
University of Verona

A.A 2017/2018

Laboratory of
Networked Embedded Systems

Lesson 1
SystemC Network Simulation Library (SCNSL)

Davide Quaglia, Valentina Ceoletta, Enrico Fraccaroli

May 7, 2018

Contents

1 Introduction 3
1.1 Network Simulation . 3
1.2 SystemC Network Simulation Library 3
1.3 SCNSL components . 3

1.3.1 Task . 3
1.3.2 Task Proxy . 4
1.3.3 Communicator . 4
1.3.4 Node . 5
1.3.5 Channel . 5
1.3.6 Environment . 5

2 Installation and Setup 6
2.1 Requirements . 6

2.1.1 General important remarks 6
2.2 Directory structure . 7
2.3 SystemC Installation . 8
2.4 SCNSL Installation . 8

2.4.1 LaTeX and Doxygen fix 9

3 Network Scenario Creation 10
3.1 Creation Steps . 10

3.1.1 Instantiation of the SCNSL Simulator 10
3.1.2 Instantiation of the Environment 11
3.1.3 Instantiation of the physical Nodes 11
3.1.4 Instantiation of the physical Channels 11
3.1.5 Binding of nodes to channels, and setting of nodes’

properties . 11
3.1.6 Instantiation of the Tasks 12
3.1.7 Instantiation of communicators (optional) 12
3.1.8 Binding of tasks, communicators (optional) and channels 12
3.1.9 Setting tracing features 13

1

3.1.10 Creating custom tasks 13
3.1.11 Example of Binding . 14

4 Exercises 15
4.1 Exercises Setup . 15

4.1.1 Compile the exercises 15
4.1.2 Execute the exercises 15

4.2 Exercise 1: Two Nodes . 16
4.3 Exercise 2: Three Nodes with Router 16
4.4 Exercise 3: Temperature Monitoring for Building Automation 17

4.4.1 Exercise 3.1 . 17
4.4.2 Exercise 3.2 . 18

2

Chapter 1

Introduction

1.1 Network Simulation
Network simulation allows to reproduce the behavior of both computational
and communication aspects of a network, modeling packet-based networks
such as Ethernet, wireless LAN and field bus.

1.2 SystemC Network Simulation Library
SystemC Network Simulation Library (SCNSL) is an extension of SystemC
to allow modeling packet-based networks such as wireless networks, Ether-
net, and fieldbus. As done by basic SystemC for signals on the bus, SCNSL
provides primitives to model packet transmission, reception, contention on
the channel and wireless path loss. The use of SCNSL together with Sys-
temC allows the easy and complete modeling of distributed applications of
networked embedded systems such as wireless sensor networks, routers, and
distributed plant controllers.

1.3 SCNSL components

1.3.1 Task

Tasks contain the application blocks interacting with the network, that is
the system functionality which is under development. Tasks shall be imple-
mented by designers either at RTL or TLM level. From the point of view of
the network simulator, a task is just the producer or consumer of packets and
therefore its implementation is not important. For the system designer, task

3

Figure 1.1: SCNSL components

implementation is crucial and many operations are connected to its mod-
eling (i.e., change of abstraction level, validation, fault injection, HW/SW
partitioning, mapping to an available platform, synthesis and so forth).

1.3.2 Task Proxy

Task proxy acts as an intermediate layer between designer’s domain and
simulator domain. Each Task instance is connected to one or more TaskProxy
instances and, from the perspective of the network simulation kernel, the
TaskProxy instance is the alter-ego of the task. Viceversa, from the point
of view of the application, each TaskProxy can represent a sort of socket
interface, since it provides the interfaces for network communication.

1.3.3 Communicator

Communicator instances are created by SCNSL developers to modify sim-
ulation behavior. For example, they can be used to implement queues and
protocols. Their presence is not mandatory.

4

1.3.4 Node

Nodes are abstraction of physical devices. Tasks are hosted by Nodes. Tasks
deployed on different nodes shall communicate by using the API provided by
SCNSL for the network communication, while tasks deployed on the same
node shall communicate by using standard SystemC communication primi-
tives.

1.3.5 Channel

Channels are models the physical transmission medium. Point-to-point and
shared (multi-point) channels are available.

1.3.6 Environment

Environment represents some properties of the environment that contains
nodes. It provides functions to get informations related to the transmissions
of packets (e.g., delay, attenuation, error rate, etc.).

