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language of propositional logic 
alphabet: 
(i) proposition symbols : p0, p1, p2, . . . , 
(ii) connectives : ∧, ∨, →, ¬, ↔, ⊥,
(iii) auxiliary symbols : ( , ).

∧      and 
∨      or
→     if ..., then ... 
¬      not
↔     iff
⊥     falsity

The set PROP of propositions is the smallest set X with 
the properties
(i) pi ∈X(i∈N), ⊥∈X,
(ii) φ,ψ∈X⇒ (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ)∈X, 
(iii)φ∈X ⇒(¬φ)∈X.

PROP is well defined? (PROP ≠∅ ?)

AT={p0, p1, p2, . . . ,}∪{⊥}



¬➝⊥ ∉ PROP

Suppose ¬➝⊥ ∈ PROP. 
Y = PROP − {¬➝ ⊥} also satisfies (i), (ii) and 
(iii). 

⊥,pi ∈Y. 

φ,ψ∈Y⇒φ,ψ∈PROP ⇒(φ∘ψ)∈PROP. 
(φ∘ψ)≠ ¬➝⊥  ⇒ (φ∘ψ) ∈ Y . 

φ∈Y⇒φ∈PROP ⇒(¬φ)∈PROP. 
(¬φ)≠ ¬➝⊥  ⇒ (¬φ) ∈ Y . 

PROP is not the smallest set satisfying (i), (ii) 
and (iii)!!! impossible

The set PROP of propositions is the 
smallest set X with the properties
(i) pi ∈X(i∈N), ⊥∈X,
(ii) φ,ψ∈X⇒ (φ∧ψ), (φ∨ψ), (φ→ψ), 
(φ↔ψ)∈X, 
(iii)φ∈X ⇒(¬φ)∈X.



Theorem
Let h: N x A → A and c∈A.
There exist one and only one function 
f : N → A t.c.:
1. f(0)=c
2. ∀n∈N, f(n+1)=h(n,f(n))

the proof is difficult

1.1 Propositions and Connectives 11

The general principle behind this practice is laid down in the following
theorem.

Theorem 1.1.6 (Definition by Recursion) Let mappings H! : A2 → A
and H¬ : A → A be given and let Hat be a mapping from the set of atoms
into A, then there exists exactly one mapping F : PROP → A such that

⎧
⎨

⎩

F (ϕ) = Hat(ϕ) for ϕ atomic,
F ((ϕ!ψ)) = H!(F (ϕ), F (ψ)),
F ((¬ϕ)) = H¬(F (ϕ)).

In concrete applications it is usually rather easily seen to be a correct princi-
ple. However, in general one has to prove the existence of a unique function
satisfying the above equations. The proof is left as an exercise, cf. Exercise 11.

Here are some examples of definition by recursion:

1. The (parsing) tree of a proposition ϕ is defined by

T (ϕ) = !ϕ for atomic ϕ

T ((ϕ!ψ)) = ! (ϕ!ψ)
❅❅""

T (ϕ) T (ψ)

T ((¬ϕ)) = ! (¬ϕ)

T (ϕ)

Examples. T
(
(p1 → (⊥ ∨(¬p3))

)
; T

(
¬(¬(p1 ∧ (¬p1)))

)

"(p1 → (⊥ ∨ (¬p3)))

"
p1

"(⊥∨ (¬p3))

"
⊥

"(¬p3)

"
p3

"
""
❅
❅
❅
❅
❅

"
""

"(¬(¬(p1 ∧ (¬p1))))

"(¬(p1 ∧ (¬p1)))

"(p1 ∧ (¬p1))

"
p1

"(¬p1)

"
p1

"
""
❅
❅❅

A simpler way to exhibit the trees consists of listing the atoms at the bot-
tom, and indicating the connectives at the nodes.

☐∈{∧,∨,➝}



Theorem 1.1.3 (Induction Principle) 
Let A be a property, then A(φ) holds for all φ ∈ PROP if
(i)   A(pi), for all i,and A(⊥), 
(ii)  A(φ), A(ψ) ⇒ A( (φ→ψ)), 
(iii) A(φ), A(ψ) ⇒ A( (φ∧ψ)), 
(iv) A(φ), A(ψ) ⇒ A( (φ∨ψ)), 
(v) A(φ) ⇒ A( (¬φ)).

exercise
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in out
Smith ×
Jones ×

“Smith is in”∧“Jones is in” is true iff
“Smith is in” is true and “Jones is in” is true.

We write v(ϕ) = 1 (resp. 0) for “ϕ is true” (resp. false). Then the above
consideration can be stated as v(ϕ∧ψ) = 1 iff v(ϕ) = v(ψ) = 1, or v(ϕ∧ψ) =
min(v(ϕ), v(ψ)).

One can also write it in the form of a truth table:
∧ 0 1
0 0 0
1 0 1

One reads the truth table as follows: the first argument is taken from the
leftmost column and the second argument is taken from the top row.

Disjunction. If a visitor wants to see one of the partners, no matter which
one, he wants the table to be in one of the positions

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

In the last case he can make a choice, but that is no problem, he wants to
see at least one of the gentlemen, no matter which one.

In our notation, the interpretation of ∨ is given by

v(ϕ ∨ ψ) = 1 iff v(ϕ) = 1 or v(ψ) = 1.

Shorter: v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)).

In truth table form:
∨ 0 1
0 0 1
1 1 1

Negation. The visitor who is solely interested in our Smith will state that
“Smith is not in” if the table is in the position:

in out
Smith ×

So “Smith is not in” is true if “Smith is in” is false. We write this as
v(¬ϕ) = 1 iff v(ϕ) = 0, or v(¬ϕ) = 1 − v(ϕ).

In truth table form:
¬
0 1
1 0

truth table

Definition 1
A mapping v : PROP → {0, 1} is a valuation if 
v(φ ∧ ψ) = min(v(φ), v(ψ)),
v(φ ∨ ψ) = max(v(φ), v(ψ)),
v(φ→ψ)=0 ⇔ v(φ)=1 and v(ψ)=0,
v(φ↔ψ)=1 ⇔ v(φ)=v(ψ), 
v(¬φ) = 1 − v(φ)
v(⊥) = 0.

Definition 2 
A mapping v : PROP → {0, 1} is a valuation if 
v(φ ∧ ψ) = 1 ⇔ v(φ)=1 and v(ψ)=1
v(φ ∨ ψ) =1  ⇔ v(φ)=1 or v(ψ)=1
v(φ→ψ)=1 ⇔ v(φ)=0 or v(ψ)=1,
v(φ↔ψ)=1 ⇔ v(φ)=v(ψ), 
v(¬φ) = 1 ⇔ v(φ)=0
v(⊥) = 0.

the two 
definitions are 

equivalent



Theorem 
v: AT→ {0, 1} s.t. v(⊥) = 0 (assignment for atoms)

⇒
there exists a unique valuation [·]v:PROP→{0,1}

such that [φ]v = v(φ) for each φ∈AT

Lemma If v, w are two assignments for atoms s.t. for all pi 
occurring in φ, v(pi) = w(pi),  then [φ]v = [φ]w . 



Definition 
➡  φ is a tautology if [φ]v = 1 for all valuations v,
➡  ⊨ φ stands for ‘φ is a tautology’,
➡  let Γ be a set of propositions, 
Γ ⊨ φ iff for all v: ([ψ]v = 1 for all ψ∈Γ)⇒[φ]v =1.

SUBSTITUTION
 
                  ⎧  
φ[ψ/p] =     ⎨ψ if φ = p 
                  ⎩ φ if φ =/= p if φ atomic 

(φ1☐φ2)[ψ/p] = (φ1[ψ/p]☐φ2[ψ/p])
(¬φ)[ψ/p] = (¬φ[ψ/p])

Substitution Theorem 
➡If ⊨ φ1 ↔ φ2, then ⊨ ψ[φ1/p] ↔ ψ[φ2/p], where p is an atom.
➡[φ1 ↔ φ2]v ≤ [ψ[φ1/p] ↔ ψ[φ2/p]]v
➡⊨(φ1 ↔φ2)→(ψ[φ1/p]↔ψ[φ2/p])



tautologies

➡ (φ ∨ ψ) ∨ σ ↔ φ ∨ (ψ ∨ σ)                 (φ ∧ ψ) ∧ σ ↔ φ ∧ (ψ ∧ σ)
associativity

➡ φ∨ψ↔ψ∨φ                                        φ∧ψ↔ψ∧φ
commutativity

➡φ ∨ (ψ ∧ σ) ↔ (φ ∨ ψ) ∧ (φ ∨ σ)        φ ∧ (ψ ∨ σ) ↔ (φ ∧ ψ) ∨ (φ ∧ σ) 
distributivity

➡ ¬(φ ∨ ψ) ↔ ¬φ ∧ ¬ψ                           ¬(φ ∧ ψ) ↔ ¬φ ∨ ¬ψ 
De Morgan’s laws

➡ φ∨φ↔φ                                             φ∧φ↔φ
idempotency

➡ ¬¬φ ↔ φ 
double negation law

De Morgan’s law: [¬(φ∨ψ)]=1⇔[φ∨ψ]=0⇔[φ]=[ψ]=0⇔[¬φ]=[¬ψ]=1⇔ [¬φ ∧ ¬ψ] = 1.
So [¬(φ ∨ ψ)] = [¬φ ∧ ¬ψ] for all valuations, i.e ⊨ ¬(φ ∨ ψ) ↔ ¬φ ∧ ¬ψ.



