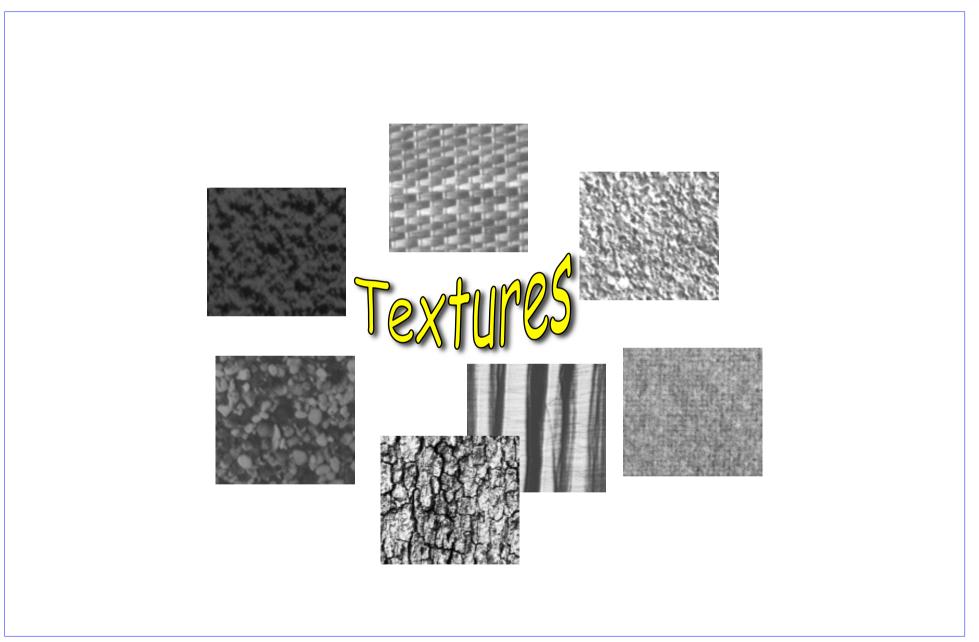
Wavelet Applications

Texture analysis&synthesis

Wavelet based IP

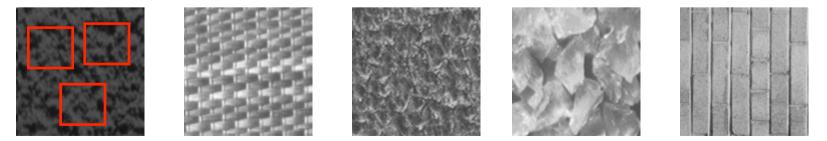
- Compression and Coding
 - The good approximation properties of wavelets allow to represent reasonably smooth signals with few non-zero coefficients → efficient wavelet based coding systems
 - DWT (critically sampled)
 - Among the most famous are
 - Embedded Zerotree Wavelet (EZW)
 - Layered Zero (LZ) Coding
 - Embedded Block Coding (EBCOT)
- Image denoising
- Image quality assessment

- Signal analysis
 - The good spatial and frequency domain localization properties make wavelet a powerful tool for characterizing signals
 - DWF (overcomplete)
 - Feature extraction
- Pattern recognition
 - Identification of structures in natural images
 - Curvelets, ridgelets
 - Identification of textures
 - Classification
 - Segmentation



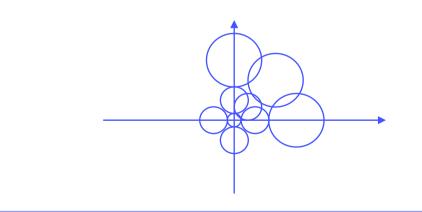
What is texture?

- No agreed reference definition
 - Texture is property of areas
 - Involves spatial distributions of grey levels
 - A region is perceived as a texture if the number of primitives in the field of view is sufficiently high
 - Invariance to translations
 - Macroscopic visual attributes
 - uniformity, roughness, coarseness, regularity, directionality, frequency [Rao-96]
 - Sliding window paradigm



Feature extraction for texture analysis

- Statistical methods
 - Textures as realizations of an underlying stochastic process
 - Spatial distributions of grey levels
 - Statistical descriptors
 - Subband histograms, co-occurrence matrices, autocorrelation, n-th order moments, MRFs...
 - A-priori assumptions
 - locality, stationarity, spatial ergodicity, parametric form for the pdf (Gaussian)

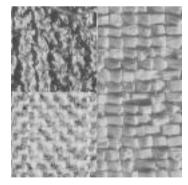


- Structural methods
 - Texture as sets of geometric structures
 - Descriptors
 - · primitives+placement rules
 - Suited for highly regular textures

- Multi-scale methods
 - Combined with statistical methods
 - Models of early visual processes
 - Multi-resolution analysis (wavelet based)
 - Gabor wavelets are optimal as they have maximum resolution in space and frequency

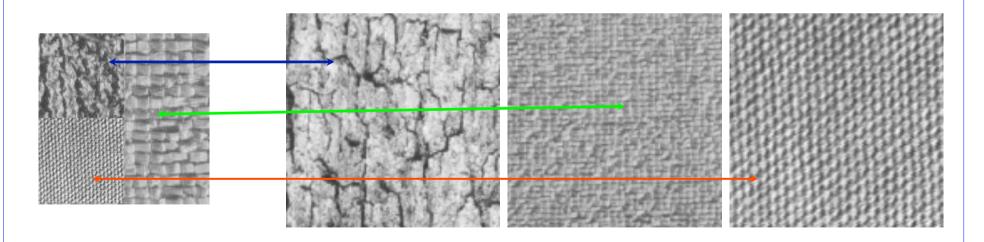
Texture analysis

- Texture segmentation
 - Spatial localization of the different textures that are present in an image
 - Does not imply texture recognition (classification)
 - The textures do not need to be *structurally* different
 - Apparent edges
 - Do not correspond to a discontinuity in the luminance function
 - Texture segmentation \rightarrow Texture segregation
 - *Complex* or *higher-order* texture channels



