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ABSTRACT

We describe an architecture for efficient and accurate
linear decomposition of an image into scale and orien-
tation subbands. The basis functions of this decomposi-
tion are directional derivative operators of any desired
order. We describe the construction and implementa-
tion of the transform. 1

Differential algorithms are used in a wide vari-
ety of image processing problems. For example,
gradient measurements are used as a first stage of
many edge detection, depth-from-stereo, and op-
tical flow algorithms. Higher-order derivatives
have also been found useful in these applications.
Extraction of these derivative quantities may be
viewed as a decomposition of a signal via terms
of a local Taylor series expansions [1].

Another widespread tool in signal and image pro-
cessing is multi-scale decomposition. Apart from
the advantages of decomposing signals into in-
formation at different scales, the typical recursive
form of these algorithms leads to large improve-
ments in computational efficiency.

Many authors have combined multi-scale decom-
positions with differential measurements (eg.,
[2, 3]). In these cases, a multi-scale pyramid is
constructed, and then differential operators (typ-
ically, differences of neighboring pixels) are ap-
plied to the subbands of the pyramid. Since both
the pyramid decomposition and the derivative
operation are linear and shift-invariant, we may
combine them into a single operation. The advan-
tages of doing so are that the resulting derivatives
may be more accurate (see [4]). In this paper, we
propose a simple, efficient decomposition archi-
tecture for combining these two operations.

The decomposition is the latest incarnation of

1Source code and filter kernels for implementation of the
steerable pyramid are available via anonymous ftp from
ftp.cis.upenn.edu:pub/eero/steerpyr.tar.Z

“steerable pyramid”, as developed in [5, 6]. Sim-
ilar representations have been developed by Per-
ona [7]. In this linear decomposition, an image is
subdivided into a collection of subbands localized
in both scale and orientation. The scale tuning of
the filters is constrained by a recursive system di-
agram (described below). The orientation tuning
is constrained by the property of steerability [5].
A set of filters form a steerable basis if (1) they
are rotated copies of each other, and (2) a copy of
the filter at any orientation may be computed as
a linear combination of the basis filters. The sim-
plest example of a steerable basis is a set of N + 1
N th-order directional derivatives.

In addition to having steerable orientation sub-
bands, the transform we describe is designed to
be "self-inverting" (i.e., the matrix corresponding
to the inverse transformation is equal to the trans-
pose of the forward transformation matrix)2, and
is essentially aliasing-free. Most importantly, the
pyramid can be designed to produce any number
of orientation bands, k. The resulting transform
will be overcomplete by a factor of 4k=3.

A summary of these properties, in comparison
with two well-known multi-scale decompositions
is given in table 1. Note that the steerable pyramid
retains some of the advantages of orthonormal
wavelet transforms (eg., basis functions are local-
ized in space and spatial-frequency; the transform
is a tight frame), but improves on some of their
disadvantages (eg., aliasing is eliminated; steer-
able orientation decomposition). One obvious
disadvantage is in computational efficiency: the
steerable pyramid is substantially overcomplete.

We now describe the steerable pyramid in more
detail. The decomposition is most easily defined
in the Fourier domain, where it is (ideally) polar-
separable. Figure 1 contains a diagram of the

2In the wavelet literature, such a transform is known as a
tight frame [8]



Laplacian Pyramid Dyadic QMF/Wavelet Steerable Pyramid
self-inverting (tight frame) no yes yes
overcompleteness 4=3 1 4k=3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice [9] yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

Figure 1: Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with k = 4. Frequency axes range from
�� to �. The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

idealized frequency response of the subbands, for
k = 4. We write the the Fourier magnitude of
the ith oriented bandpass filter in polar-separable
form:

Bi(~!) = A(� � �i)B(!);

where � = tan�1(!y=!x), �i = 2�
k

and! = j~!j. Be-
low, we describe the constraints on the two com-
ponents A(�) and B(!).

1. ANGULAR DECOMPOSITION

The angular portion of the decomposition, A(�),
is determined by the desired derivative order. A
directional derivative operation in the spatial do-
main corresponds to multiplication by a linear
ramp function in the Fourier domain, which we
rewrite in polar coordinates as follows:

�j!x = �j! cos(�)

(note that we have described a derivative operator
in the x direction). We ignore the imaginary con-
stant, and the factor of !, which is absorbed into
the radial portion of the function. The relevant
angular portion of the first derivative operator (in
the x direction) is thus cos(�).