5

Chapter 2

Installation and Setup

2.1 Requirements
The installation process requires the following items

• Linux 32/64bit

• SystemC 2.3.2 with C++17 option

• cmake

• A C++ compiler and a linker

• Doxygen, for the documentation

• Latex, for the documentation

2.1.1 General important remarks

This document will help you to install SystemC 2.3.2, SCNSL and exercises,
in that exact temporal sequence. If something goes wrong during each of the
three steps, please delete and re-create the corresponding “build/” folder to
avoid that partial wrong configuration files are used.

Furthermore, you have to compile SystemC 2.3.2 with C++17 option
which is not the default setup for SystemC. Therefore, it is recommended to

• recompile and re-install it with the following instructions

• remove previous SystemC (and SCNSL of course) info in INCLUDE,
PATH and LD_LIBRARY_PATH environment variables

6

2.2 Directory structure
Let us assume that you are in your HOME directory which has the following
directory structure:
HOME

|-- Software
\-- systemc -2.3.2. tar.gz

Create a bash script to export the environment variables in your current shell
environment:
gedit setup -env.sh
chmod +x setup -env.sh

and add the following lines:

• Export the root directory of SystemC.
export SYSTEMC_HOME=${HOME}/ Software/systemc

• Add its include directory to the PATH variable
export INCLUDE=${SYSTEMC_HOME }/ include

• Add the path to the library directory to PATH
export PATH=${PATH}:${SYSTEMC_HOME }/lib

• Add it also to the variable LD_LIBRARY_PATH
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH }:${SYSTEMC_HOME }/lib

• Export the root directory where the scnsl library will be installed
export SCNSL_HOME=${HOME}/ Software/scnsl -stable -linux -x86_64

• Add to PATH its include directory
export PATH=${PATH}:${SCNSL_HOME }/ include

• Add to LD_LIBRARY_PATH its library directory
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH }:${SCNSL_HOME }/lib

7

2.3 SystemC Installation
SystemC can be downloaded at
http ://www.accellera.org/downloads/standards/systemc

Then, download the last release. For the rest of the procedure we will use the
names and version of tools up to the date of May 7, 2018. You should see the
version SystemC 2.3.2 (Includes TLM), and the link Core SystemC
Language and Examples. This will download a compressed file which
contains the source codes of SystemC. Then in the Downloads folder, unpack
the compressed file:
tar xvf systemc -2.3.2. tar.gz

Move inside the folder:
cd systemc -2.3.2

Create and move inside a build directory:
mkdir build
cd build

Run cmake in order to generate the Makefile:
cmake -DCMAKE_CXX_STANDARD =17 -DCMAKE_INSTALL_PREFIX=<path > ..

In this case replace <path> with the path where you want to install SystemC:
<path > = $HOME/Software/systemc

Afterwards, compile and install it:
make install

2.4 SCNSL Installation
SCNSL is available to be downloaded at:
https :// sourceforge.net/projects/scnsl/

If you have installed the Git version control system, you can get the most
updated version of the library, directly from the repository:
cd $HOME
git clone git://git.code.sf.net/p/scnsl/git -code scnsl

At this point, run the script written before in order to export the en-
vironment variables (please, note the dot and space before the path of the
script):

8

. ./setup -env.sh

Move inside the scnsl directory:
cd scnsl

Create and move inside a build directory:
mkdir build
cd build

Run cmake in order to generate the Makefile
cmake ..

Compile the library
make

Then compile all the tests
make tests

Install the library
make install

Copy the compiled library inside the Software folder on your root
mv scnsl -stable -linux -x86_64/ ${HOME}/ Software/

2.4.1 LaTeX and Doxygen fix

If LaTex and Doxygen and not installed and you do not want to use them,
you can eliminate CMake-level check by opening a specific CMake script
executed during the generation of the Makefile, that is
gedit ../ scripts/FindScnsl.cmake

and removing
find_package(EdalabLatex REQUIRED)
find_package(EdalabDoxygen REQUIRED)