Texture analysis

- Texture classification (recognition)
 - Hypothesis: textures pertaining to the same class have the same visual appearance → the same perceptual features
 - Identification of the class the considered texture belongs to within a given set of classes
 - Implies texture recognition
 - The classification of different textures within a composite image results in a segmentation map



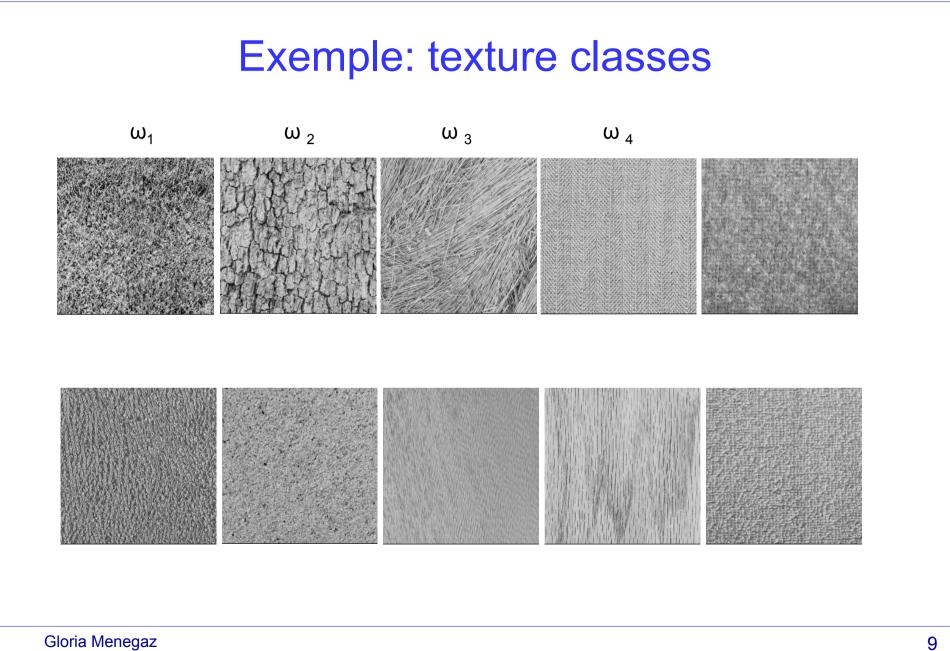
Texture Classification

- Problem statement
 - Given a set of classes $\{\omega_i, i=1,...N\}$ and a set of observations $\{x_{ijk}, k=1,...M\}$ determine the most probable class, given the observations. This is the class that maximizes the conditional probability:

$$\omega_{winner} = \max_{k} P(\omega_i | x_k)$$

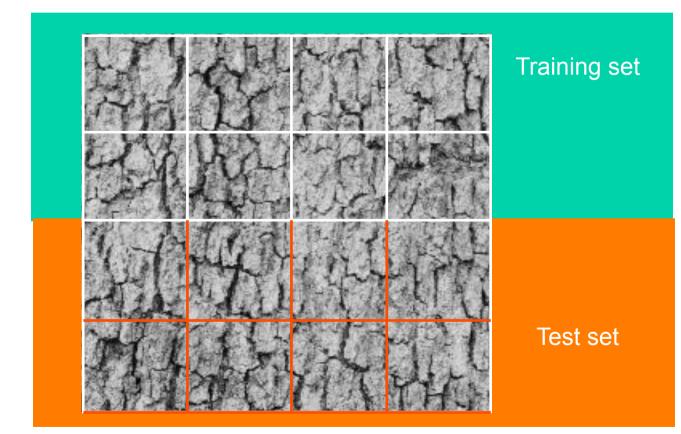
• Method

- Describe the texture by some *features* which are related to its *appearance*
 - Texture \rightarrow class $\rightarrow \omega_k$
 - Subband statistics \rightarrow Feature Vectors (FV) $\rightarrow x_{i,k}$
- Define a distance measure for FV
 - Should reflect the perceived similarity/dissimilarity among textures (unsolved)
- Choose a classification rule
 - Recipe for comparing FV and choose 'the winner class'
- Assign the considered texture sample to the class which is the *closest* in the feature space



FV extraction

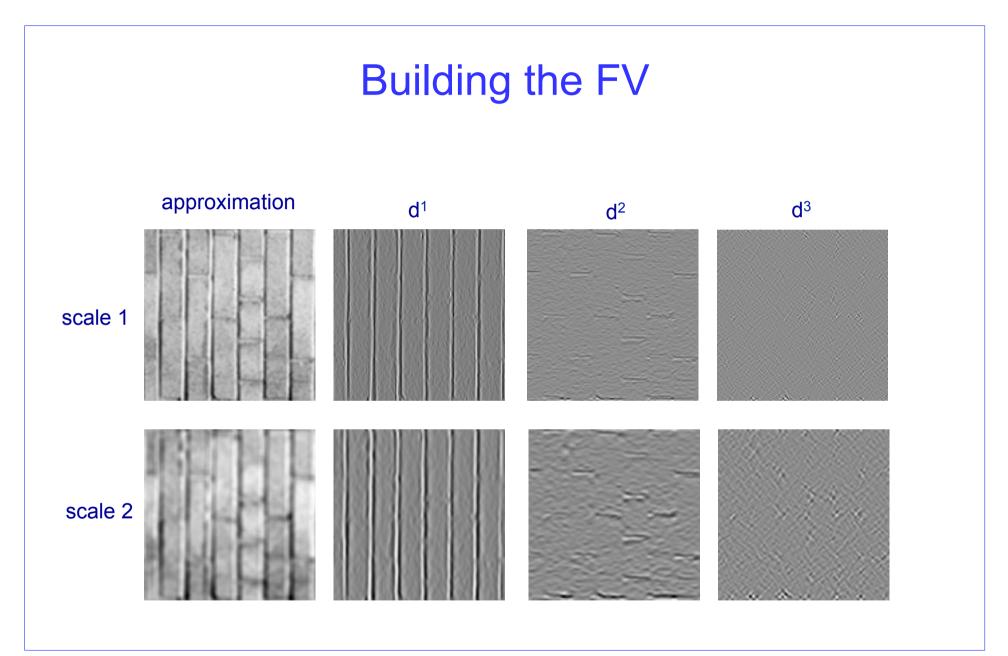
• Step 1: create independent texture instances

