involved variables 
can be inferred
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Random variables

• A random variable (RV) is a real valued variable which depends on the 
outcomes of an experiment A and it is such that

– (it gathers the outcomes of an experiment for which a probability is defined)
– The probability of the events x=-∞ and x=+ ∞ is zero

• Otherwise stated: x(A) is a function which is defined over the domain A (that 
corresponds to the set of possible results) and whose value is a real 
number

{ },  is an eventX x X≤ ∈R

{ } { } 0p x p x= −∞ = = +∞ =

A
X
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Random variables: résumé

• A random variable is a mapping between the sample space and the real line 
(real-valued RV) or the complex plan (complex valued RV)
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Probability distribution function
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Discrete and Continuous RV

• The distinction concerns the values that can be taken by the RV
– Continuous: there is no restriction of the set of values that x can take
– Discrete: there exists a countable sequence of distinct real numbers xi that the 

RV can take

• Discrete RV
– Probability mass function replaces the distribution function

• Mixed RV: combination of the two types

{ }
{ } 1

m i

m i
i

P P x x

P x

= =

=∑
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Examples

FX(x)

fX(x) x

x

FX(x)

fX(x) x

x

Continuous RV Discrete RV

x1 x2 x3

Deltas allow to derive the pdf of a 
discrete variable.The height of the 
deltas represents the probability of the 
event.
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Examples

FX(x)

fX(x)

x

x

Mixed variable



Gloria Menegaz

Probability density function
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Joint random variables

• Given two random variables defined over the same space S, then
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the events x=+∞ and y=+∞ are certain

the events x=-∞ and y=-∞ have probability zero
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Marginal density functions

( ) ( , )

( ) ( , )

X XY

Y XY

f x f x y dy

f x f x y dx

+∞

−∞

+∞

−∞

=

=

∫

∫



Gloria Menegaz

Conditional density function

• Conditional density of Y given X

• Conditional distribution function

• Thus

( ) ( )| || |Y X Y Xf y X x f y x= =
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Independent RV
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Independent RV

• In case of more than two RV are involved
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Moments of a RV
• Expectations: provide a description of the RV in terms of a few parameters 

instead of specifying the entire distribution function or the density function

• Mean (expectation value)

• For any piecewise constant function g(x), the expectation value is
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X X i i
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xf x dx

μ

μ

=

+∞

−∞

= = =

=

∑

∫
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Moments of a RV

• Second order moment

• Variance
– Measures the dispersion of the distribution around the mean
– σx: standard deviation
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Joint moments
• Joint moment of order (k+r)

• Central joint moment

{ }, ( , )k r k r
k r XYm E X Y x y f x y dxdy
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Joint moments

• Covariance

• Correlation coefficient
– Measures the “similarity” among two random variables
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Uncorrelated RV

• Two RV are uncorrelated iif

– Warning: uncorrelation does not imply statistical independence BUT statistical 
independence implies uncorrelation

– Two uncorrelated RV are also independent iif they are jointly Gaussian

{ } { } { }
0XY

E XY E X E Y
σ =

=

Uncorrelated RV can de dependent
Independent RV are uncorrelated
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Orthogonal RV

• Orthogonality condition

• For zero-mean RV orthogonality ↔ independence
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{ }
{ } { }

, 0

0
( , ) 0

0

Cov X Y E XY E X E Y E XY

E XY
Cov X Y

E X E Y

= − = =

=⎧
→ =⎨

= =⎩

{ } 0E XY =



Gloria Menegaz

Sum of uncorrelated variables

• If Z is the sum of X and Y that are uncorrelated, its variance is given by the 
sum of the respective variances

2 2 2
Z X Y

Z X Y
σ σ σ

= +

= +
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Characteristic function

• Expectation of the exponential function
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n-order moment of X

The characteristic function only depends on the moments of X and can be used to 
estimate the pdf
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Law of large numbers

