Grandezze fisiche e loro misura

Cos'è la fisica? e di che cosa si occupa?

- Scienza <u>sperimentale</u> che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da grandezze misurabili.
- Sono oggetto della Fisica lo studio dei moti, dell'interazione gravitazionale e elettromagnetica, la struttura della materia.

Il metodo scientifico

- Fonda la sua validità sull'osservazione e sulla sperimentazione.

Grandezze fisiche e loro misura

- Definizione di grandezza fisica
- Concetto di misura
- Errori di misura
- Unità di misura
- Definizione operativa di una grandezza fisica
- Grandezze fondamentali e derivate
- Leggi fisiche
- Analisi dimensionale
- Proprietà delle grandezze fisiche

Il Sistema Internazionale (S.I.)

- Grandezze fondamentali del S.I.
- Il sistema MKS e il sistema cgs

Ordini di grandezza: microcosmo e macrocosmo

- Distanze, tempi, masse.

Cos'è la Fisica? φυσισ = Natura.

Di che cosa si occupa la fisica? Dello studio degli eventi o dei fenomeni naturali e li descrive usando un linguaggio matematico, per mezzo di relazioni analitiche quantitative fra le grandezze fisiche che lo caratterizzano (leggi fisiche).

Il metodo scientifico (o sperimentale): fu introdotto e messo a punto da Galileo Galilei nel 16° secolo. Il metodo scientifico fonda la sua validità sull'osservazione e sulla sperimentazione (riproduzione in laboratorio degli eventi osservati).

I fenomeni fisici devono avere carattere di riproducibilità.

Nello studio di un fenomeno fisico il passo più importante è senza dubbio rappresentato dalla misura di quantità ben definite che caratterizzano l'evento sotto osservazione (misura di grandezze fisiche) e dalla ricerca delle possibili relazioni quantitative esistenti fra le grandezze fisiche che lo governano e lo caratterizzano (leggi fisiche).

A cosa servono le leggi fisiche?

A costruire un insieme consistente di relazioni analitiche (**teorie**), con le quale spiegare il comportamento della natura nelle sue più differenti manifestazioni (fenomeni meccanici, elettrici, magnetici etc.

Fisica: scienza basata sulla misura di grandezze fisiche.

Grandezze fisiche e loro misura:

Grandezza fisica: definizione.

Si intende una proprietà misurabile che caratterizza un evento fisico. Per definizione, quindi, una grandezza fisica è un ente caratterizzato da un numero e da una unità di misura

Due tipi di grandezze fisiche: fondamentali e derivate.

Grandezze fisiche fondamentali di interesse della Meccanica: lunghezza [L], tempo [T], massa [M].

Misura di una grandezza fisica è il numero che risulta dal confronto della grandezza da misurare con un'altra grandezza, ad essa omogenea, assunta come riferimento (detta campione di misura o unità di misura).

Unità di misura:

L'unità di misura è la denominazione esclusiva attribuita alla misura della grandezza assunta come riferimento.

Esempi di unità di misura (del S.I.):

- il *metro* è l'unità di misura della *lunghezza*;
- il secondo è l'unità di misura del tempo;
- il *chilogrammo* è l'unità di misura della *massa*.

N.B.: La misura di una grandezza fisica non può dirsi completa se al valore numerico non è associata <u>l'indicazione</u> della sua precisione, mediante <u>l'assegnazione</u> dell'errore (errore della misura).

Errori di misura:

Gli errori sperimentali derivano dall'indeterminazione con cui si associa ad una grandezza fisica il numero che ne esprime la misura, espressa in funzione di opportune unità di misura.

Esempi: distanza tra due punti (misura della lunghezza del segmento congiungente i due punti), temperatura di un corpo, la durata temporale di un evento, etc.

Gli errori di misura limitano la precisione con la quale si determina il valore numerico della grandezza fisica che si sta misurando. (Precisione ↔ Sensibilità)

Una misura è sicuramente significativa quando l'errore ad essa associato è <u>ben minore del valore numerico</u> della misura stessa.

Il grado di precisione di una misura viene espresso dal numero di cifre significative. All'aumentare del numero di cifre significative aumenta anche la precisione della misura di una grandezza fisica.