⊨(φ↔ψ)↔(φ→ψ)∧(ψ→φ)
⊨(φ → ψ) ↔ (¬φ ∨ ψ)
⊨φ∨ ψ ↔ (¬φ → ψ)
⊨φ ∨ ψ ↔ ¬(¬φ ∧ ¬ψ)
⊨φ ∧ ψ ↔ ¬(¬φ ∨ ¬ψ)
⊨¬φ ↔ (φ →⊥),
⊨⊥ ↔ φ ∧ ¬φ.

≈ ⊆ PROPxPROP : φ ≈ ψ iff ⊨ φ ↔ ψ.
exercise ≈ is an equivalence relation on PROP



Natural Deduction

¬α ≝ α➝⊥



¬α ≝ α➝⊥



30 1 Propositional Logic

1.4 Natural Deduction

In the preceding sections we have adopted the view that propositional logic
is based on truth tables, i.e. we have looked at logic from a semantical point
of view. This, however, is not the only possible point of view. If one thinks
of logic as a codification of (exact) reasoning, then it should stay close to the
practice of inference making, instead of basing itself on the notion of truth.
We will now explore the non-semantic approach, by setting up a system for
deriving conclusions from premises. Although this approach is of a formal na-
ture, i.e. it abstains from interpreting the statements and rules, it is advisable
to keep some interpretation in mind. We are going to introduce a number of
derivation rules, which are, in a way, the atomic steps in a derivation. These
derivations rules are designed (by Gentzen), to render the intuitive meaning
of the connectives as faithfully as possible.

There is one minor problem, which at the same time is a major advantage,
namely: our rules express the constructive meaning of the connectives. This
advantage will not be exploited now, but it is good to keep it in mind when
dealing with logic (it is exploited in intuitionistic logic).

One small example: the principle of the excluded third tells us that |=
ϕ ∨ ¬ϕ, i.e., assuming that ϕ is a definite mathematical statement, either
it or its negation must be true. Now consider some unsolved problem, e.g.
Riemann’s Hypothesis, call it R. Then either R is true, or ¬R is true. However,
we do not know which of the two is true, so the constructive content of R∨¬R
is nil. Constructively, one would require a method to find out which of the
alternatives holds.

The propositional connective which has a strikingly different meaning in a
constructive and in a non-constructive approach is the disjunction. Therefore
we restrict our language for the moment to the connectives ∧,→ and ⊥. This
is no real restriction as {→,⊥} is a functionally complete set.

Our derivations consist of very simple steps, such as “from ϕ and ϕ → ψ
conclude ψ”, written as:

ϕ ϕ → ψ
ψ

The propositions above the line are premises , and the one below the line
is the conclusion . The above example eliminated the connective →. We can
also introduce connectives. The derivation rules for ∧ and → are separated
into

an elimination rulepremises

conclusion

1.4 Natural Deduction 31

INTRODUCTION RULES ELIMINATION RULES

(∧I)
ϕ ψ

∧I
ϕ ∧ ψ

(∧E)
ϕ ∧ ψ

∧E
ϕ

ϕ ∧ ψ
∧E

ψ

(→ I)

[ϕ]

...

ψ
→ I

ϕ → ψ

(→ E)
ϕ ϕ → ψ

→ E
ψ

We have two rules for ⊥, both of which eliminate ⊥, but introduce a for-
mula.

(⊥)
⊥

⊥
ϕ

(RAA)

[¬ϕ]

...

⊥
RAA

ϕ

As usual ‘¬ϕ’ is used here as an abbreviation for ‘ϕ →⊥’.
The rules for ∧ are evident: if we have ϕ and ψ we may conclude ϕ ∧ ψ,

and if we have ϕ ∧ ψ we may conclude ϕ (or ψ). The introduction rule for
implication has a different form. It states that, if we can derive ψ from ϕ
(as a hypothesis), then we may conclude ϕ → ψ (without the hypothesis ϕ).
This agrees with the intuitive meaning of implication: ϕ → ψ means “ψ fol-
lows from ϕ”. We have written the rule (→ I) in the above form to suggest a
derivation. The notation will become clearer after we have defined derivations.
For the time being we will write the premises of a rule in the order that suits
us best, later we will become more fastidious

The rule (→ E) is also evident on the meaning of implication. If ϕ is given
and we know that ψ follows from ϕ, then we have also ψ. The falsum rule, (⊥),
expresses that from an absurdity we can derive everything (ex falso sequitur
quodlibet), and the reductio ad absurdum rule , (RAA), is a formulation of
the principle of proof by contradiction : if one derives a contradiction from
the hypothesis ¬ϕ, then one has a derivation of ϕ (without the hypothesis
¬ϕ, of course). In both (→ I) and (RAA) hypotheses disappear, this is in-
dicated by the striking out of the hypothesis. We say that such a hypothesis
is cancelled. Let us digress for a moment on the cancellation of hypotheses.
We first consider implication introduction. There is a well-known theorem in
plane geometry which states that “if a triangle is isosceles, then the angles

premise

⎫ 
｜ 
⎬ 
｜ 
⎭

a tree labelled with formulas

conclusion

discharged hypotheses (leaves) an introduction rule



ψ

φ
Proof tree  
Deduction 
Derivation

Hypotheses

conclusion

φ
1 n

ψ

φ σ

φ

ψ

φ σ
ψ

φ
ψ

⎧⎪⎪⎨⎪⎪⎩



The Elimination Rule 
for Implication
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32 1 Propositional Logic

opposite the equal sides are equal to one another” (Euclid’s Elements, Book I,
proposition 5). This is shown as follows: we suppose that we have an isosceles
triangle and then, in a number of steps, we deduce that the angles at the
base are equal. Thence we conclude that the angles at the base are equal if the
triangle is isosceles.

Query 1: do we still need the hypothesis that the triangle is isosceles? Of
course not! We have, so to speak, incorporated this condition in the state-
ment itself. It is precisely the role of conditional statements, such as “if it
rains I will use my umbrella”, to get rid of the obligation to require (or verify)
the condition. In abstracto: if we can deduce ψ using the hypothesis ϕ, then
ϕ → ψ is the case without the hypothesis ϕ (there may be other hypotheses,
of course).

Query 2: is it forbidden to maintain the hypothesis? Answer: no, but it
clearly is superfluous. As a matter of fact we usually experience superfluous
conditions as confusing or even misleading, but that is rather a matter of the
psychology of problem solving than of formal logic. Usually we want the best
possible result, and it is intuitively clear that the more hypotheses we state
for a theorem, the weaker our result is. Therefore we will as a rule cancel as
many hypotheses as possible.

In the case of reductio ad absurdum we also deal with cancellation of hy-
potheses. Again, let us consider an example.

In analysis we introduce the notion of a convergent sequence (an) and sub-
sequently the notion “a is a limit of (an)”. The next step is to prove that for
each convergent sequence there is a unique limit; we are interested in the part
of the proof that shows that there is at most one limit. Such a proof may run
as follows: we suppose that there are two distinct limits a and a′, and from
this hypothesis, a ̸= a′, we derive a contradiction. Conclusion: a = a′. In this
case we of course drop the hypothesis a ̸= a′, this time it is not a case of being
superfluous, but of being in conflict! So, both in the case (→ I) and of (RAA),
it is sound practice to cancel all occurrences of the hypothesis concerned.

In order to master the technique of Natural Deduction, and to get familiar
with the technique of cancellation, one cannot do better than to look at a few
concrete cases. So before we go on to the notion of derivation we consider a
few examples.

I

[ϕ ∧ ψ]1
∧E

ψ

[ϕ ∧ ψ]1
∧E

ϕ
∧I

ψ ∧ ϕ
→ I1

ϕ ∧ ψ → ψ ∧ ϕ

II

[ϕ]2 [ϕ → ⊥]1
→ E

⊥
→ I1

(ϕ → ⊥) → ⊥
→ I2

ϕ → ((ϕ → ⊥) → ⊥)
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as follows: we suppose that there are two distinct limits a and a′, and from
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In order to master the technique of Natural Deduction, and to get familiar
with the technique of cancellation, one cannot do better than to look at a few
concrete cases. So before we go on to the notion of derivation we consider a
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I

[ϕ ∧ ψ]1
∧E

ψ

[ϕ ∧ ψ]1
∧E

ϕ
∧I

ψ ∧ ϕ
→ I1

ϕ ∧ ψ → ψ ∧ ϕ

II

[ϕ]2 [ϕ → ⊥]1
→ E

⊥
→ I1

(ϕ → ⊥) → ⊥
→ I2

ϕ → ((ϕ → ⊥) → ⊥)
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III

[ϕ ∧ ψ]1
∧E

ψ

[ϕ ∧ ψ]1
∧E

ϕ [ϕ → (ψ → σ)]2
→ E

ψ → σ
→ E

σ
→ I1

ϕ ∧ ψ → σ
→ I2

(ϕ → (ψ → σ)) → (ϕ ∧ ψ → σ)

If we use the customary abbreviation ‘¬ϕ’ for ‘ϕ →⊥’, we can bring some
derivations into a more convenient form. (Recall that ¬ϕ and ϕ →⊥, as given
in 1.2, are semantically equivalent). We rewrite derivation II using the abbre-
viation:

II′

[ϕ]2 [¬ϕ]1
→ E

⊥
→ I1

¬¬ϕ
→ I2

ϕ → ¬¬ϕ

In the following example we use the negation sign and also the bi-implication;
ϕ ↔ ψ for (ϕ → ψ) ∧ (ψ → ϕ).