• Let X1, X2,…, Xn be a sequence RV and let their expected value be

• Then, let       be the RV corresponding to their sum
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The variance in the estimation of the expected value can be made
arbitrarily small by adding a sufficiently large number of RV.
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Central limit theorem

• The distribution of the sum of n independent RV having means µXi and 
variance σ2

Xi is a RV having mean and variance given by the following 
relations

• and its pdf is given by the convolution of the pdfs of the RV
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irrespectively of the type of 
the single pdfs
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Central limit theorem
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Random processes
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Random processes
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Random processes
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Random processes

Space of realizations

realizations (functions of time)
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Random processes

• In a stochastic or random process there is some indeterminacy in its future 
evolution described by probability distributions. Even if the initial condition 
(or starting point) is known, there are many possibilities the process might 
go to, but some paths are more probable and others less

X(t,A1)

X(t,A2)
t

t

Single realizations are deterministic functions



Gloria Menegaz

Random processes

time

rea
liza

tio
ns

t1 t2 t3

Xt1 Xt2 Xt3

x1(t)

x2(t)

x3(t)

random variables

A RV Xti is associated to any time 
instant ti and it is defined by the set of 
values taken by all the realizations at 
t=ti
The set of functions concerning all the 
values of t completely define the 
Random process
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Random variables

• The set of values taken by the realizations xk(t) in a given instant ti
generates a sequence describing a random variable X(tm)

• This random variable can be described by a probability density function

t=tm

x(tm)

x1(tm)

x2(tm)

x3(tm)

realizations

( ) ( )
, , 1 2 , ,2 21 1

, , 1 2 1 2, , , , , , , , , ,
t t t n t t tn nX X X t t t X X X n nf x x x f x x x t t t=

… …
… … …
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Random processes
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Parameters

• Expectation value of a random process

• Autocorrelation: expectation of the product of the RV at instants t1 and t2

• Autocovariance: corresponding central moment

{ } ( )( ) ( ) ( )X X tt E X t xf x dxη
+∞

−∞

= = ∫

( ) ( ) ( ){ } ( )
1 2

2
1 2 1 2 1 2 ( ) ( ) 1 2 1 2, ,X X t X t

R

R t t E X t X t x x f x x dx dx= = ∫∫

( ) ( ) ( )( ) ( ) ( )( ){ } ( ) ( ) ( )1 2 1 1 2 2 1 2 1 2, ,X X X X X XC t t E X t t X t t R t t t tμ μ μ μ= − − = −

( ) ( ) ( ) ( )1 2 1 2 1 2, ,X X X XC t t R t t t tμ μ= −
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Parameters

• Mutual correlation

• Covariance

– Warning

( ) ( ) ( ){ } ( )
1 2

2
1 2 1 2 1 2 ( ) ( ) 1 2 1 2, ,XY X t Y t

R

R t t E X t Y t x y f x x dx dx= = ∫∫
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XY YX

XY YX
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≠
≠
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Uncorrelated processes

• If the covariance of two random processes X(t) and Y(t), evaluated at time 
instants t1 and t2, is zero for any t1 and t2, then the two processes are 
uncorrelated

( )
( ) ( ) ( )

1 2 1 2

1 2 1 2 1 2

, 0, ,
, , ,

XY

XY X Y

C t t t t
R t t t t t tμ μ

= ∀ →

= ∀
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Stationarity

The pdfs which define the random process are time-invariant, i.e. they don’t change 
when moving the origin of the time axis. 
X(t1) and X(t1+τ) have the same probability distribution function

For a stationary random process the following relations hold

( ) ( )
( ) ( )

1 2 1 2

( )

( ) ( ) 1 2 ( ) ( ) 1 2, , ,
X t X

X t X t X t t X t t n

f x f x

f x x f x x t t+Δ +Δ

→

→ ∀ Δ



Gloria Menegaz

Stationary random processes

• The first order probability density function don’t depend on time

• The second order pdfs only depend on the time delay 

• Thus
– The expectation value is independent on time
– The covariance and autocorrelation depend on the time lag