Ovviamente il <u>numero di cifre significative non può essere</u> grande a piacere, ma deve essere compatibile con le tecnica di misura usata.

Ad esempio, nella misura della distanza *l* tra due punti con un regolo millimetrato, non ha senso indicare il valore della misura oltre alla cifra dei millimetri.

Misura e misurazione delle grandezze fisiche:

Misurazione di una grandezza fisica: processo con cui si associa a una grandezza un <u>numero</u> che ne esprime la *misura* o l'*intensità*, in termini di una specifica <u>unità di misura</u>.

Definizione operativa delle grandezze fisiche:

Ogni grandezza fisica per poter essere considerata tale dev'essere **definita in modo operativo**, descrivendo cioè le modalità e le procedure per mezzo delle quali essa possa essere misurata.

Metodi di misura delle grandezze fisiche si distinguono in:

- metodi diretti , usati per la misura delle grandezze fisiche fondamentali (dette anche primitive);
- metodi indiretti (misura delle **grandezze fisiche derivate**).

Le grandezze fisiche derivate sono collegate alle grandezze fondamentali da una relazione matematica (= legge fisica).

Leggi fisiche e loro rappresentazione

Relazioni di natura matematica che legano fra loro differenti grandezze fisiche fondamentali per dare origine alle più svariate grandezze fisiche derivate.

- rappresentazione tabulare (mediante tabelle)
- rappresentazione grafica (scale lineari e scale logaritmiche)

Analisi dimensionale:

Proprietà specifica di una grandezze fisica fondamentale o derivata che sia è la sua dimensione.

Le dimensioni delle grandezze fondamentali sono lunghezza, tempo e massa sono convenzionalmente indicate dalle lettere L, T e M, racchiuse entro parentesi quadra: [L], [T] e [M].

Le dimensioni delle <u>grandezze derivate</u> sono ottenute direttamente per combinazione di quelle delle <u>grandezze</u> <u>fondamentali</u> attraverso le leggi fisiche che le legano.

Le equazioni della fisica sono relazioni fra grandezze fisiche e devono essere dimensionalmente consistenti, cioé tutti i suoi termini devono avere la stessa dimensione. Importanza dell'analisi dimensionale delle equazioni e leggi fisiche.

Le grandezze a-dimensionali sono considerate numeri puri.

Proprietà delle grandezze fisiche:

Grandezze metrizzabili e grandezze non-metrizzabili

- metrizzabili o estensive: grandezze per le quali si può definire un'operazione di somma (es.: lunghezza, tempo, massa, forza);
- non-metrizzabili o intensive (dette anche <u>variabili di stato</u>): sono grandezze per le quali non è possibile definire un'operazione di somma (es.: temperatura, densità, durezza).

Grandezze scalari e grandezze vettoriali

- grandezze scalari definite dalla intensità + unità di misura;
- grandezze vettoriali definite dall'*intensità*, *direzione e verso*, oltre che da un'unità di misura.

Grandezze fisiche e loro dipendenza dal tempo

- grandezze fisiche costanti nel tempo;
- grandezze variabili nel tempo;
- grandezze periodiche nel tempo;
- grandezze impulsive.

Nota Bene: La grandezza fondamentale tempo.

Il tempo nell'accezione comune: sequenza di stati mentali o, anche, successione di istanti (intervalli molti brevi di tempo!) Il tempo secondo la Fisica è la dimensione dell'universo che consente di ordinare la sequenza degli eventi che si verificano in un dato luogo.

Sistemi di unità di misura:

Mettendo insieme le unità di misura delle grandezze fondamentali si costruisce un sistema di unità di misura.

Esempi: il <u>sistema britannico</u> e il <u>sistema metrico decimale</u>

Il sistema metrico decimale si basa sulle grandezze primitive seguenti: *metro* [L], *secondo* [T] e *chilogrammo* [M].

<u>Fattori di conversione</u> fra le grandezze fisiche dei due diversi sistemi di unità di misura.