9

Chapter 3

Network Scenario Creation

3.1 Creation Steps
The steps required to create a network scenario with SCNSL are the following:

1. Instantiation of the SCNSL Simulator.

2. Instantiation of the Environment.

3. Instantiation of the physical Nodes.

4. Instantiation of the physical Channels.

5. Binding of nodes to channels, and setting of nodes’ properties.

6. Instantiation of the Tasks.

7. Instantiation of communicators (optional).

8. Binding of tasks, communicators (optional) and channels.

9. Setting of tracing features.

10. Creation of custom tasks.

3.1.1 Instantiation of the SCNSL Simulator

It is important, first of all, to create an instance of the SCNSL Simulator;
the instance is a singleton and provides the methods for creating the scenario
components. Instantiate the simulator as follows:� �
Scnsl :: Setup:: Scnsl_t * sim = Scnsl:: Setup:: Scnsl_t :: get_instance ();� �

10

3.1.2 Instantiation of the Environment

This object can be used to model, manage and get some properties related
to the environment.� �
Scnsl :: Utils:: DefaultEnvironment_t :: createInstance(ALPHA_VALUE);� �
3.1.3 Instantiation of the physical Nodes

A node can be created with the following code:� �
Scnsl ::Core:: Node_t * NODE_NAME = sim ->createNode ();� �
3.1.4 Instantiation of the physical Channels

A channel can be created and set as follows:� �
CoreChannelSetup_t CHANNEL_SETUP;

CHANNEL_SETUP.name = "full_duplex_channel";
CHANNEL_SETUP.extensionId = "core";
CHANNEL_SETUP.channel_type(CoreChannelSetup_t :: FULL_DUPLEX);
CHANNEL_SETUP.capacity = 1000;
CHANNEL_SETUP.capacity2 = 1000;
CHANNEL_SETUP.delay = sc_core :: sc_time(1, sc_core ::SC_MS);

Scnsl ::Core:: Channel_if_t * CHANNEL_NAME = sim ->createChannel(CHANNEL_SETUP);� �
3.1.5 Binding of nodes to channels, and setting of nodes’

properties

First, for each transmission between pairs of tasks must be defined a unique
bindIdentifier as follows:� �
BindSetup_base_t BIND_SETUP;
BIND_SETUP.extensionId = "core";
BIND_SETUP.bindIdentifier = "bind_id";
BIND_SETUP.destinationNode = DESTINATION_NAME;
BIND_SETUP.node_binding.bitrate = Scnsl:: Protocols :: YOUR_PROTOCOL :: BITRATE;
BIND_SETUP.node_binding.transmission_power = 100;
BIND_SETUP.node_binding.receiving_threshold = 10;
BIND_SETUP.node_binding.x = 1;
BIND_SETUP.node_binding.y = 1;
BIND_SETUP.node_binding.z = 1;� �
The bindIdentifier plays the role of network interface and is used by the
task to set the TaskProxy specific of the destination task. Then, each node
has to be bound to each channel to which it is connected. The BindSetup
object (BIND_SETUP_NAME) is used to set some node’s properties, in addition

11

to the bindIdentifier.
Then, the structure is used to bing a given node and a channel:� �
sim ->bind(NODE_NAME , CHANNEL_NAME , BIND_SETUP);� �
3.1.6 Instantiation of the Tasks

In order to instantiate a task use the following code:� �
MYTASK_T * TASK_NAME("task_name", TASK_ID , NODE_NAME , PROXIES);� �
3.1.7 Instantiation of communicators (optional)� �
CoreCommunicatorSetup_t COMMUNICATOR_SETUP;

COMMUNICATOR_SETUP.extensionId = "core";
COMMUNICATOR_SETUP.name = "the_communicator_name";
COMMUNICATOR_SETUP.type =
CoreCommunicatorSetup_t :: MAC_802_15_4;
COMMUNICATOR_SETUP.node = NODE_OF_THE_COMMUNICATOR;

// Eventually set here other properties ...

Scnsl ::Core:: Communicator_if_t *
REFERENCE_PROTOCOL_COMMUNICATOR =

sim ->createCommunicator(COMMUNICATOR_SETUP);� �
3.1.8 Binding of tasks, communicators (optional) and

channels

Communicators can be put between tasks and channels:� �
sim ->bind(REFERENCE_TASK_NAME ,

DESTINATION_TASK_NAME ,
REFERENCE_CHANNEL_NAME ,
BIND_SETUP ,
REFERENCE_COMMUNICATOR_NAME);� �

• The destination task can be NULL for broadcast transmission or if the
reference task is a receiver task;

• Each binding of Task/Channel/(Communicator) generates a TaskProxy
instance.