1 2t tτ = −
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Autocorrelation funct of WSS processes

• The value of R in the origin (τ=0) is the second order moment and 
corresponds to the maximum value

• “Symmetry”
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Autocorrelation funct of WSS processes

• The autocorrelation function of a wide sense stationary process is 
symmetric about the origin

• The width of the autocorrelation function is related to the correlation among 
the signal samples

– If R(τ) drops quickly the samples are weakly correlated which means that they go 
through fast changes with time

– Viceversa, R(τ) drops slowly the samples take “similar” values at close time 
instants, thus slow signal changes are expected

– R(τ) is related to the frequency content of the signal
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Example: White Gaussian Noise
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Example: Filtered White Gaussian Noise
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Example: Filtered White Gaussian Noise
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Time averages

• From a practical point of view, it is preferable to deal with a single sequence 
rather than an infinite ensemble of sequences. 

• When the pdfs are independent of time (e.g. for stationary processes), it is 
reasonable to expect that the amplitude distribution of a long sequence 
corresponding to a single realization should be approximately equal to the 
probability density

– Similarly, the arithmetic average of a large  number of samples of a single 
realization should be very close to the mean of the process.

• Time averages
– NB: Such time averages are functions of an infinite set of RV, and thus are 

properly viewed as RV themselves!
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Time averages of single realizations

( )
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Ergodicity

• When temporal averages are equal with probability 1 (namely for almost all 
the realizations) to the corresponding ensemble averages the process is 
said to be ergodic

Random processes

Stationary processes

Ergodic processes
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Ergodicity

• Ergodicity implies stationarity
– Otherwise the ensemble averages would depend on time, which contradicts the 

hypothesis

• Temporal averages are the same for almost all the realizations
– So that we can talk about “temporal average”

• Temporal and ensemble averages are the same

• For ergodic processes, a single realization is sufficient to completely 
characterize the process!
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{ }
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2 1
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Discrete time formulation
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Discrete time formulation for RP
• The temporal axis is sampled and the integer valued index n is used. All the 

rest remains the same
– It’s only a matter of using different notations and replacing integrals in time domain 

with discrete summations

• A sequence {x[n]} is considered one of an ensemble of sample sequences

• A random process is an indexed set of random variables Xn
– The family of random variables is characterized by a set of probability distribution 

functions that in general may be functions of the index n (unless it is stationary)
– In the case of discrete time signals, the index n is associated to the discrete time 

variable
– An individual RV Xn is described by the probability distribution function

(1)

where Xn denotes the RV and xn is a particular value.
– The probability density function is obtained from (1) by differentiation and 

represents the probability of the RV to be in the infinitesimal interval dXn around xn

( ) ( ), Pr ,
nX n n nP x n X x n= ≤
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Discrete time random processes

• Each variable Xn is a random variable. The values it takes over the different 
realizations of the corresponding process are its observations

• Ensemble averages
– Since a random process is an indexed set of RV, it can be characterized by 

statistical averages of the RV comprising the process (over the different 
realizations). Such averages are called ensemble averages.

• Definitions
– Average, or mean

– where E denotes the expectation. 
– In general, the expected value (mean) depends on n

{ } ( , )
n nX n X nm X xp x n dx

∞

−∞
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n

X n
X n

n

P X n
p x n

X
∂

=
∂
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Discrete time random processes

– Mean square value (average power)

– Variance

– In general, the mean and the variance are functions of time (index n), while they 
are constant for stationary processes

– The absolute value has been introduced to allow dealing with complex random 
processes (Xn and Yn are real random processes)

{ }2 2[ ] | | | | ( , )
nn n X nrms X X x p x n dx

∞
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n X X
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σ
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∞
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= = Ε − =

= − =
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n n nW X jY= +
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Discrete time random processes