IV

[ϕ]1

[ϕ ↔ ¬ϕ]3

∧E
ϕ → ¬ϕ

→ E
¬ϕ [ϕ]1

→ E
⊥

→ I1
¬ϕ
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→ E
ϕ

[ϕ]2

[ϕ ↔ ¬ϕ]3

∧E
ϕ → ¬ϕ

→ E
¬ϕ [ϕ]2

→ E
⊥

→ I2
¬ϕ

→ E
⊥

→ I3
¬(ϕ ↔ ¬ϕ)

The examples show us that derivations have the form of trees. We show
the trees below:

I

!
!

!
!

!
!

❅
❅
"
"

III

!
!
!

!
!

!
!
!

!
❅
❅
❅
❅

"
"
"
"

❅
❅
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One can just as well present derivations as (linear) strings of propositions: we
will stick, however, to the tree form, the idea being that what comes naturally
in tree form should not be put in a linear straight-jacket.

We now shave to define the notion of derivation in general. We will use an
inductive definition to produce trees.

Notation

if D
ϕ

, D′

ϕ′ are derivations with conclusions ϕ, ϕ′, then
D
ϕ
ψ

,
D D′

ϕ ϕ′

ψ
are derivations obtained by applying a derivation rule to ϕ (and ϕ and ϕ′).

The cancellation of a hypothesis is indicated as follows: if
ψ
D
ϕ

is a derivation

with hypothesis ψ, then

[ψ]
D
ϕ
σ

is a derivation with ψ cancelled.

With respect to the cancellation of hypotheses, we note that one does
not necessarily cancel all occurrences of such a proposition ψ. This clearly
is justified, as one feels that adding hypotheses does not make a proposition
underivable (irrelevant information may always be added). It is a matter of
prudence, however, to cancel as much as possible. Why carry more hypotheses
than necessary?

Furthermore one may apply (→ I) if there is no hypothesis available for

cancellation e.g.
ϕ

→ I
ψ → ϕ

is a correct derivation, using just (→ I). To sum

it up: given a derivation tree of ψ (or ⊥), we obtain a derivation tree of ϕ → ψ
(or ϕ) at the bottom of the tree and striking out some (or all) occurrences, if
any, of ϕ (or ¬ϕ) on top of a tree.

A few words on the practical use of natural deduction: if you want to give a
derivation for a proposition it is advisable to devise some kind of strategy, just

Derivation with 
hypothesis ψ

denotes the set  
(possibly empty) 
of all the leaves 
labelled with the 

formula ψ

A derivation with  
hypothesis ψ cancelled

denotes the set  
of all the leaves labelled with 

the formula ψ
marked  

as "cancelled" / "discharged"
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like in a game. Suppose that you want to show [ϕ∧ψ → σ] → [ϕ → (ψ → σ)]
(Example III), then (since the proposition is an implicational formula) the
rule (→ I) suggests itself. So try to derive ϕ → (ψ → σ) from ϕ ∧ ψ → σ.

Now we know where to start and where to go to. To make use of ϕ∧ψ → σ
we want ϕ∧ψ (for (→ E)), and to get ϕ → (ψ → σ) we want to derive ψ → σ
from ϕ. So we may add ϕ as a hypothesis and look for a derivation of ψ → σ.
Again, this asks for a derivation of σ from ψ, so add ψ as a hypothesis and
look for a derivation of σ. By now we have the following hypotheses available:
ϕ ∧ ψ → σ, ϕ and ψ. Keeping in mind that we want to eliminate ϕ ∧ ψ it is
evident what we should do. The derivation III shows in detail how to carry
out the derivation. After making a number of derivations one gets the practi-
cal conviction that one should first take propositions apart from the bottom
upwards, and then construct the required propositions by putting together
the parts in a suitable way. This practical conviction is confirmed by the Nor-
malization Theorem, to which we will return later. There is a particular point
which tends to confuse novices:

[ϕ]
.
.
.
⊥
¬ϕ

→ I

and

[¬ϕ]
.
.
.
⊥
ϕ

RAA

look very much alike. Are they not both cases of Reductio ad absurdum? As a
matter of fact the leftmost derivation tells us (informally) that the assumption
of ϕ leads to a contradiction, so ϕ cannot be the case. This is in our termi-
nology the meaning of “not ϕ”. The rightmost derivation tells us that the
assumption of ¬ϕ leads to a contradiction, hence (by the same reasoning) ¬ϕ
cannot be the case. So, on account of the meaning of negation, we only would
get ¬¬ϕ. It is by no means clear that ¬¬ϕ is equivalent to ϕ (indeed, this
is denied by the intuitionists), so it is an extra property of our logic. (This
is confirmed in a technical sense: ¬¬ϕ → ϕ is not derivable in the system
without RAA.

We now return to our theoretical notions.

Definition 1.4.1 The set of derivations is the smallest set X such that
(1) The one element tree ϕ belongs to X for all ϕ ∈PROP.

(2∧) If
D

ϕ
,
D′

ϕ′
∈ X, then

D

ϕ

D′

ϕ′

ϕ ∧ ϕ′

∈ X.
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If
D

ϕ ∧ ψ
∈ X, then

D

ϕ ∧ ψ

ϕ

,

D

ϕ ∧ ψ

ψ

∈ X.

(2→) If

ϕ

D

ψ

∈ X, then

[ϕ]

D

ψ

ϕ → ψ

∈ X.

If
D

ϕ
,

D′

ϕ → ψ
∈ X, then

D

ϕ

D′

ϕ → ψ

ψ

∈ X.

(2⊥) If
D

⊥
∈ X, then

D

⊥

ϕ

∈ X.

If
¬ϕ

D

⊥

∈ X, then

[¬ϕ]

D

⊥

ϕ

∈ X.

The bottom formula of a derivation is called its conclusion . Since the class
of derivations is inductively defined, we can mimic the results of section 1.1.

E.g. we have a principle of induction on D: let A be a property. If A(D)
holds for one element derivations and A is preserved under the clauses (2∧),
(2 →) and (2 ⊥), then A(D) holds for all derivations. Likewise we can define
mappings on the set of derivations by recursion (cf. Exercises 6, 7, 9).

Definition 1.4.2 The relation Γ ⊢ ϕ between sets of propositions and propo-
sitions is defined by: there is a derivation with conclusion ϕ and with all
(uncancelled) hypotheses in Γ . (See also exercise 6).

We say that ϕ is derivable from Γ . Note that by definition Γ may contain
many superfluous “hypotheses”. The symbol ⊢ is called turnstile .

If Γ = ∅, we write ⊢ ϕ, and we say that ϕ is a theorem.
We could have avoided the notion of ‘derivation’ and taken instead the

notion of ‘derivability’ as fundamental, see Exercise 10. The two notions, how-
ever, are closely related.
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Γ ⊢ φ  

there is a derivation with conclusion φ and with all 
(uncancelled) hypotheses in Γ

⊢ φ   ≝   ∅ ⊢ φ 
there is a derivation 

with conclusion φ and 
with all hypotheses 

cancelled



Γ⊢φ if φ ∈ Γ 

Γ ⊢ φ, Γ ′ ⊢ ψ ⇒ Γ ∪ Γ ′ ⊢ φ ∧ ψ  

Γ ⊢ φ ∧ ψ ⇒ Γ ⊢ φ and Γ ⊢ ψ  

Γ ∪ φ ⊢ ψ ⇒ Γ ⊢ φ → ψ 

Γ ⊢ φ, Γ ′ ⊢ φ → ψ ⇒ Γ ∪ Γ ′ ⊢ ψ  

Γ ⊢ ⊥ ⇒ Γ ⊢ φ 

Γ ∪ {¬φ} ⊢ ⊥ ⇒ Γ ⊢ φ



(1) ⊢ φ → (ψ → φ)
(2) ⊢ φ → (¬φ → ψ)
(3) ⊢ (φ → ψ) → [(ψ → σ) → (φ → σ)]
(4) ⊢ (φ → ψ) ↔ (¬ψ → ¬φ)
(5) ⊢ ¬¬φ ↔ φ
(6) ⊢ [φ → (ψ → σ)] ↔ [φ ∧ ψ → σ] 
(7) ⊢ ⊥ ↔ (φ ∧ ¬φ)



1.4 Natural Deduction 37

Lemma 1.4.3 (a) Γ ⊢ ϕ if ϕ ∈ Γ,
(b) Γ ⊢ ϕ, Γ ′ ⊢ ψ ⇒ Γ ∪ Γ ′ ⊢ ϕ ∧ ψ,
(c) Γ ⊢ ϕ ∧ ψ ⇒ Γ ⊢ ϕ and Γ ⊢ ψ,
(d) Γ ∪ ϕ ⊢ ψ ⇒ Γ ⊢ ϕ → ψ,
(e) Γ ⊢ ϕ, Γ ′ ⊢ ϕ → ψ ⇒ Γ ∪ Γ ′ ⊢ ψ,
(f) Γ ⊢ ⊥ ⇒ Γ ⊢ ϕ,
(g) Γ ∪ {¬ϕ} ⊢ ⊥ ⇒ Γ ⊢ ϕ.