12

3.1.9 Setting tracing features

SCNSL provides tracing capabilityes via an object named Tracer. A tracer
object combines two utility objects: a Filter and a Formatter.� �
CoreTracingSetup_t SETUP;

SETUP.extensionId = "core";
SETUP.filterExtensionId = "core";
SETUP.formatterExtensionId = "core";
SETUP.filterName = "base_filter";
SETUP.formatterName = "base_formatter";
SETUP.print_trace_type = true;
SETUP.info = 5;
SETUP.debug = 0;
SETUP.log = 5;
SETUP.error = 0;
SETUP.warning = 0;
SETUP.fatal = 0;

Scnsl_t :: Tracer_t * TRACER = scnsl ->createTracer(SETUP);� �
3.1.10 Creating custom tasks

SCNSL is used to simulate network application. Therefore, users will provide
application code into custom tasks.
The following example defines the structure of the task class inside the file
Hello_t.hh:� �

1 #include <systemc >
2 #include <scnsl.hh >
3
4 class Hello_t :
5 public Scnsl::Tlm:: TlmTask_if_t
6 {
7 ...
8 SC_HAS_PROCESS(Hello_t);
9 ...

10 /// @brief Constructor.
11 /// @param name This module name.
12 /// @param id This module unique ID.
13 /// @param n The node on which this task is placed.
14 /// @param proxies The number of connected task proxies.
15 /// @param is_sender Switches this task behavior.
16 /// @throw std:: invalid_argument If proxies is zero.
17 Hello_t(sc_core :: sc_module_name name ,
18 const task_id_t id,
19 Scnsl ::Core:: Node_t * n,
20 const size_t proxies ,
21 const bool is_sender) throw (std:: invalid_argument);
22 ...
23 // The standard TLM blocking transport , used to receiving:
24 virtual void b_transport(tlm:: tlm_generic_payload & p,
25 sc_core :: sc_time & t);
26 ...
27 // The routine sending the message.
28 void sendingRoutine ();

13

29 };� �
The constructor accepts a flag, is_sender, which will be used by the ap-
plication to have a sender or receiver behavior. All the other constructor
parameters are required by the parent.
The implementation of such task could be the following, contained in a file
named Hello_t.cc:� �

1 #include "Hello_t.hh"
2 Hello_t :: Hello_t(sc_core :: sc_module_name name ,
3 const task_id_t id,
4 Scnsl ::Core:: Node_t * n,
5 const size_t proxies ,
6 const bool is_sender) throw (std:: invalid_argument):
7 Scnsl ::Tlm:: TlmTask_if_t(name , id, n, proxies)
8 {
9 if (is_sender)

10 {
11 SC_THREAD(sendingRoutine);
12 }
13 }� �
3.1.11 Example of Binding

Task1 Task2

Node1 Node2

Channel

� �
1 MyTask * Task1("Task1", 0, Node1 , 1);
2 MyTask * Task2("Task2", 1, Node2 , 1);
3 ...
4 bsb0.bindIdentifier = "Task1_Task2";
5 bsb1.bindIdentifier = "Task2_Task1";
6 ...
7 sim ->bind(Node1 , Channel , bsb0);
8 sim ->bind(Node2 , Channel , bsb1);
9 ...

10 sim ->bind(&Task1 , &Task2 , Channel , bsb0 , NULL);
11 sim ->bind(&Task2 , NULL , Channel , bsb1 , NULL);� �

14

Chapter 4

Exercises

4.1 Exercises Setup

4.1.1 Compile the exercises

Recover and enter the “source/” folder provided with this tutorial.
cd source

Create the “build/” folder and move inside it.
mkdir build
cd build

Execute cmake and pass directly the library
cmake -DCMAKE_CXX_STANDARD =17 -DLIB_SCNSL=<lib path > ..

Where <lib path> is the path of SCNSL lib:
<lib path > = ${HOME}/ Software/scnsl -stable -linux -x86_64/lib/libscnsl.so

Compile the code
make

4.1.2 Execute the exercises

Execute each exercise and redirect its output to a text file
./ Two_Nodes > Two_Nodes.log
./ Three_Nodes_with_Router > Three_Nodes_with_Router.log
./ Temperature_Monitoring 15 > Temperature_Monitoring.log

Use the script calculatePLR.sh (inside the “source/” folder) to calculate
the Packet Loss Rate (PLR). The script takes as only parameter a text file
containing the simulation traces.