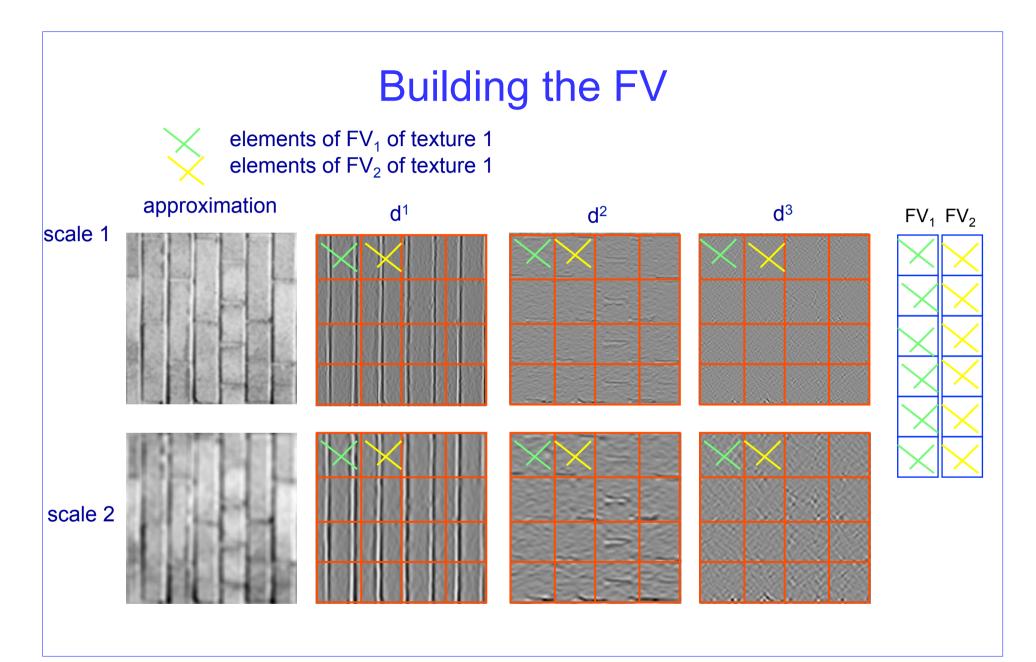


Feature extraction

• Step 2: extract features to form *feature vectors*

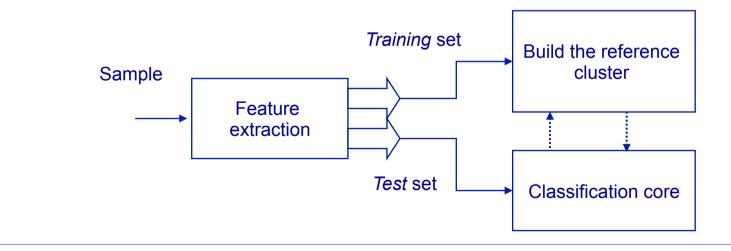


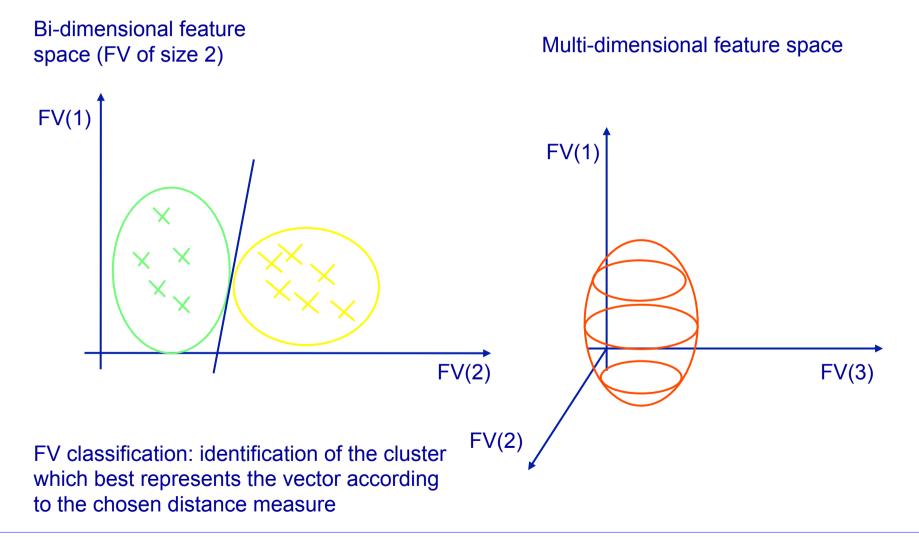




Implementation

- Step 1: Training
 - The classification algorithm is provided with many examples of each texture class in order to build clusters in the feature space which are representative of each class
 - Examples are sets of FV for each texture class
 - Clusters are formed by aggregating vectors according to their "distance"
- Step 2: Test
 - The algorithm is fed with an example of texture ω_i (vector $x_{i,k}$) and determines which class it belongs as the one which is "closest"