Proof. Immediate from the definition of derivation. !
We now list some theorems. ¬ and ↔ are used as abbreviations.

Theorem 1.4.4 (1) ⊢ ϕ → (ψ → ϕ),
(2) ⊢ ϕ → (¬ϕ → ψ),
(3) ⊢ (ϕ → ψ) → [(ψ → σ) → (ϕ → σ)],
(4) ⊢ (ϕ → ψ) ↔ (¬ψ → ¬ϕ),
(5) ⊢ ¬¬ϕ ↔ ϕ,
(6) ⊢ [ϕ → (ψ → σ)] ↔ [ϕ ∧ ψ → σ],
(7) ⊢ ⊥ ↔ (ϕ ∧ ¬ϕ).

Proof.

1.

[ϕ]1
→ I

ψ → ϕ
→ I1

ϕ → (ψ → ϕ)

2.

[ϕ]2 [¬ϕ]1
→ E

⊥
⊥

ψ
→ I1

¬ϕ → ψ
→ I2

ϕ → (¬ϕ → ψ)

3.

[ϕ]1 [ϕ → ψ]3
→ E

ψ [ψ → σ]2
→ E

σ
→ I1

ϕ → σ
→ I2

(ψ → σ) → (ϕ → σ)
→ I3

(ϕ → ψ) → ((ψ → σ) → (ϕ → σ))

4. For one direction, substitute ⊥ for σ in 3, then ⊢ (ϕ → ψ) → (¬ψ → ¬ϕ).
Conversely:
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(b) Γ ⊢ ϕ, Γ ′ ⊢ ψ ⇒ Γ ∪ Γ ′ ⊢ ϕ ∧ ψ,
(c) Γ ⊢ ϕ ∧ ψ ⇒ Γ ⊢ ϕ and Γ ⊢ ψ,
(d) Γ ∪ ϕ ⊢ ψ ⇒ Γ ⊢ ϕ → ψ,
(e) Γ ⊢ ϕ, Γ ′ ⊢ ϕ → ψ ⇒ Γ ∪ Γ ′ ⊢ ψ,
(f) Γ ⊢ ⊥ ⇒ Γ ⊢ ϕ,
(g) Γ ∪ {¬ϕ} ⊢ ⊥ ⇒ Γ ⊢ ϕ.

Proof. Immediate from the definition of derivation. !
We now list some theorems. ¬ and ↔ are used as abbreviations.

Theorem 1.4.4 (1) ⊢ ϕ → (ψ → ϕ),
(2) ⊢ ϕ → (¬ϕ → ψ),
(3) ⊢ (ϕ → ψ) → [(ψ → σ) → (ϕ → σ)],
(4) ⊢ (ϕ → ψ) ↔ (¬ψ → ¬ϕ),
(5) ⊢ ¬¬ϕ ↔ ϕ,
(6) ⊢ [ϕ → (ψ → σ)] ↔ [ϕ ∧ ψ → σ],
(7) ⊢ ⊥ ↔ (ϕ ∧ ¬ϕ).

Proof.

1.

[ϕ]1
→ I

ψ → ϕ
→ I1

ϕ → (ψ → ϕ)

2.

[ϕ]2 [¬ϕ]1
→ E

⊥
⊥

ψ
→ I1

¬ϕ → ψ
→ I2

ϕ → (¬ϕ → ψ)

3.

[ϕ]1 [ϕ → ψ]3
→ E

ψ [ψ → σ]2
→ E

σ
→ I1

ϕ → σ
→ I2

(ψ → σ) → (ϕ → σ)
→ I3

(ϕ → ψ) → ((ψ → σ) → (ϕ → σ))

4. For one direction, substitute ⊥ for σ in 3, then ⊢ (ϕ → ψ) → (¬ψ → ¬ϕ).
Conversely:



1.4 Natural Deduction 37

Lemma 1.4.3 (a) Γ ⊢ ϕ if ϕ ∈ Γ,
(b) Γ ⊢ ϕ, Γ ′ ⊢ ψ ⇒ Γ ∪ Γ ′ ⊢ ϕ ∧ ψ,
(c) Γ ⊢ ϕ ∧ ψ ⇒ Γ ⊢ ϕ and Γ ⊢ ψ,
(d) Γ ∪ ϕ ⊢ ψ ⇒ Γ ⊢ ϕ → ψ,
(e) Γ ⊢ ϕ, Γ ′ ⊢ ϕ → ψ ⇒ Γ ∪ Γ ′ ⊢ ψ,
(f) Γ ⊢ ⊥ ⇒ Γ ⊢ ϕ,
(g) Γ ∪ {¬ϕ} ⊢ ⊥ ⇒ Γ ⊢ ϕ.

Proof. Immediate from the definition of derivation. !
We now list some theorems. ¬ and ↔ are used as abbreviations.

Theorem 1.4.4 (1) ⊢ ϕ → (ψ → ϕ),
(2) ⊢ ϕ → (¬ϕ → ψ),
(3) ⊢ (ϕ → ψ) → [(ψ → σ) → (ϕ → σ)],
(4) ⊢ (ϕ → ψ) ↔ (¬ψ → ¬ϕ),
(5) ⊢ ¬¬ϕ ↔ ϕ,
(6) ⊢ [ϕ → (ψ → σ)] ↔ [ϕ ∧ ψ → σ],
(7) ⊢ ⊥ ↔ (ϕ ∧ ¬ϕ).

Proof.

1.

[ϕ]1
→ I

ψ → ϕ
→ I1

ϕ → (ψ → ϕ)

2.

[ϕ]2 [¬ϕ]1
→ E

⊥
⊥

ψ
→ I1

¬ϕ → ψ
→ I2

ϕ → (¬ϕ → ψ)

3.

[ϕ]1 [ϕ → ψ]3
→ E

ψ [ψ → σ]2
→ E

σ
→ I1

ϕ → σ
→ I2

(ψ → σ) → (ϕ → σ)
→ I3

(ϕ → ψ) → ((ψ → σ) → (ϕ → σ))

4. For one direction, substitute ⊥ for σ in 3, then ⊢ (ϕ → ψ) → (¬ψ → ¬ϕ).
Conversely:

3.



Soundness

Γ ⊢ φ ⇒ Γ ⊨ φ.



Towards Soundness ➡Γ ⊨ φ & Γ⊆ Γ'⇒ Γ’ ⊨ φ
➡φ ⊨ φ
➡Γ, φ ⊨ φ
➡Γ ⊨ φ & Γ' ⊨ φ' ⇒ Γ, Γ' ⊨ φ∧φ'
➡Γ ⊨ φ∧φ'⇒ Γ ⊨ φ & Γ ⊨ φ'
➡⊥ ⊨ φ
➡Γ, ¬φ ⊨ ⊥⇒ Γ ⊨ φ
➡Γ ⊨ ⊥⇒ Γ - {¬φ} ⊨ φ
➡Γ ⊨ ⊥⇒ Γ⊨ φ
➡Γ ⊨ φ➝σ & Γ' ⊨ φ ⇒ Γ, Γ' ⊨ σ
➡Γ, φ ⊨ σ⇒ Γ ⊨ φ→σ
➡Γ ⊨ σ⇒ Γ- {φ} ⊨ φ→σ
➡Γ ⊨ σ & Γ', σ ⊨ φ ⇒ Γ, Γ' ⊨ φ

Notation: 
Γ, Γ'≝ Γ∪ Γ'
Γ,φ≝ Γ, {φ}



Γ, φ ⊨ σ⇒ Γ ⊨ φ→σ
Γ, φ ⊨ σ 

⇒ 
∀v. {([Γ]v=1& [φ]v=1)⇒[σ]v=1}

⇒
∀v. {NOT([Γ]v=1& [φ]v=1) OR [σ]v=1}

⇒
∀v. {([Γ]v ≠1 OR [φ]v=0) OR [σ]v=1}

⇒
∀v. {[Γ]v≠1 OR ([φ]v=0 OR [σ]v=1)}

⇒
∀v. {[Γ]v≠1 OR ([φ→σ]v=1)}

⇒
∀v. {[Γ]v=1 ⇒ [φ→σ]v=1}

⇒
Γ ⊨ φ→σ



Soundness

Γ ⊢ φ ⇒ Γ ⊨ φ.

We prove, by induction on the lenght of 
derivations,  that 

for each derivation     and Γ, with hpD⊆Γ 

we have Γ ⊨ φ

1.5 Completeness 41

(basis) If D has one element, then evidently ϕ ∈ Γ . The reader easily sees
that Γ |= ϕ.