• Autocorrelation sequence

– Samples of Xn and Xm are taken on different realizations

• Autocovariance sequence

• Cross-correlations and cross-covariance are obtained in the case the same 
quantities are evaluated between two different processes (ex. Xn and Ym)

{ }* *
,[ , ] ( , , , )

n mXX n m n m X X n m n mn m X X X X p x n x m dx dxϕ
∞ ∞

−∞ −∞

= Ε = ∫ ∫

{ }* *[ , ] ( )( ) [ , ]
n m n mXX n X m X XX X Xn m X m X m n m m mγ ϕ= Ε − − = −
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Uncorrelation and Independence

• In general, the average of the product of 2 RV is not equal to the product of 
the averages. If this is the case, the RV are said to be uncorrelated

(2)

• Statistically independent processes

(3)

– Condition (3) is stronger than condition (2): statistically independent processes 
are also uncorrelated, but NOT viceversa.

( )
( )
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γ

γ

= → = =

= → = =

( , , , ) ( , ) ( , )
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Stationary random processes

• A stationary random process is characterized by an equilibrium condition in 
which the statistical properties are invariant to a shift in the time origin. 
Accordingly

– The first-order probability distribution is independent of time
• The pdf is the same for all n

– The joint probability distributions are also invariant to a shift in the time origin
– The first order averages, like the mean and variance, are independent of time
– The second order averages, like the autocorrelation, depend on the time 

difference (m-n)
– Slightly different notations: Xn→X[n]

{ }

{ } { }
{ }

2 2 2 2

[ ]

| ( [ ] ) | | ( [ ] ) |
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n n
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X X
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μ μ

σ μ μ σ

ϕ ϕ∗

= =

= − = − =

+ = =

Independent of n

Dependent on the 
time shift m

(1)
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Stationary random processes

• Strict stationarity: the full probabilistic description is time invariant

• Wide-sense stationarity: the probability distributions are not time-invariant 
but the relations (1) still hold

– In particular, relations (1) show 2-nd order stationarity

• Linear operations preserve wide-sense stationarity
– Filtering by a linear time invariant system (LTIS) conserves wide-sense 

stationariety
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Time averages

• From a practical point of view, it is preferable to deal with a single sequence 
rather than an infinite ensemble of sequences. When the pdfs are 
independent of time (e.g. for stationary processes), it is reasonable to 
expect that the amplitude distribution of a long sequence corresponding to a 
single realization should be approximately equal to the probability density

– Similarly, the arithmetic average of a large  number of samples of a single 
realization should be very close to the mean of the process.

• Time averages

– NB: Such time averages are functions of an infinite set of RV, and thus are 
properly viewed as RV themselves!
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Ergodicity

• For an ergodic process, time averages coincide with ensemble averages
– That is, for a single realization (sequence {x[n]})

– Sample means and variances are estimates of the corresponding RV, and as 
such are corrupted by estimation errors.
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Ergodic random processes

• We don’t need to keep the index n for Xn and we can abbreviate it with X

• Let’s consider a zero-mean wide-sense stationary random process
– The autocorrelation and the autocovariance coincide
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Covariance matrix

• Given a sequence of RV, X1, X2,…,Xn, we can calculate the covariance 
between any couple of them, and organize the results in a matrix

– The sequence of RV represent the observations at given time instants

• Referring to the continuous time case
– The formalization generalizes to the discrete time by replacing tn→n

( ) ( ) ( )( ) ( ) ( )( ){ } ( ) ( ) ( )1 2 1 1 2 2 1 2 1 2, ,XX X X XX X XC t t E X t t X t t R t t t tμ μ μ μ= − − = −

( ) ( ) ( )( ){ }
( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( )( ) ( ) ( )( ){ }

