COMPUTATIONAL ALGEBRA 3/02/14

- 1. Determine the splitting field of
 - (a) $x^3 x + 1$ over \mathbb{F}_3
 - (b) $(x^2 + x + 1)(x^3 + x + 1)$ over \mathbb{F}_2
- 2. Find a primitive element of \mathbb{F}_9 .
- 3. Decompose $x^8 1$ in irreducible factors in \mathbb{F}_3 .
- 4. Construct a cyclic [8, 3] code C over \mathbb{F}_3 and find an idempotent element of C
- 5. Construct a cyclic code C over \mathbb{F}_3 of length 8 which can be used to correct up to 2 errors.
- 6. Consider the primitive element α of \mathbb{F}_{16} satisfing $\alpha^4 = 1 + \alpha$. The elements of \mathbb{F}_{16} are listed in the table belove.

0000	0	1000	α^3	1011	α^7	1110	α^{11}
0001	1	0011	α^4	0101	α^8	1111	α^{12}
0010	lpha	0110	$lpha^5$	1010	$lpha^9$	1101	α^{13}
0100	α^2	1100	α^6	0111	α^{10}	1001	α^{14}

Consider the BCH code of dimensions [15, 7] over $\mathbb{F}_2[x]$ (with b = 1) with defining set $T = \{1, 2, 3, 4, 6, 8, 9, 12\}$. Using the primitive 15-root of unity α form the previous table, the generator polynomial of C is $g(x) = 1 + x^4 + ^6 + x^7 + x^8$. Suppose C is used to transmit a codeword and y(x) is received. Correct the received word using the Peterson-Gorenstein-Zierler Decoding Algorithm, in case $y(x) = 1 + x^2 + x^3 + x^7 + x^9 + x^{10}$ or $y(x) = 1 + x^4 + x^7 + x^9 + x^{10}$. Verify that the correct word is actually a codeword.

7. Give the definition of \mathbb{Z}_4 -linear code. Give the definition of \mathbb{Z}_4 -linear code of type $4^{k_1}2^{k_2}$.