(∧ I) Induction hypothesis: D
ϕ

and D′

ϕ′ are derivations and for each Γ , Γ ′

containing the hypotheses of D, D′, Γ |= ϕ, Γ ′ |= ϕ′.

Now let Γ ′′ contain the hypotheses of
D D′

ϕ ϕ′

ϕ ∧ ϕ′

Choosing Γ and Γ ′ to be precisely the set of hypotheses of D, D′, we see
that Γ ′′ ⊇ Γ ∪ Γ ′.
So Γ ′′ |= ϕ and Γ ′′ |= ϕ′. Let [[ψ]]v = 1 for all ψ ∈ Γ ′′, then [[ϕ]]v =
[[ϕ′]]v = 1, hence [[ϕ ∧ ϕ′]]v = 1. This shows Γ ′′ |= ϕ ∧ ϕ′.

(∧ E) Induction hypothesis: For any Γ containing the hypotheses of D
ϕ ∧ ψ

we have Γ |= ϕ∧ψ. Consider a Γ containing all hypotheses of
D

ϕ ∧ ψ
ϕ

and

D
ϕ ∧ ψ

ψ
. It is left to the reader to show Γ |= ϕ and Γ |= ψ.

(→ I) Induction hypothesis: for any Γ containing all hypotheses of
ϕ
D
ψ

,

Γ |= ψ. Let Γ ′ contain all hypotheses of

[ϕ]
D
ψ

ϕ → ψ

. Now Γ ′ ∪ {ϕ} con-

tains all hypotheses of
ϕ
D
ψ

, so if [[ϕ]] = 1 and [[χ]] = 1 for all χ in Γ ′, then

[[ψ]] = 1. Therefore the truth table of → tells us that [[ϕ → ψ]] = 1 if all
propositions in Γ ′ have value 1. Hence Γ ′ |= ϕ → ψ.

(→ E) An exercise for the reader.

(⊥) Induction hypothesis: For each Γ containing all hypotheses of D⊥ , Γ |=⊥.

Since [[⊥]] = 0 for all valuations, there is no valuation such that [[ψ]] = 1 for

all ψ ∈ Γ . Let Γ ′ contain all hypotheses of
D
⊥
ϕ

and suppose that Γ ′ ̸|= ϕ,

then [[ψ]] = 1 for all ψ ∈ Γ ′ and [[ϕ]] = 0 for some valuation. Since Γ ′

contains all hypotheses of the first derivation we have a contradiction.

Notation: hpD is the 
set of uncancelled 

hypoteses of D



Basis: D =φ

D =φ ⇒ φ ∈ Γ ⇒ Γ ⊨ φ



Inductive cases

1.5 Completeness 41

(basis) If D has one element, then evidently ϕ ∈ Γ . The reader easily sees
that Γ |= ϕ.

(∧ I) Induction hypothesis: D
ϕ

and D′

ϕ′ are derivations and for each Γ , Γ ′

containing the hypotheses of D, D′, Γ |= ϕ, Γ ′ |= ϕ′.

Now let Γ ′′ contain the hypotheses of
D D′

ϕ ϕ′

ϕ ∧ ϕ′

Choosing Γ and Γ ′ to be precisely the set of hypotheses of D, D′, we see
that Γ ′′ ⊇ Γ ∪ Γ ′.
So Γ ′′ |= ϕ and Γ ′′ |= ϕ′. Let [[ψ]]v = 1 for all ψ ∈ Γ ′′, then [[ϕ]]v =
[[ϕ′]]v = 1, hence [[ϕ ∧ ϕ′]]v = 1. This shows Γ ′′ |= ϕ ∧ ϕ′.

(∧ E) Induction hypothesis: For any Γ containing the hypotheses of D
ϕ ∧ ψ

we have Γ |= ϕ∧ψ. Consider a Γ containing all hypotheses of
D

ϕ ∧ ψ
ϕ

and

D
ϕ ∧ ψ

ψ
. It is left to the reader to show Γ |= ϕ and Γ |= ψ.

(→ I) Induction hypothesis: for any Γ containing all hypotheses of
ϕ
D
ψ

,

Γ |= ψ. Let Γ ′ contain all hypotheses of

[ϕ]
D
ψ

ϕ → ψ

. Now Γ ′ ∪ {ϕ} con-

tains all hypotheses of
ϕ
D
ψ

, so if [[ϕ]] = 1 and [[χ]] = 1 for all χ in Γ ′, then

[[ψ]] = 1. Therefore the truth table of → tells us that [[ϕ → ψ]] = 1 if all
propositions in Γ ′ have value 1. Hence Γ ′ |= ϕ → ψ.

(→ E) An exercise for the reader.

(⊥) Induction hypothesis: For each Γ containing all hypotheses of D⊥ , Γ |=⊥.

Since [[⊥]] = 0 for all valuations, there is no valuation such that [[ψ]] = 1 for

all ψ ∈ Γ . Let Γ ′ contain all hypotheses of
D
⊥
ϕ

and suppose that Γ ′ ̸|= ϕ,

then [[ψ]] = 1 for all ψ ∈ Γ ′ and [[ϕ]] = 0 for some valuation. Since Γ ′

contains all hypotheses of the first derivation we have a contradiction.

D"=

hpD"⊆ Γ" 

1: ∧ I

Inductive Hypothesis (IH)  
⇒ 
hpD ⊨φ & hpD' ⊨φ'   
⇒  
hpD ∪ hpD' ⊨φ∧φ'  
⇒  
Γ" ⊨φ∧φ' 

⎧ 
｜ 
｜ 
⎨ 
｜ 
｜ 
⎩

We prove, by induction on the lenght of 
derivations,  that 

for each derivation     and Γ, with hpD⊆Γ 

we have Γ ⊨ φ

1.5 Completeness 41

(basis) If D has one element, then evidently ϕ ∈ Γ . The reader easily sees
that Γ |= ϕ.

(∧ I) Induction hypothesis: D
ϕ

and D′

ϕ′ are derivations and for each Γ , Γ ′

containing the hypotheses of D, D′, Γ |= ϕ, Γ ′ |= ϕ′.

Now let Γ ′′ contain the hypotheses of
D D′

ϕ ϕ′

ϕ ∧ ϕ′

Choosing Γ and Γ ′ to be precisely the set of hypotheses of D, D′, we see
that Γ ′′ ⊇ Γ ∪ Γ ′.
So Γ ′′ |= ϕ and Γ ′′ |= ϕ′. Let [[ψ]]v = 1 for all ψ ∈ Γ ′′, then [[ϕ]]v =
[[ϕ′]]v = 1, hence [[ϕ ∧ ϕ′]]v = 1. This shows Γ ′′ |= ϕ ∧ ϕ′.

(∧ E) Induction hypothesis: For any Γ containing the hypotheses of D
ϕ ∧ ψ

we have Γ |= ϕ∧ψ. Consider a Γ containing all hypotheses of
D

ϕ ∧ ψ
ϕ

and

D
ϕ ∧ ψ

ψ
. It is left to the reader to show Γ |= ϕ and Γ |= ψ.

(→ I) Induction hypothesis: for any Γ containing all hypotheses of
ϕ
D
ψ

,

Γ |= ψ. Let Γ ′ contain all hypotheses of

[ϕ]
D
ψ

ϕ → ψ

. Now Γ ′ ∪ {ϕ} con-

tains all hypotheses of
ϕ
D
ψ

, so if [[ϕ]] = 1 and [[χ]] = 1 for all χ in Γ ′, then

[[ψ]] = 1. Therefore the truth table of → tells us that [[ϕ → ψ]] = 1 if all
propositions in Γ ′ have value 1. Hence Γ ′ |= ϕ → ψ.

(→ E) An exercise for the reader.

(⊥) Induction hypothesis: For each Γ containing all hypotheses of D⊥ , Γ |=⊥.

Since [[⊥]] = 0 for all valuations, there is no valuation such that [[ψ]] = 1 for

all ψ ∈ Γ . Let Γ ′ contain all hypotheses of
D
⊥
ϕ

and suppose that Γ ′ ̸|= ϕ,

then [[ψ]] = 1 for all ψ ∈ Γ ′ and [[ϕ]] = 0 for some valuation. Since Γ ′

contains all hypotheses of the first derivation we have a contradiction.



2: ∧ E1

Inductive Hypothesis (IH)  
⇒ 
hpD ⊨φ∧ψ    
⇒  
hpD ⊨φ 
⇒  
Γ' ⊨φ

D'=

hpD'⊆ Γ' 

1.5 Completeness 41

(basis) If D has one element, then evidently ϕ ∈ Γ . The reader easily sees
that Γ |= ϕ.

(∧ I) Induction hypothesis: D
ϕ

and D′

ϕ′ are derivations and for each Γ , Γ ′

containing the hypotheses of D, D′, Γ |= ϕ, Γ ′ |= ϕ′.