( ) ( ) ( )( ) ( ) ( )( ){ }

1

1 2

1 3

1

2 2 2
1 1 1 1 1,1 1

1 2 1 1 2 2 1,2 1,2

1 3 1 3 3 3 1,3 1,3

1 1 1 1, 1,

,

,

,

,
n

X X X

X X X X X

X X X X X

X n X n X n n X X n

C t t E X t t C

C t t E X t t X t t C

C t t E X t t X t t C

C t t E X t t X t t C

μ σ σ

μ μ σ σ

μ μ σ σ

μ μ σ σ

= − = = =

= − − = = =

= − − = = =

= − − = = =

"
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Covariance matrix

• These data can be put in matrix form

• The matrix element at position (n,m) represents the covariance between the 
RV Xn and Xm. If the two RV are uncorrelated, the element is null. THUS

• The covariance matrix of uncorrelated RV is diagonal

2
1 12 1 1 12 1

2
21 2 2 21 2 2

2
1 2 1 2

n n

n n

n n n n n n

C C C
C C C

C

C C C

σ σ σ
σ σ σ

σ σ σ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

" "
" "

" " " " " " " "
" "
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Covariance matrix

time

rea
liza

tio
ns

n=1 n=2 n=3

X1 X2 X3observation for RV X1

Vectors of RV can be built by gathering the RV in a column vector 1

2

n

X
X

X

X

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎣ ⎦

G
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random variables
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Covariance matrix

• Each RV Xn corresponds to k observations that can be put in vector form as
well

• Then, the covariance matrix can be written as

1 1,1 1,2 1,kX x x x= ⎡ ⎤⎣ ⎦"

( ) ( ){ }
1

T
X X X

X

n

C E X Xμ μ

μ
μ

μ

= − ⋅ −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

G GG G

G "



Gloria Menegaz

Covariance matrix

• Proof

( ) ( ){ }
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( )

( )
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n
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Covariance matrix for WSS processes

• For wide sense stationary processes

• Thus the covariance matrix is symmetric about the diagonal

( ) ( )
( ) ( )

X X

X X

R R
C C

τ τ

τ τ

− =

− =
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Gaussian Random Process

CX: covariance matrix
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Gaussian random processes

Gaussian process

The columns of the matrix 
are iid RV

Covariance matrix

The matrix is symmetric
The elements out of the diagonal 
are close to zero
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Covariance matrix: properties

• The covariance matrix is symmetric and nonnegative definite

• The elements along the principal diagonal are the variances of the elements 
of the random vector

• The elements out of the principal diagonal are the correlation coefficients 
between couples of elements

• Uncorrelated vector elements correspond to a diagonal covariance matrix

Is it possible to define a linear transformation mapping the RP X to the RP 
such that the RP Y has a covariance matrix in diagonal form?
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Karunen-Loeve transform

• The KLT is a linear transform that maps the random process X to a random 
process Y whose covariance matrix is diagonal ↔ whose components are 
uncorrelated

– If X is a generalized Gaussian, then the components of Y are independent
• For Gaussian processes, uncorrelation is necessary and sufficient for independence

• Given a wide sense stationary process X, with covariance matrix CX, we 
look for a linear transform T such that Y=TTX such that CY is diagonal

• It can be proved that T consists of the eigenvectors of CX

0,..., 1X k k kC k Nφ λ φ= = −

[ ]
( )

0 1 1

0 1 1

       eigenvectors matrix (eigenvectors are the columns)
, ,...,      (diagonal) eigenvalues matrix

N

Ndiag
φ φ φ

λ λ λ
−

−

Φ =

Λ =

"
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Properties

• The eigenvector matrix is square (NxN), unitary and orthogonal
– The eigenvectors form an orthonormal basis

• Projection on a basis
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KLT

• Projection on the eigenvector basis
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KLT

• The KLT diagonalizes the covariance matrix T
Y XC C= Φ Φ = Λ
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Principal Component Analysis (PCA)

• Principal component analysis (PCA) involves a mathematical procedure 
that transforms a number of possibly correlated variables into a smaller 
number of uncorrelated variables called principal components. The first 
principal component accounts for as much of the variability in the data as 
possible, and each succeeding component accounts for as much of the 
remaining variability as possible. 