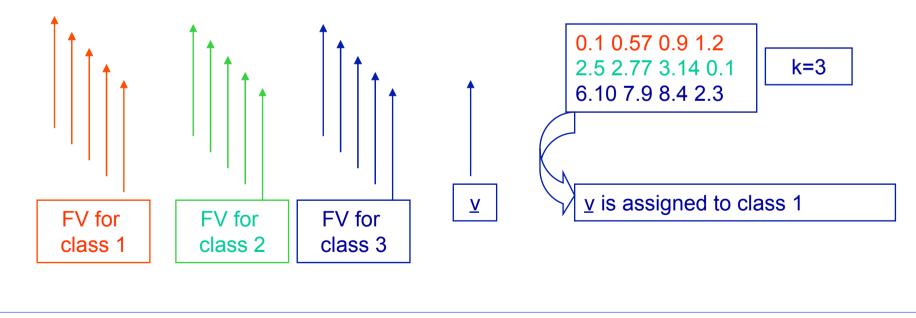


Classification algorithms

- Measuring the distance among a <u>class</u> and a <u>vector</u>
 - Each class (set of vectors) is represented by the <u>mean</u> (<u>m</u>) vector and the vector of the <u>variances</u> (<u>s</u>) of its components \Rightarrow the training set is used to build <u>m</u> and <u>s</u>
 - The distance is taken between the test vector and the <u>m</u> vector of each class
 - The test vector is assigned to the class to which it is closest
 - Euclidean classifier
 - Weighted Euclidean classifier
- Measuring the distance among <u>every couple</u> of vectors
 - kNN classifier

kNN classifier

- Given a vector <u>v</u> of the test set
 - Take the distance between the vector \underline{v} and ALL the vectors of the training set
 - (while calculating) keep the k smallest distances and keep track of the class they correspond to
 - Assign v to the class which is <u>most represented</u> in the set of the k smallest distances



Confusion matrix

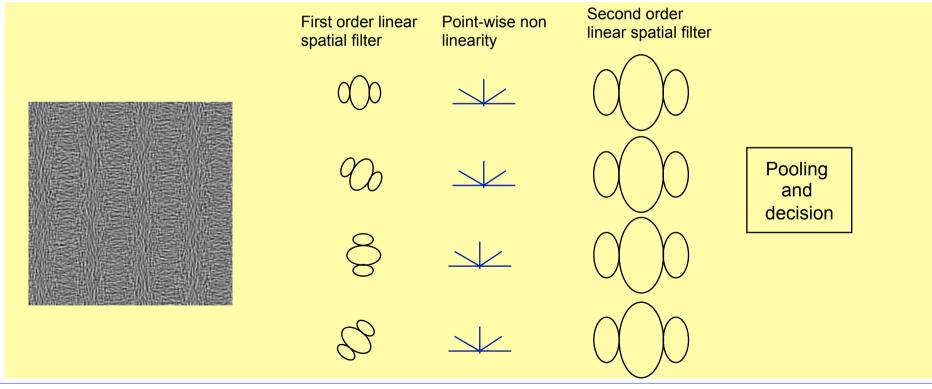
								_			
textures	1	2	3	4	5	6	7	8	9	10	% correct
1	841	0	0	0	0	0	0	0	0	0	100.00%
2	0	840	1	0	0	0	0	0	0	0	99.88%
3	2	0	839	0	0	0	0	0	0	0	99.76%
4	0	0	0	841	0	0	0	0	0	0	100.00%
5	0	0	88	0	753	0	0	0	0	0	89.54%
6	0	0	134	0	0	707	0	0	0	0	84.07%
7	0	66	284	0	0	0	491	0	0	0	58.38%
8	0	0	58	0	0	0	0	783	0	0	93.10%
9	0	0	71	0	0	0	0	0	770	0	91.56%
10	0	4	4	0	0	0	0	0	0	833	99.05%
				Average recognition rate							<mark>91.53%</mark>