Now let Γ ′′ contain the hypotheses of
D D′

ϕ ϕ′

ϕ ∧ ϕ′

Choosing Γ and Γ ′ to be precisely the set of hypotheses of D, D′, we see
that Γ ′′ ⊇ Γ ∪ Γ ′.
So Γ ′′ |= ϕ and Γ ′′ |= ϕ′. Let [[ψ]]v = 1 for all ψ ∈ Γ ′′, then [[ϕ]]v =
[[ϕ′]]v = 1, hence [[ϕ ∧ ϕ′]]v = 1. This shows Γ ′′ |= ϕ ∧ ϕ′.

(∧ E) Induction hypothesis: For any Γ containing the hypotheses of D
ϕ ∧ ψ

we have Γ |= ϕ∧ψ. Consider a Γ containing all hypotheses of
D

ϕ ∧ ψ
ϕ

and

D
ϕ ∧ ψ

ψ
. It is left to the reader to show Γ |= ϕ and Γ |= ψ.

(→ I) Induction hypothesis: for any Γ containing all hypotheses of
ϕ
D
ψ

,

Γ |= ψ. Let Γ ′ contain all hypotheses of

[ϕ]
D
ψ

ϕ → ψ

. Now Γ ′ ∪ {ϕ} con-

tains all hypotheses of
ϕ
D
ψ

, so if [[ϕ]] = 1 and [[χ]] = 1 for all χ in Γ ′, then

[[ψ]] = 1. Therefore the truth table of → tells us that [[ϕ → ψ]] = 1 if all
propositions in Γ ′ have value 1. Hence Γ ′ |= ϕ → ψ.

(→ E) An exercise for the reader.

(⊥) Induction hypothesis: For each Γ containing all hypotheses of D⊥ , Γ |=⊥.

Since [[⊥]] = 0 for all valuations, there is no valuation such that [[ψ]] = 1 for

all ψ ∈ Γ . Let Γ ′ contain all hypotheses of
D
⊥
ϕ

and suppose that Γ ′ ̸|= ϕ,

then [[ψ]] = 1 for all ψ ∈ Γ ′ and [[ϕ]] = 0 for some valuation. Since Γ ′

contains all hypotheses of the first derivation we have a contradiction.

3: ∧ E2 as the previous one

⎧ 
｜ 
｜ 
⎨ 
｜ 
｜ 
⎩



2: ➝ I

Inductive Hypothesis (IH)  
⇒ 
hpD ⊨ψ    
⇒  
hpD -{φ} ⊨φ➝ψ 
⇒ (since hpD' = hpD -{φ}) 
Γ' ⊨φ➝ψ 

D'=

hpD'⊆ Γ' 

1.5 Completeness 41

(basis) If D has one element, then evidently ϕ ∈ Γ . The reader easily sees
that Γ |= ϕ.

(∧ I) Induction hypothesis: D
ϕ

and D′

ϕ′ are derivations and for each Γ , Γ ′

containing the hypotheses of D, D′, Γ |= ϕ, Γ ′ |= ϕ′.

Now let Γ ′′ contain the hypotheses of
D D′

ϕ ϕ′

ϕ ∧ ϕ′

Choosing Γ and Γ ′ to be precisely the set of hypotheses of D, D′, we see
that Γ ′′ ⊇ Γ ∪ Γ ′.
So Γ ′′ |= ϕ and Γ ′′ |= ϕ′. Let [[ψ]]v = 1 for all ψ ∈ Γ ′′, then [[ϕ]]v =
[[ϕ′]]v = 1, hence [[ϕ ∧ ϕ′]]v = 1. This shows Γ ′′ |= ϕ ∧ ϕ′.

(∧ E) Induction hypothesis: For any Γ containing the hypotheses of D
ϕ ∧ ψ

we have Γ |= ϕ∧ψ. Consider a Γ containing all hypotheses of
D

ϕ ∧ ψ
ϕ

and

D
ϕ ∧ ψ

ψ
. It is left to the reader to show Γ |= ϕ and Γ |= ψ.

(→ I) Induction hypothesis: for any Γ containing all hypotheses of
ϕ
D
ψ

,

Γ |= ψ. Let Γ ′ contain all hypotheses of

[ϕ]
D
ψ

ϕ → ψ

. Now Γ ′ ∪ {ϕ} con-

tains all hypotheses of
ϕ
D
ψ

, so if [[ϕ]] = 1 and [[χ]] = 1 for all χ in Γ ′, then

[[ψ]] = 1. Therefore the truth table of → tells us that [[ϕ → ψ]] = 1 if all
propositions in Γ ′ have value 1. Hence Γ ′ |= ϕ → ψ.

(→ E) An exercise for the reader.

(⊥) Induction hypothesis: For each Γ containing all hypotheses of D⊥ , Γ |=⊥.

Since [[⊥]] = 0 for all valuations, there is no valuation such that [[ψ]] = 1 for

all ψ ∈ Γ . Let Γ ′ contain all hypotheses of
D
⊥
ϕ

and suppose that Γ ′ ̸|= ϕ,

then [[ψ]] = 1 for all ψ ∈ Γ ′ and [[ϕ]] = 0 for some valuation. Since Γ ′

contains all hypotheses of the first derivation we have a contradiction.

⎧ 
｜ 
｜ 
⎨ 
｜ 
｜ 
⎩



D"=

hpD"⊆ Γ" 

4: ➝E

Inductive Hypothesis (IH)  
⇒ 
hpD ⊨φ & hpD' ⊨φ➝ψ  
⇒  
hpD ∪ hpD' ⊨ψ  
⇒  
Γ" ⊨ψ

36 1 Propositional Logic

If
D

ϕ ∧ ψ
∈ X, then

D

ϕ ∧ ψ

ϕ

,

D

ϕ ∧ ψ

ψ

∈ X.

(2→) If

ϕ

D

ψ

∈ X, then

[ϕ]

D

ψ

ϕ → ψ

∈ X.

If
D

ϕ
,

D′

ϕ → ψ
∈ X, then

D

ϕ

D′

ϕ → ψ

ψ

∈ X.

(2⊥) If
D

⊥
∈ X, then

D

⊥

ϕ

∈ X.

If
¬ϕ

D

⊥

∈ X, then

[¬ϕ]

D

⊥

ϕ

∈ X.

The bottom formula of a derivation is called its conclusion . Since the class
of derivations is inductively defined, we can mimic the results of section 1.1.

E.g. we have a principle of induction on D: let A be a property. If A(D)
holds for one element derivations and A is preserved under the clauses (2∧),
(2 →) and (2 ⊥), then A(D) holds for all derivations. Likewise we can define
mappings on the set of derivations by recursion (cf. Exercises 6, 7, 9).

Definition 1.4.2 The relation Γ ⊢ ϕ between sets of propositions and propo-
sitions is defined by: there is a derivation with conclusion ϕ and with all
(uncancelled) hypotheses in Γ . (See also exercise 6).

We say that ϕ is derivable from Γ . Note that by definition Γ may contain
many superfluous “hypotheses”. The symbol ⊢ is called turnstile .

If Γ = ∅, we write ⊢ ϕ, and we say that ϕ is a theorem.
We could have avoided the notion of ‘derivation’ and taken instead the

notion of ‘derivability’ as fundamental, see Exercise 10. The two notions, how-
ever, are closely related.

⎧ 
｜ 
｜ 
⎨ 
｜ 
｜ 
⎩



4: RAA

Inductive Hypothesis (IH)  
⇒ 
hpD ⊨⊥    
⇒  
hpD -{¬φ} ⊨φ 
⇒ (since hpD' = hpD -{¬φ}) 
Γ' ⊨φ 

D'=

hpD'⊆ Γ' 

36 1 Propositional Logic

If
D

ϕ ∧ ψ
∈ X, then

D

ϕ ∧ ψ

ϕ

,

D

ϕ ∧ ψ

ψ

∈ X.

(2→) If

ϕ

D

ψ

∈ X, then

[ϕ]

D

ψ

ϕ → ψ

∈ X.

If
D

ϕ
,

D′

ϕ → ψ
∈ X, then

D

ϕ

D′

ϕ → ψ

ψ

∈ X.

(2⊥) If
D

⊥
∈ X, then

D

⊥

ϕ

∈ X.

If
¬ϕ

D

⊥

∈ X, then

[¬ϕ]

D

⊥

ϕ

∈ X.

The bottom formula of a derivation is called its conclusion . Since the class
of derivations is inductively defined, we can mimic the results of section 1.1.

E.g. we have a principle of induction on D: let A be a property. If A(D)
holds for one element derivations and A is preserved under the clauses (2∧),
(2 →) and (2 ⊥), then A(D) holds for all derivations. Likewise we can define
mappings on the set of derivations by recursion (cf. Exercises 6, 7, 9).

Definition 1.4.2 The relation Γ ⊢ ϕ between sets of propositions and propo-
sitions is defined by: there is a derivation with conclusion ϕ and with all
(uncancelled) hypotheses in Γ . (See also exercise 6).

We say that ϕ is derivable from Γ . Note that by definition Γ may contain
many superfluous “hypotheses”. The symbol ⊢ is called turnstile .

If Γ = ∅, we write ⊢ ϕ, and we say that ϕ is a theorem.
We could have avoided the notion of ‘derivation’ and taken instead the

notion of ‘derivability’ as fundamental, see Exercise 10. The two notions, how-
ever, are closely related.