15

../ calculatePLR.sh Two_Nodes.log

../ calculatePLR.sh Three_Nodes_with_Router.log

../ calculatePLR.sh Temperature_Monitoring.log

4.2 Exercise 1: Two Nodes
n0 n1

Sensor Collectorch

Calculate the minimum transmitting power of the sensor node n0. Mantain
unchanged the distance between nodes.

Hint: if the transmitting power is lower than the minimum transmitting
power, no packets will arrive to the receiver, i.e., Packet Loss Rate (PLR)=100%.

4.3 Exercise 2: Three Nodes with Router
n0 n1 n2

Sensor Router Collector

ch

1. Calculate the delay:

• Sensor-to-Router

• Router-to-Collector

• Sensor-to-Collector

2. Calculate the Packet Loss Rate (PLR).

3. Calculate the minimum transmitting power, both for sensor node n0

and router node n1, mantaining unchanged the distances between nodes.

16

4.4 Exercise 3: Temperature Monitoring for
Building Automation

CN,1 SN,2 SN,3 . . . SN,N

.

.

C2,1 S2,2 S2,3 . . . S2,N

C1,1 S1,2 S1,3 . . . S1,N

Floor N

Floor 2

Floor 1

Room 1 Room 2 Room 3 Room N

• N floors

• N rooms for each floor

• 1 controller for each floor

• 1 sensor for each room (#sensors > 0)

• Each sensor sends the detected temperature to the controller of its floor

4.4.1 Exercise 3.1

C S2 S3 . . . SNFloor 1

Room 1 Room 2 Room 3 Room N

Ch

17

For this exercise we focus on the first floor. The idea is that the network
scenario can be seen as a 1xN matrix:

• Node in the first column (Room 1) works as a collector node (RX only)

• Nodes in the other columns (Room 2 – Room N) work as sensor nodes
(TX only)

In each sensor node (ni , 2≤i≤N) the corresponding sensor task (Si , 2≤i≤N)
sends data to the controller task (C) through a shared multi-point channel.

1. Set the number of rooms (i.e., the number of nodes) to 5 and calculate
the Packet Loss Rate (PLR).

2. Increase the number of rooms.

• What about PLR as a function of the number of sensors?

3. Set the number of rooms to 3 (i.e., 2 sensors).

• What about PLR?

4. Set the transmission power of each sensor to the minimum required to
receive packets (use knowledge from the previous exercise).

• Does PLR change?

4.4.2 Exercise 3.2

C S2 S3 . . . SNFloor 1

Room 1 Room 2 Room 3 Room N

Ch1

Ch2

ChN−1

For this exercise, in each sensor node (ni , 2≤i≤N) the corresponding
sensor task (Si , 2≤i≤N) sends data to the controller task (C) through a
dedicated point-to-point channel (chi , 1≤i≤N-1).

18

1. Set the number of rooms (i.e., the number of nodes) to 5 and calculate
the Packet Loss Rate (PLR).

• What about PLR with respect to the previous exercise?

2. Increase the number of rooms.

• What about PLR as a function of the number of sensors?

• What about PLR with respect to the previous exercise?

3. How can a communication like this be realized in a real scenario?

19

That’s all folks

	Introduction
	Network Simulation
	SystemC Network Simulation Library
	SCNSL components
	Task
	Task Proxy
	Communicator
	Node
	Channel
	Environment

	Installation and Setup
	Requirements
	General important remarks

	Directory structure
	SystemC Installation
	SCNSL Installation
	LaTeX and Doxygen fix

	Network Scenario Creation
	Creation Steps
	Instantiation of the SCNSL Simulator
	Instantiation of the Environment
	Instantiation of the physical Nodes
	Instantiation of the physical Channels
	Binding of nodes to channels, and setting of nodes' properties
	Instantiation of the Tasks
	Instantiation of communicators (optional)
	Binding of tasks, communicators (optional) and channels
	Setting tracing features
	Creating custom tasks
	Example of Binding

	Exercises
	Exercises Setup
	Compile the exercises
	Execute the exercises

	Exercise 1: Two Nodes
	Exercise 2: Three Nodes with Router
	Exercise 3: Temperature Monitoring for Building Automation
	Exercise 3.1
	Exercise 3.2