• This is derived from the KLT
– Due to its properties of signal decorrelation the KLT can be used for compression 

by reducing the size of the dataset
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PCA

• Algorithm
1. Find the mean vector and the covariance Cx
2. Find the eigenvalues (λi, i=0,..,N-1) and sort them in descending order, and sort 

the eigenvectors ϕi, i=0,..,N-1 accordingly
3. Choose a lower dimensionality m<N (following an energy-based criterion)
4. Construct an Nxm transform matrix composed by the m eigenvectors 

corresponding to the largest eigenvalues

[ ]0 1...m mφ φ −Φ =

T
m

m

y x
x y
= Φ

= Φ

G G
G G

basis vectors

Analysis
Synthesis

Nxm
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Example

m=32 m=16
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Example

m=8
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Karunen-Loeve Transform

[ ]

X

0 1 1

 diagonal matrix of the eigenvalues
     eigenvector equation for C

  eigenvector associated to the eigenvalue 
      The columns are the eigenvectors

The matrix T 

T

T
Y X

X i i i

i i

N

Y T X
C T C T
C v v
v
T v v v

λ
λ

−

=

= = Λ
=

= "
transforms X into Y whose covariance matrix is diagonal

with elements   var[ ]ii iyλ =
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Properties of the KLT

• It is optimal for Gaussian sources
– namely it minimizes the MSE between the vector and its approximation when 

only k out of K transform coefficients are retained

• It basically removes the redundancy in the input vector allowing better 
compression performance

• The KLT transforms a Gaussian random vector to a Gaussian random
vector with statistically independent components. 

– If the vector is not Gaussian, the components of Y will be uncorrelated but not 
independent

• Under some conditions, it is well approximated by the DCT, which in 
addition allows fast algorithms for its implementation

– JPEG
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What about ergodicity?

• The hypothesis of ergodicity (which encloses stationarity) is often assumed 
in applications. This is because it allows to focus on the single realization to 
estimate the probability density function (and its parameters) of a random 
process

• What does this mean?
– For 1D signals (ECG, EEG): the measurements correspond to the realizations, 

and thus are used to study the signals through the estimation of the stochastic 
parameters

– However, for 1D signals many realizations of a given process are often available
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Images

• Each image is the realization of a 2D 
random process X

• The process consists of NxM RV

• The observations of each RV “run 
orthogonally to the image plan”, that is, 
gather the pixel values at position (n,m) 
in the set of images

• Ensemble averages should be evaluated 
on such RV

• Assuming stationarity and ergodicity
facilitates the task by allowing to perform 
all the computations on the single image

X1 Xk
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Images

• Stationarity
– Averages are assumed to be equal
– What matters is the distance among 

the pixels: CX(d) is the same 
irrespectively of the direction

• Ergodicity
– All the calculations are performed 

locally: instead of looking at different 
realizations, the different moments are 
calculated on the image

• Simplification
– Columns represent the RV
– Rows represents the realizations

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

X X X X

X X X X

R R R d R d
C C C d C d

τ τ
τ τ
− = → − =
− = → − =

X1 Xk
d
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Images

• The covariance matrix is symmetric 
about the major diagonal

• Covariances and correlations are 
evaluated between columns

• Limit: the stationarity and ergodicity
assumptions are asymptotic: they 
assume that the number of realizations 
(k) and the size of each realization (n 
in 1D, NxM in 2D) tend to infinity. 
When dealing with signals of finite size 
the hypothesis are not satisfied and 
the estimations are “poor”

X1 X2 X3

ob
se

rv
at

io
ns

realizations
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Example
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Other solution

X1

X2

X3

Consider the image as a set of subimages
X1 X2

Assuming that the stationarity holds also 
locally, each subimage is considered as 
a realization. The covariance matrix is 
calculated on subimages.