⎧ 
｜ 
｜ 
⎨ 
｜ 
｜ 
⎩



An application of soundness Γ ⊭ φ ⇒ Γ ⊬ φ

⊬ (φ∨σ)→φ

1. let φ=p0 and σ=p1 

2. let v(p0)=0 and 
v(p1)=1 
3. v((p0∨p1)➝p0)=0  
4. ⊭ (p0∨p1)➝p0 

5. ⊬ (p0∨p1)➝p0



Completeness

Γ ⊨ φ ⇒ Γ ⊢ φ



A set Γ of propositions is consistent if
Γ⊬⊥.

(1) Γ is consistent (2) For no φ, Γ⊢φ and Γ⊢¬φ

(3) There is at least one φ such that Γ⊬ φ

A set Γ of propositions is inconsistent if
Γ⊢⊥.



(1) Γ is inconsistent (2) There is φ s.t. Γ⊢φ and Γ⊢¬φ

(3) For each φ. Γ⊢ φ

(1) Γ is inconsistent (2) There is φ s.t. Γ⊢φ and Γ⊢¬φ

(3) For each φ. Γ⊢ φ



(1) Γ is inconsistent (2) There is φ s.t. Γ⊢φ and Γ⊢¬φ

(3) For each φ. Γ⊢ φ

Γ ⊢⊥⇒ ∃ D s.t. with hpD ⊆ Γ
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The bottom formula of a derivation is called its conclusion . Since the class
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⇒ Γ⊢ φ



(1) Γ is inconsistent (2) There is φ s.t. Γ⊢φ and Γ⊢¬φ

(3) For each φ. Γ⊢ φ

immediate



(1) Γ is inconsistent (2) There is φ s.t. Γ⊢φ and Γ⊢¬φ

(3) For each φ. Γ⊢ φ

Γ ⊢ φ⇒ ∃ D' s.t. with hpD' ⊆ ΓD' 
φ

Γ ⊢ ¬φ⇒ ∃ D'' s.t. with hpD'' ⊆ ΓD' 
¬φ
⇒

D' 
φ

D'' 
¬φ

⊥

⇒ Γ ⊢⊥



Proposition:
If there is a valuation such that [ψ]v = 1 for all ψ ∈ Γ, 
then Γ is consistent.

Proof:
Suppose Γ ⊢⊥, then Γ ⊨⊥, so for any valuation v 

[(ψ)]v = 1 for all ψ ∈ Γ ⇒ [⊥]v = 1 
Since [⊥]v = 0 for all valuations, there is no valuation with [ψ]v = 
1 for all ψ ∈ Γ. Contradiction. 
Hence Γ is consistent.



Γ ∪ {¬φ} is inconsistent ⇒ Γ ⊢ φ, 
Γ ∪ {φ} is inconsistent ⇒ Γ ⊢ ¬φ.

Γ∪{¬φ} is inconsistent ⇒ ∃ D' s.t. with hpD' ⊆ Γ∪{¬φ}D' 
⊥

⇒
[¬φ] 
D' 
⊥
φ RAA

Γ∪{φ} is inconsistent ⇒ ∃ D' s.t. with hpD' ⊆ Γ∪{φ}D' 
⊥

⇒
[φ] 
D' 
⊥
¬φ ➝I



A set Γ is maximally consistent iff 
(a) Γ is consistent,
(b) Γ ⊆Γ′ and Γ′ consistent ⇒Γ=Γ′.

example: Let v a valuation, Γ = {φ: [φ]v = 1}. Γ is consistent. 
Let Γ′ such that Γ ⊆ Γ′.
Let ψ∈Γ' s.t. ψ∉Γ i.e. [ψ]v=0, then[¬ψ]v=1, and so ¬ψ∈Γ.
But since Γ ⊆ Γ′ this implies that Γ′ is inconsistent. 
Contradiction. 



Theorem:
Each consistent set Γ is contained in a maximally 
consistent set Γ✻

   1) enumerate all the formulas 
  φ0, φ1, φ2, .....

2) define the non decreasing sequence: 
Γ0=Γ 
         ⎧Γn ∪ {φn} if Γn ∪ {φn} is consistent, Γn+1=           ⎨                    ⎩Γn otherwise 

3) define 

Γ✻ =∪Γn .
n≥0



(a)Γn is consistent for all n (a trivial induction on n)

(b) Γ✻ is consistent
suppose Γ✻ ⊢⊥

 we have ∃       with hpD={ψ0,…,ψk}⊆ Γ✻; 

Γ✻ = ∪Γn ⇒ ∀i≤k ∃ni : ψi ∈Γni.

Let n=max{ni : i ≤ k}, then ψ0,...,ψk ∈ Γn and hence Γn ⊢⊥. 
But Γn is consistent. Contradiction.

(c) Γ✻ is maximally consistent 
Let Γ✻ ⊆ ∆ and ∆ consistent. If ψ ∈ ∆, then ∃m. ψ=φm;

Γm ⊆ Γ✻ ⊆∆ and ∆ is consistent,Γm∪{φm} is consistent. 
Therefore Γm+1 = Γm ∪ {φm}, i.e. φm ∈ Γm+1 ⊆ Γ✻. 
Γ✻ =∆.

D 
⊥

n≥0



If Γ is maximally consistent, then Γ is closed under 
derivability (i.e. Γ ⊢φ⇒φ∈Γ). 

 Let Γ ⊢ φ and suppose φ∉ Γ . Then Γ ∪ {φ} must be 
inconsistent. Hence Γ ⊢ ¬φ, so Γ is inconsistent. 
Contradiction.



Let Γ be maximally consistent; 
a)∀φ either φ∈Γ, or ¬φ∈Γ, 
b)∀φ,ψ. φ→ψ∈Γ⇔(φ∈Γ⇒ψ∈Γ).

(a) We know that not both φ and ¬φ can belong to Γ . Consider 
Γ ′ = Γ ∪ {φ}. If Γ ′ is inconsistent, then, ¬φ ∈ Γ . If Γ ′ is 
consistent, then φ ∈ Γ by the maximality of Γ.
(b)   b1) Let φ→ψ∈Γ and φ∈Γ.
Since φ,φ→ψ∈Γ and since Γ is closed under derivability we 
get ψ∈Γ by → E.
        b2) Let φ ∈ Γ ⇒ ψ ∈ Γ. 

If φ ∈ Γ then obviously Γ⊢ψ, so Γ⊢φ→ψ.
If φ∉ Γ,then ¬φ∈Γ, and then Γ ⊢¬φ.
Therefore Γ ⊢φ→ψ.



Corollary
If Γ is maximally consistent, then φ ∈ Γ ⇔ ¬φ∉Γ , and ¬φ ∈ Γ ⇔ φ∉ Γ .

If Γ is consistent, then there exists a valuation such that [ψ] = 1 for all ψ ∈ Γ.

1.5 Completeness 45

Lemma 1.5.8 If Γ is maximally consistent, then Γ is closed under derivabil-
ity (i.e. Γ ⊢ ϕ ⇒ ϕ ∈ Γ ).

Proof. Let Γ ⊢ ϕ and suppose ϕ ̸∈ Γ . Then Γ ∪ {ϕ} must be inconsistent.
Hence Γ ⊢ ¬ϕ, so Γ is inconsistent. Contradiction. !

Lemma 1.5.9 Let Γ be maximally consistent; then
(a) for all ϕ either ϕ ∈ Γ , or ¬ϕ ∈ Γ ,
(b) for all ϕ, ψ ϕ → ψ ∈ Γ ⇔ (ϕ ∈ Γ ⇒ ψ ∈ Γ ).

Proof. (a) We know that not both ϕ and ¬ϕ can belong to Γ . Consider Γ ′ =
Γ ∪{ϕ}. If Γ ′ is inconsistent, then, by 1.5.5, 1.5.8, ¬ϕ ∈ Γ . If Γ ′ is consistent,
then ϕ ∈ Γ by the maximality of Γ .

(b) Let ϕ → ψ ∈ Γ and ϕ ∈ Γ . To show: ψ ∈ Γ . Since ϕ, ϕ → ψ ∈ Γ and
since Γ is closed under derivability (Lemma 1.5.8), we get ψ ∈ Γ by → E.

Conversely: let ϕ ∈ Γ ⇒ ψ ∈ Γ . If ϕ ∈ Γ then obviously Γ ⊢ ψ, so
Γ ⊢ ϕ → ψ. If ϕ ̸∈ Γ , then ¬ϕ ∈ Γ , and hence Γ ⊢ ¬ϕ. Therefore Γ ⊢ ϕ → ψ.

!
Note that we automatically get the following:

Corollary 1.5.10 If Γ is maximally consistent, then ϕ ∈ Γ ⇔ ¬ϕ ̸∈ Γ ,
and ¬ϕ ∈ Γ ⇔ ϕ ̸∈ Γ .

Lemma 1.5.11 If Γ is consistent, then there exists a valuation such that
[[ψ]] = 1 for all ψ ∈ Γ .