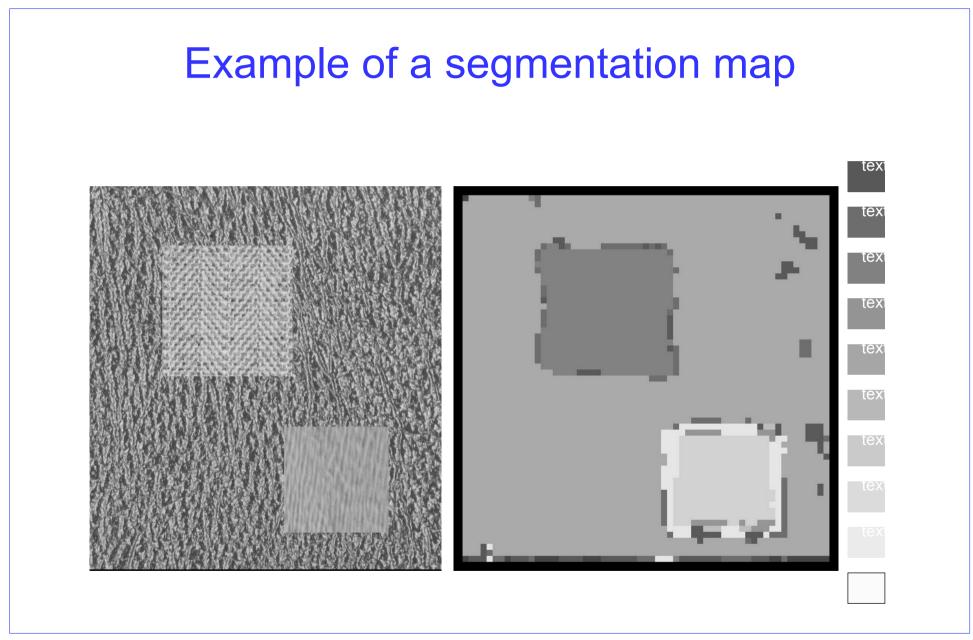
Texture Segmentation

- Problem statement
 - Given an image, identify the *regions* characterized by different features
- How?
 - Same approach used for classification
 - Key difference: focus on *feature gradients*, namely local discontinuities in feature space represented by *differences* in feature vectors
 - If feature vectors are collections of local variances, it is the difference in such a parameter that is assumed to reveal the presence of an apparent edge
- Noteworthy
 - More in general, segmentation is based on image interpretation, which is very difficult to model
 - Often "supervised"
 - Tailored on the application: no golden rule for segmentation!
 - Key point: image interpretation and semantics

Relation to complex texture channels

- Model for pre-attentive texture segregation
 - LNL (linear-non linear-linear) model
 - The idea is to detect low spatial frequency features of high spatial frequency first-stage responses [Landi&Oruc 2002]





Texture synthesis

- Define a generative model to create new textures having the same *visual* appearance of the original one
- Structural methods
 - Crystal growth
 - Highly structured and regular textures

- Stochastic methods
 - Reproduce statistical descriptors
 - Co-occurrence matrices, autocorrelation features, MRF
 - Very natural
 - Could require parameter estimation
 - Usually high computational cost

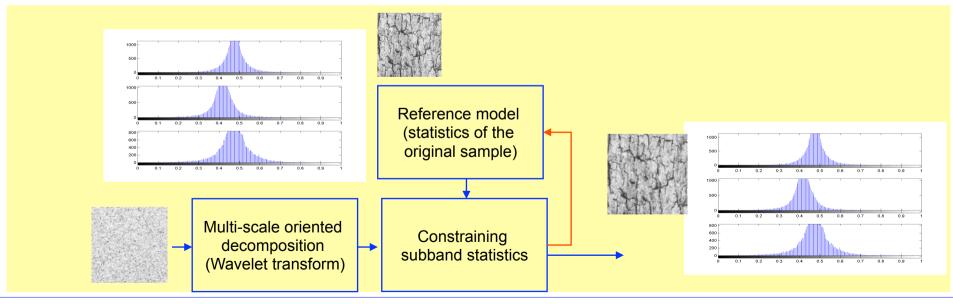
- Multi-scale methods
 - Reproduce Intra-band and Inter-band relationships among subband coefficients
 - pixel statistics, subband marginals and covariance, subband joint distributions
 - Explicit or Implicit
 - Suitable for both natural and artificial structured textures

Recipe for perceptual texture synthesis

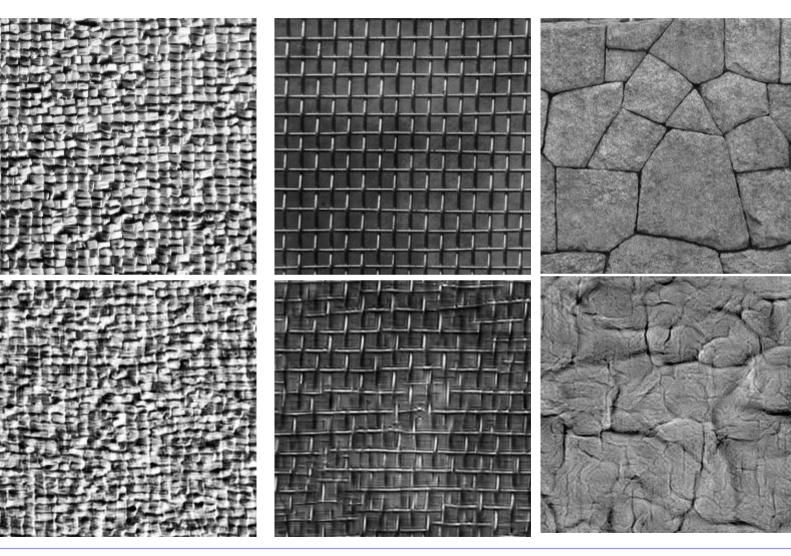
- Consider the image as a realization of an underlying stochastic process
- Define a stochastic model for the stimulus as well as criterion for sampling from the corresponding distribution and generating a new realization
- Possible approaches
 - Parametric techniques: explicit constraining of statistical parameters
 - Filters Random fields And Maximum Entropy (FRAME) model [Zhu&Mumford-05]
 - Constraining Joint statistics of subband coefficients [Portilla&Simoncelli-00]
 - Non parametric techniques
 - Multi-resolution probabilistic texture modeling [De Bonet-97]
 - DWT based non parametric texture synthesis [Menegaz-01]

Portilla&Simoncelli

- Statistical parameters
 - Marginal and joint subband statistics
 - Variance and other 2nd order moments
 - Auto and mutual correlations between subbands
 - Magnitude correlations \rightarrow non-linearity
 - Self and mutual correlations between *phase* images