Higher-order directional derivatives correspond

to multiplication in the Fourier domain by the
ramp raised to a power, and thus the angular
portion of the filter is cos(�)N for an N th-order
directional derivative. Knuttson and Granlund
have also developed polar-separable filters with
such angular components [10]. The steerability of
such functions has been discussed in our previous
work [5, 6].

2. RADIAL DECOMPOSITION

The radial function, B(!), is constrained by both
the desire to build the decomposition recursively
(i.e., using a “pyramid” algorithm), and the need
to prevent aliasing from occurring during sub-
sampling operations. The recursive system dia-
gram for B(!) is given in figure 2.

The filters H0(!) and L0(!) are necessary for pre-
processing the image in preparation for the recur-
sion. The recursive portion of the diagram corre-
sponds to the subsystem contained in the dashed
box. This subsystem decomposes a signal into
two portions (lowpass and highpass). The low-
pass portion is subsampled, and the recursion is
performed by repeatedly applying the recursive
transformation to the lowpass signal.

The constraints on the filters in the diagram are
as follows:

1. Bandlimiting (to prevent aliasing in the sub-
sampling operation):

L1(!) = 0 forj!j > �=2:

2. Flat System Response:

jH0(!)j
2 + jL0(!)j

2 �
jL1(!)j

2 + jB(!)j2
�
= 1:

3. Recursion:

jL1(!=2)j2 = jL1(!=2)j2
�
jL1(!)j

2 + jB(!)j2
�
:

Typically, we choose L0(!) = L1(!=2), so that
the initial lowpass shape is the same as that used
within the recursion. An idealized illustration
of filters that satisfy these constraints is given in
figure 3. Note that L1(!) is strictly bandlimited,
and B(!) is power-complementary.
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Figure 2: System diagram for the radial portion of the steerable pyramid, illustrating the filtering and
sampling operations, and the recursive construction. Boxes containing “2D” and “2U” correspond to
downsampling and upsampling by a factor of 2. All other boxes correspond to standard 2D convolution.
The circles correspond to the transform coefficients. The recursive construction of a pyramid is achieved by
inserting a copy of the diagram contents enclosed by the dashed rectangle at the location of the solid circle
(i.e., the lowpass branch).
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Figure 3: Idealized depiction of filters satisfying the constraints of the block diagram in figure 2. Plots show
Fourier spectra over the range [0; �].

3. IMPLEMENTATION

We have designed filters using weighted least
squares techniques in the Fourier domain to ap-
proximately fit the constraints detailed above.
The resulting filters are fairly compact (typically
9 � 9 taps) and accurate (reconstruction error on
the order of 45dB). Such filters may be designed
for different values of k, depending on the appli-
cation. For example, a design with a single band
at each scale (k = 1) serves as a (self-inverting)
replacement for the Laplacian pyramid. A design
with two bands (k = 2) will compute multi-scale
image gradients, which may be used for computa-
tions of local orientation, stereo disparity or opti-
cal flow. Higher values of k correspond to higher
order terms in a multi-scale Taylor series.

Figure 4 illustrates a 3-level steerable pyramid de-
composition of a disk image, with k = 1. Shown
are the bandpass images and the final lowpass
image (the initial highpass image is not shown).
As noted above, this pyramid may be used in
applications where the Laplacian pyramid has
been found useful, such as in image coding. The
advantage is that the steerable pyramid is self-
inverting, and thus the errors introduce by quan-
tization of the subbands will not appear as low-
frequency distortions upon reconstruction.

Figure 5 illustrates a 3-level steerable pyramid
decomposition with k = 3. The filters are

Figure 4: A 3-level k = 1 (non-oriented) steer-
able pyramid. Shown are the bandpass images
and the final lowpass image.

directional second derivatives oriented at � 2
f�2�=3; 0; 2�=3g. Such a decomposition can be
used for orientation analysis, edge detection, etc.

We have explored the use of this decomposition
in a number of applications, including image en-
hancement, orientation decomposition and junc-
tion identification, texture blending, depth-from-
stereo, and optical flow. Space limitationsprevent
full description of these applications here; some
previous results are described in [5, 6].



 

Figure 5: A 3-level k = 3 (second derivative)
steerable pyramid. Shown are the three band-
pass images at each scale and the final lowpass
image.
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