Proof.(a) By 1.5.7 Γ is contained in a maximally consistent Γ ∗

(b) Define v(pi) =
{

1 if pi ∈ Γ ∗

0 else

and extend v to the valuation [[ ]]v.

Claim: [[ϕ]] = 1 ⇔ ϕ ∈ Γ ∗. Use induction on ϕ.

1. For atomic ϕ the claim holds by definition.
2. ϕ = ψ ∧ σ. [[ϕ]]v = 1 ⇔ [[ψ]]v = [[σ]]v = 1 ⇔ (induction hypothesis)

ψ, σ ∈ Γ ∗ and so ϕ ∈ Γ ∗. Conversely ψ ∧ σ ∈ Γ ∗ ⇔ ψ, σ ∈ Γ ∗

(1.5.8). The rest follows from the induction hypothesis.
3. ϕ = ψ → σ. [[ψ → σ]]v = 0 ⇔ [[ψ]]v = 1 and [[σ]]v = 0 ⇔ (induction

hypothesis) ψ ∈ Γ ∗ and σ ̸∈ Γ ∗ ⇔ ψ → σ ̸∈ Γ ∗ (by 1.5.9).

(c) Since Γ ⊆ Γ ∗ we have [[ψ]]v = 1 for all ψ ∈ Γ . !

Corollary 1.5.12 Γ ̸⊢ ϕ ⇔ there is a valuation such that [[ψ]] = 1 for all
ψ ∈ Γ and [[ϕ]] = 0.

⇒



Corollary 
Γ ⊬ φ ⇔ there is a valuation such that [ψ] = 1 for all ψ∈Γ and [φ]=0.

Γ ⊬ φ ⇔ Γ ∪ {¬φ} consistent ⇔ there is a valuation such that [ψ] = 1 for all 
ψ∈Γ∪{¬φ}, namely, [ψ]=1forall ψ∈Γ and[φ]=0

Theorem (Completeness Theorem) 
Γ ⊨φ ⟹Γ ⊢ φ

 
Proof. Γ⊬ φ ⇒ Γ⊭ φ

Γ ⊨φ ⟺Γ ⊢ φ



The connective ∨

50 1 Propositional Logic

[ϕ]1

D1

σ [¬σ]3
→ E

⊥
→ I1

¬ϕ

[ψ]2

D2

σ [¬σ]3
→ E

⊥
→ I2

¬ψ
∧I

¬ϕ ∧ ¬ψ ¬(¬ϕ ∧ ¬ψ)
→ E

⊥
RAA3

σ

The remaining cases are left to the reader. !

Note that (i) and (ii) read as introduction and elimination rules for ∨, (iii)
and (iv) as ditto for ¬, (vi) and (v) as ditto for ↔.

They legalise the following shortcuts in derivations:

ϕ
∨I

ϕ ∨ ψ

ψ
∨I

ϕ ∨ ψ ϕ ∨ ψ

[ϕ]

...

σ

[ψ]

...

σ
∨E

σ

[ϕ]

...

⊥
¬I

¬ϕ

ϕ ¬ϕ
¬E

⊥

[ϕ]

...

ψ

[ψ]

...

ϕ
↔ I

ϕ ↔ ψ

ϕ ϕ ↔ ψ

ψ

ψ ϕ ↔ ψ
↔ E

ϕ
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proof by cases
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Consider for example an application of ∨E

D0

ϕ ∨ ψ

[ϕ]

D1

σ

[ψ]

D2

σ
∨E

σ

This is a mere shorthand for

D0

¬(¬ϕ ∧ ¬ψ)

[ϕ]1

D1

σ [¬σ]3

⊥
1

¬ϕ

[ψ]2

D2

σ [¬σ]3

⊥
2

¬ψ

¬ϕ ∧ ¬ψ
1

⊥
3

σ

The reader is urged to use the above shortcuts in actual derivations, when-
ever convenient. As a rule, only ∨I and ∨E are of importance, the reader has
of course recognised the rules for ¬ and ↔ as slightly eccentric applications
of familiar rules.

Examples. ⊢ (ϕ ∧ ψ) ∨ σ ↔ (ϕ ∨ σ) ∧ (ψ ∨ σ).

(ϕ ∧ ψ) ∨ σ

[ϕ ∧ ψ]1

ϕ

ϕ ∨ σ

[σ]1

ϕ ∨ σ
1

ϕ ∨ σ

(ϕ ∧ ψ) ∨ σ

[ϕ ∧ ψ]2

ψ

ψ ∨ σ

[σ]2

ψ ∨ σ
2

ψ ∨ σ

(ϕ ∨ σ) ∧ (ψ ∨ σ)
(1)
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Conversely

(ϕ ∨ σ) ∧ (ψ ∨ σ)

ϕ ∨ σ

(ϕ ∨ σ) ∧ (ψ ∨ σ)

ψ ∨ σ

[ϕ]2 [ψ]1

ϕ ∧ ψ

(ϕ ∧ ψ) ∨ σ

[σ]1

(ϕ ∧ ψ) ∨ σ
1

(ϕ ∧ ψ) ∨ σ

[σ]2

(ϕ ∧ ψ) ∨ σ
2

(ϕ ∧ ψ) ∨ σ
(2)

Combining (1) and (2) we get one derivation:

[(ϕ ∧ ψ) ∨ σ]

D

(ϕ ∨ σ) ∧ (ψ ∨ σ)

[(ϕ ∨ σ) ∧ (ψ ∨ σ)]

D′

(ϕ ∧ ψ) ∨ σ
↔ I

(ϕ ∧ ψ) ∨ σ ↔ (ϕ ∨ σ) ∧ (ψ ∨ σ)

⊢ ϕ ∨ ¬ϕ [ϕ]1
∨I

ϕ ∨ ¬ϕ [¬(ϕ ∨ ¬ϕ)]2
→ E

⊥
→ I1

¬ϕ
∨I

ϕ ∨ ¬ϕ [¬(ϕ ∨ ¬ϕ)]2
→ E

⊥
RAA2

ϕ ∨ ¬ϕ
⊢ (ϕ → ψ) ∨ (ψ → ϕ)

[ϕ]1

→ I1
ψ → ϕ

∨I
(ϕ → ψ) ∨ (ψ → ϕ) [¬((ϕ → ψ) ∨ (ψ → ϕ))]2

→ E
⊥

⊥
ψ

→ I1
ϕ → ψ

∨I
(ϕ → ψ) ∨ (ψ → ϕ) [¬((ϕ → ψ) ∨ (ψ → ϕ))]2

→ E
⊥

RAA2
(ϕ → ψ) ∨ (ψ → ϕ)
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(ϕ ∧ ψ) ∨ σ
2

(ϕ ∧ ψ) ∨ σ
(2)
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D
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ψ → ϕ

∨I
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⊢ ¬(ϕ ∧ ψ) → ¬ϕ ∨ ¬ψ

[¬(ϕ ∧ ψ)]

[¬(¬ϕ ∨ ¬ψ)]

[¬ϕ]

¬ϕ ∨ ¬ψ

⊥

ϕ

[¬(¬ϕ ∨ ¬ψ)]

[¬ψ]

¬ϕ ∨ ¬ψ

⊥

ψ

ϕ ∧ ψ

⊥

¬ϕ ∨ ¬ψ

¬(ϕ ∧ ψ) → ¬ϕ ∨ ¬ψ

!

We now give a sketch of the second approach. We add ∨,¬ and ↔ to
the language, and extend the set of propositions correspondingly. Next we
add the rules for ∨,¬ and ↔ listed above to our stock of derivation rules. To
be precise we should now also introduce a new derivability sign, we will how-
ever stick to the trusted ⊢ in the expectation that the reader will remember
that now we are making derivations in a larger system. The following holds:

Theorem 1.6.3 ⊢ ϕ ∨ ψ ↔ ¬(¬ϕ ∧ ¬ψ).
⊢ ¬ϕ ↔ (ϕ →⊥).
⊢ (ϕ ↔ ψ) ↔ (ϕ → ψ) ∧ (ψ → ϕ).

Proof. Observe that by Lemma 1.6.2 the defined and the primitive (real) con-
nectives obey exactly the same derivability relations (derivation rules, if you
wish). This leads immediately to the desired result. Let us give one example.
ϕ ⊢ ¬(¬ϕ ∧ ¬ψ) and ψ ⊢ ¬(¬ϕ ∧ ¬ψ) (1.6.2 (i)), so by ∨E we get

ϕ ∨ ψ ⊢ ¬(¬ϕ ∧ ¬ψ) . . . (1)
Conversely ϕ ⊢ ϕ ∨ ψ (by ∨I), hence by 1.6.2 (ii)

¬(¬ϕ ∧ ¬ψ) ⊢ ϕ ∨ ψ . . . (2)
Apply ↔ I, to (1) and (2), then ⊢ ϕ ∨ ψ ↔ ¬(¬ϕ ∧ ¬ψ). The rest is left to
the reader. !

For more results the reader is directed to the exercises.
The rules for ∨,↔, and ¬ capture indeed the intuitive meaning of those

connectives. Let us consider disjunction: (∨I) : If we know ϕ then we certainly
know ϕ ∨ ψ (we even know exactly which disjunct). The (∨E)-rule captures
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