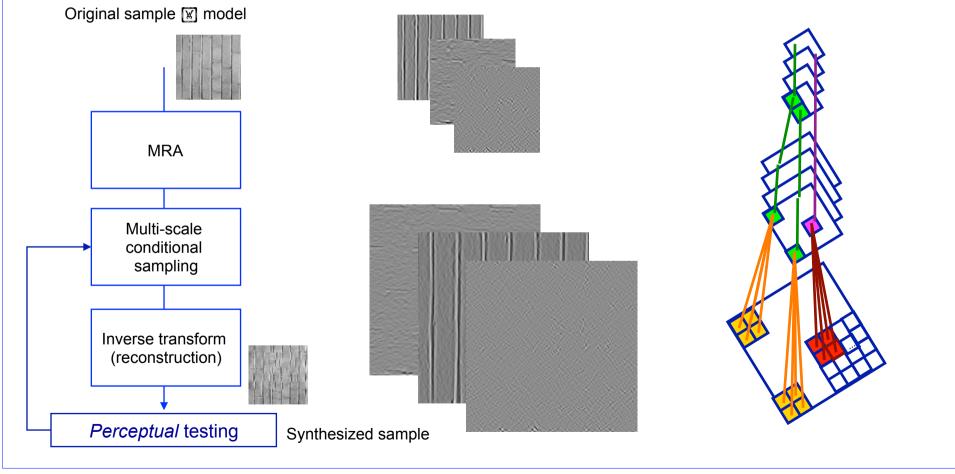


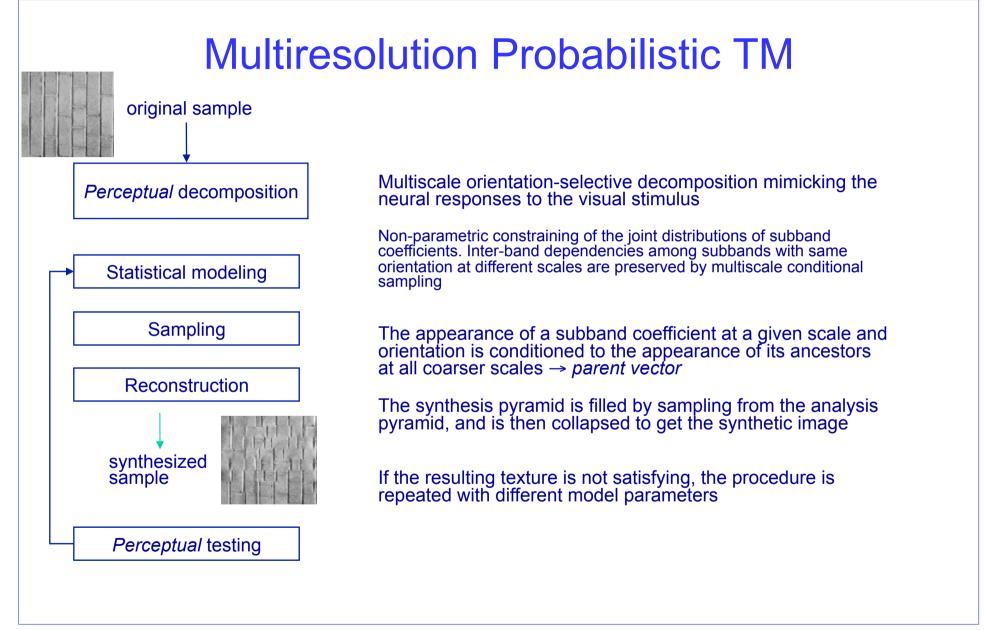
Portilla&Simoncelli



DWT based texture synthesis

• Controlled shuffling of hierarchies of wavelet coefficients

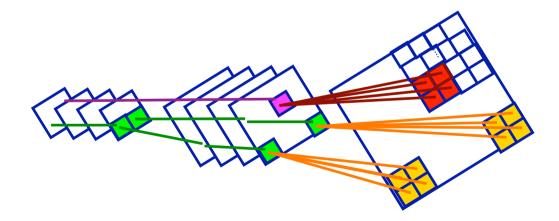




Formally

Feature Vector (M: #feature images, N:# of levels):

$$\begin{split} \vec{V}(x,y) &= [F_0^0(x,y), F_0^1(x,y), \dots, F_0^M(x,y), \\ F_1^0\left(\frac{x}{2}, \frac{y}{2}\right), F_1^1\left(\frac{x}{2}, \frac{y}{2}\right), \dots, F_1^M\left(\frac{x}{2}, \frac{y}{2}\right), \dots, \\ F_N^0\left(\frac{x}{2^N}, \frac{y}{2^N}\right), F_N^1\left(\frac{x}{2^N}, \frac{y}{2^N}\right), \dots, F_N^M\left(\frac{x}{2^N}, \frac{y}{2^N}\right)] \end{split}$$



Non-parametric Model

Chain across scales:

$$\begin{split} p(\vec{V}(x,y)) &= p(\vec{V}_N(x,y)) \times p(\vec{V}_{N-1}(x,y) | \vec{V}_N(x,y)) \\ &\times p(\vec{V}_{N-2}(x,y) | \vec{V}_{N-1}(x,y), \vec{V}_N(x,y)) \times \dots \\ &\times p(\vec{V}_0(x,y) | \vec{V}_1(x,y), \dots, \vec{V}_{N-1}(x,y), \vec{V}_N(x,y)) \end{split}$$

$$p(\vec{V}_{l}(x,y)|\vec{V}_{l+1}^{N}(x,y)) = \frac{p(\vec{V}_{l}^{N}(x,y))}{p(\vec{V}_{l+1}^{N}(x,y))} \approx \frac{\sum_{x',y'} \varphi(\vec{V}_{l}^{N}(x,y), \vec{S}_{l}^{N}(x',y'))}{\sum_{x',y'} \varphi(\vec{V}_{l+1}^{N}(x,y), \vec{S}_{l+1}^{N}(x',y'))}$$