Tabella A.1. Unità di misura derivate dotate di nome proprio

Grandezza	Unità	Simbolo	Conversione	Note
Angolo piano	radiante	rad	$1 \operatorname{rad} = 1 \operatorname{mm}^{-1}$	
Angolo solido	steradiante	sr	$1 \operatorname{sr} = 1 \operatorname{m}^{2} \operatorname{m}^{-2}$	
Frequenza Forza Pressione Lavoro, energia, calore Potenza	hertz newton pascal joule watt	J	$1 \text{ Hz} = 1 \text{ s}^{-1}$ $1 \text{ N} = 1 \text{ m kg s}^{-2}$ $1 \text{ Pa} = 1 \text{ N m}^{-2}$ 1 J = 1 N m $1 \text{ W} = 1 \text{ J s}^{-1}$	
Carica elettrica Diff. di potenziale elettrice Capacità Resistenza elettrica Conduttanza elettrica Flusso magnetico Induzione magnetica Induttanza elettrica	coulomb yolt farad ohm siemens weber tesla henry	C V F Ω S Wb T H	$\begin{aligned} &1\mathrm{C} = 1\mathrm{A}\mathrm{s} \\ &1\mathrm{V} = 1\mathrm{W}\mathrm{A}^{-1} \\ &1\mathrm{F} = 1\mathrm{C}\mathrm{V}^{-1} \\ &1\mathrm{\Omega} = 1\mathrm{V}\mathrm{A}^{-1} \\ &1\mathrm{S} = 1\mathrm{\Omega}^{-1} \\ &1\mathrm{Wb} = 1\mathrm{V}\mathrm{s} \\ &1\mathrm{T} = 1\mathrm{Wb}\mathrm{m}^{-2} \\ &1\mathrm{H} = 1\mathrm{Wb}\mathrm{A}^{-1} \end{aligned}$	
Temperatura Celsius	grado Celsius	°C	$T(^{\circ}C)=T(K)-273$.15
Flusso luminoso	lumen	lm	1 lm = 1 cd sr	(1)
Illuminamento	lux	lx	$1 \text{ lx} = 1 \text{ lm m}^{-2}$	· (1)
Attività (di radionuclidi)	becquerel	Bq	$1 Bq = 1 s^{-1}$	(2)
Dose assorbita	gray	Gy	$1 Gy = 1 J kg^{-1}$	(2)
Dose equivalente	sievert	Sv	$1 Sv = 1 J Kg^{-1}$	(2)

Sistema Internazionale (S.I.) di Unità di Misura

Grandezza fondam. Unità Simbolo **Definizione** 1/299792458 lunghezza metro m dalla luce nel vuoto in 1 s 9192631770,0 secondo tempo S periodi della radiazione prodotta dalla transizione tra i due livelli iperfini dello stato fond. dell'atomo di Cesio 133 chilogrammo kg massa del campione massa di Pt-Ir conservato a Sevrès Kelvin K 1/273,15 della temperatura temperatura assoluta punto triplo dell'acqua

Il Sistema Internazionale (II)

- corrente elettrica ampère A intensità di corrente che in due conduttori rettilinei paralleli e di lunghezza infinita posti a distanza di 1 m produce una forza di 2 10⁻⁷N
- intensità luminosa candela **cd** intensità luminosa di una sorgente di frequenza 5 10 ¹⁴ Hz la cui intensità energetica é 1/683 W/sterad
- quantità di sostanza mole mol quantità di sostanza contenente tante "unità elementari" (atomi /molecole/ioni...) pari al numero di Avogadro

$$N_A = 6,02252 \ 10^{23}$$

Evoluzione nel tempo della definizione delle unità di misura

Esempio: la grandezza fondamentale "lunghezza"

1 metro ≡

) - 1/(4 • 10⁷) meridiani terrestri (1793) "metro campione": sbarra di platino

"metro campione": sbarra di platino -iridio (90% Pt, 10% Ir) conservata a Sevrès (Parigi); riproducibilità ≅10⁻⁷ (1889)

3) - 1.650.763,73
$$\lambda_{Cripton,nelvuoto}^{2p_{10} \to 5d_5}$$
 (1960)

4) - 1/299 792 458 dello spazio percorso dalla luce nel vuoto in 1 secondo (1983)