 $\vec{V}_l(x, y)$: subvector concerning level *l* $\vec{V}_l(x, y)$: subvector concerning levels *l* to *k* $\varphi(\vec{v}, \vec{s})$: returns $z \neq 0$ if $d(\vec{v}, \vec{s}) \leq \vec{T}$

Conditional Sampling

Choosing a rectangular window, sampling from

$$p(\vec{V}_l(x,y)|\vec{V}_{l+1}^N(x,y))$$

reduces to finding all x', y' such that:

$$\sum_{x',y'} \phi(\vec{V}_{_{l+1}}^{N}(x,y),\vec{S}_{_{l+1}}^{N}(x',y')) = z$$

and pick up randomly one of them to set:

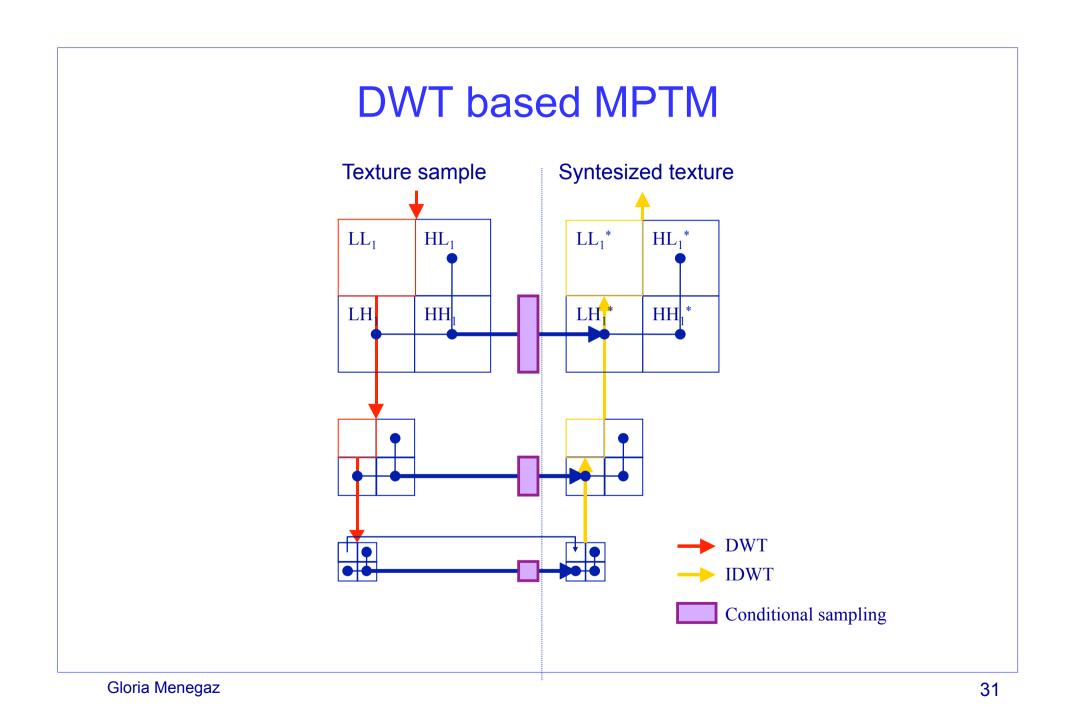
$$\vec{V}_l(x,y) = \vec{S}_l(\overline{x}',\overline{y}')$$

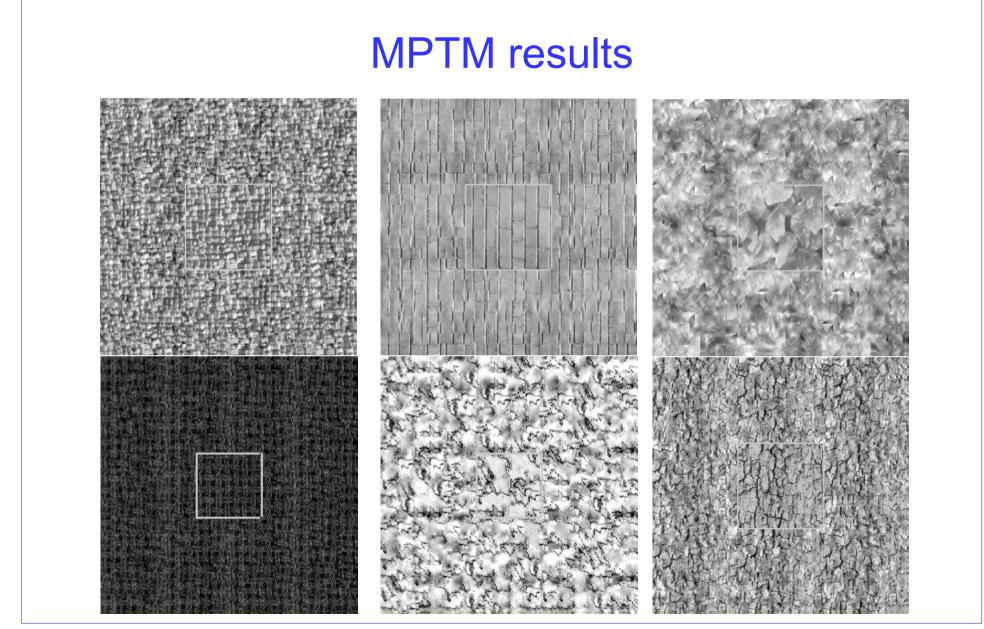
Candidate set for position (x, y) at level *i*:

$$C_i(x, y) = \{(x', y') : D(\vec{V}_{_{l+1}}^N(x, y), \vec{S}_{_{l+1}}^N(x', y')) \le \vec{T}_i\}$$

critical parameter: box size \Leftrightarrow threshold vector

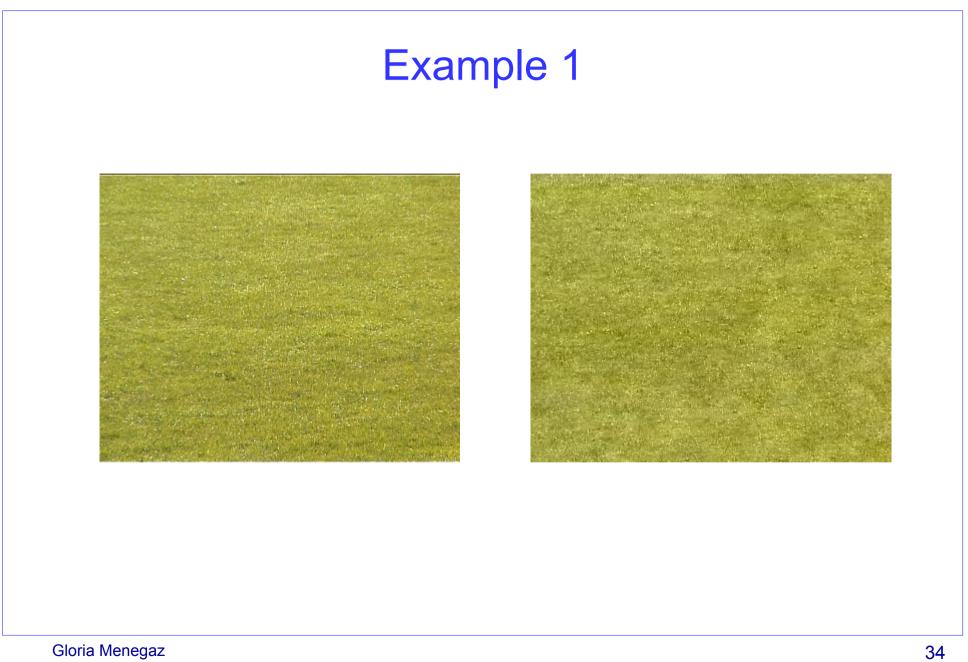
$$\sigma_{\alpha} = \sqrt{\frac{1}{N_{\alpha} - 1} \sum_{x, y} (F^{\alpha}(x, y) - \mu_{\alpha})}$$

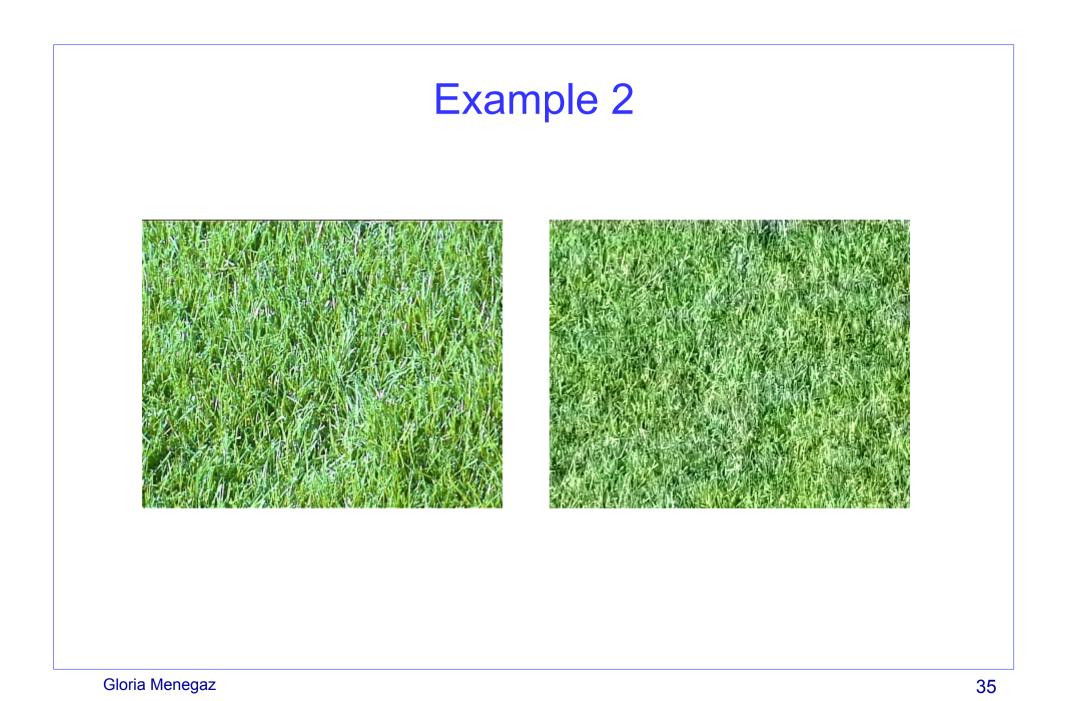




Generalization to 2D+1 Textures

- 2D+1 textures are meant as the result of the observation of a realization of a stochastic 2D process by a moving observer
 - Temporal features are due to the change of the observation point of view
 - Key point: preserve the temporal relation between successive images in the sequence
 - Major issue: define a *growing rule* for subband regions simulating any displacement in image space
- Hypothesis
 - The motion is given
 - The trajectory is piece-wise linear
- Guideline
 - Integrate the motion information within the DWT-based Multiresolution Probabilistic Texture Modeling (MPTM) algorithm [Menegaz-00]
- Advantages
 - Suitable for the integration in a coding system
 - Low complexity \rightarrow running in real time





Color Textures Textures ⇔ Color distributions with a spatial structure

- When different color distributions are perceptually equivalent?
- How do *texture* and *color* interact?

On going research