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Wavelets bases in higher dimensions 
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Topics 

Basic issues 

•  Separable spaces and bases 

•  Separable wavelet bases (2D DWT) 

•  Fast 2D DWT 

•  Lifting steps scheme 

•  JPEG2000 

Wavelets in vision 

•  Human Visual System 

Advanced concepts 

•  Overcomplete bases 
–  Discrete wavelet frames (DWF) 

•  Algorithme à trous 
–  Discrete dyadic wavelet frames (DDWF) 

•  Overview on edge sensitive wavelets 
–  Contourlets 
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Separable Wavelet bases 

•  In general, to any wavelet orthonormal basis {ψj,n}(j,n)∈Z
2

 of L2(R), one can 
associate a separable wavelet orthonormal basis of L2(R2): 

•  The functions                   and                     mix information at two different scales 
along x1 and x2, which is something that we could want to avoid 

•  Separable multiresolutions lead to another construction of separable wavelet 
bases with wavelets that are products of functions dilated at the same scale. 

( )1, 1 1j n xψ ( )2, 2 2j n xψ
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Separable multiresolutions 

•  The notion of resolution is formalized with orthogonal projections in spaces of 
various sizes.  

•  The approximation of an image f(x1,x2) at the resolution 2-j is defined as the 
orthogonal projection of f on a space Vj

2 that is included in L2(R2) 

•  The space Vj
2 is the set of all approximations at the resolution 2-j .  

–  When the resolution decreases, the size of Vj
2 decreases as well. 

•  The formal definition of a multiresolution approximation {Vj
2}j∈Z of L2(R2) is a 

straightforward extension of Definition 7.1 that specifies multiresolutions of L2(R). 
–  The same causality, completeness, and scaling properties must be satisfied. 
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Separable spaces and bases 

•  Tensor product 
–  Used to extend spaces of 1D signals to spaces of multi-dimensional signals 
–  A tensor product                   between vectors of two Hilbert spaces H1 and H2 satisfies 

the following properties 

–  This tensor product yields a new Hilbert space                                including all the 
vectors of the form                 where                 and                          as well as a linear 
combination of such vectors 

–  An inner product for H is derived as  

1 2x x⊗

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2 1 2
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Separable bases 

•  Theorem A.3 Let                         . If                 and                are Riesz bases of H1 
and H2, respectively, then                            is a Riesz basis for H. If the two bases 
are orthonormal then the tensor product basis is also orthonormal.  

  

→ To any wavelet orthonormal basis one can associate a separable wavelet 
orthonormal basis of L2(R2) 

 

 However, wavelets               and                  mix the information at two different 
scales along x and y, which often we want to avoid. 
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Separable Wavelet bases 

•  Separable multiresolutions lead to another construction of separable wavelet 
bases whose elements are products of functions dilated at the same scale. 

•  We consider the particular case of separable multiresolutions 

•  A separable 2D multiresolution is composed of the tensor product spaces 

•  V2
j is the space of finite energy functions f(x,y) that are linear expansions of 

separable functions 

•  If                is a multiresolution approximation of L2(R), then                 is a 
multiresolution approximation of L2(R2).   
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Separable bases 

 It is possible to prove (Theorem A.3) that 

 

 

 is an orthonormal basis of V2
j. 

 A 2D wavelet basis is constructed with separable products of a scaling function and a 
wavelet 
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Examples 
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Separable wavelet bases 

•  A separable wavelet orthonormal basis of L2(R2) is constructed with separable 
products of a scaling function  and a wavelet . 

•  The scaling function  is associated to a one-dimensional multiresolution 
approximation {Vj}j∈Z.  

•  Let {Vj
2}j∈Z be the separable two-dimensional multiresolution defined by  

•  Let W2
j
 be the detail space equal to the orthogonal complement of the lower-

resolution approximation space Vj
2 in Vj-1

2: 

•  To construct a wavelet orthonormal basis of L2(R2),Theorem 7.25 builds a wavelet 
basis of each detail space W2

j . 

2
j j jV V V= ⊗

2 2 2
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Separable wavelet bases 
 Theorem 7.25 

 Let ϕ be a scaling function and ψ be the corresponding wavelet generating an orthonormal basis of 
L2(R). We define three wavelets 

 
 
 

 and denote for 1<=k<=3 
 
 
 

 The wavelet family 
 
 

 is an orthonormal basis of W2
j and 

 
 

 is an orthonormal basis of L2(R2)  
 
On the same line, one can define biorthogonal 2D bases. 
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Separable wavelet bases 

•  The three wavelets extract image details at different scales and in different 
directions.  

•  Over positive frequencies,                                 have an energy mainly 
concentrated, respectively, in [0,π ] and [π,2 π]. 

•  The separable wavelet expressions imply that 
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Bi-dimensional wavelets 
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Example: Shannon wavelets 
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Multiresolution vision 

•  The visual acuity is greatest at the center of the retina where the density of 
receptors is maximum. When moving apart from the center, the resolution 
decreases proportionally to the distance from the retina center 

•  A retina with a uniform resolution equal to the highest fovea resolution would 
require about 10,000 times more photoreceptors. Such a uniform resolution retina 
would increase considerably the size of the optic nerve that transmits the retina 
information to the visual cortex and the size of the visual cortex that processes this 
data. 

•  Active vision strategies compensate the non-uniformity of visual resolution with eye 
saccades, which move successively the fovea over regions of a scene with a high 
information content. These saccades are partly guided by the lower resolution 
information gathered at the periphery of the retina.  This multiresolution sensor has 
the advantage of providing high resolution information at selected locations, and a 
large field of view, with relatively little data. 
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Multiresolution computer vision 

•  Multiresolution algorithms implement in software the search for important high 
resolution data. A uniform high resolution image is measured by  camera but only 
a small part of this information is processed 

•  Coarse to fine algorithms analyze first the lower resolution image and selectively 
increase the resolution in regions where more details are needed.  

•  Applications: object recognition, stereo calculations… 
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Biorthogonal separable wavelets 
Let ϕ ,ψ, ϕ  and ψ  be a two dual pairs of scaling functions and wavelets that generate

a biorthogonal wavelet basis of L2 ( ).
The dual wavelets of ψ1,ψ 2  and ψ 3  are 
ψ1 x, y( ) = ϕ x( ) ψ y( )
ψ 2 x, y( ) = ψ x( ) ϕ y( )
ψ 3 x, y( ) = ψ x( ) ψ y( )

One can verify that 
ψ1
j ,n ,ψ

2
j ,n ,ψ

3
j ,n{ }

j ,n∈Ζ3

and
ψ1
j ,n,m , ψ

2
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3
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Fast 2D Wavelet Transform 
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Fast 2D DWT 
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Finite images and complexity 

•  When aL is a finite image of N=N1xN2 pixels, we face boundary problems when 
computing the convolutions 

–  A suitable processing at boundaries must be chosen 

•  For square images with N1N2, the resulting images aj and dk, j have N1N2/22j 

samples. Thus, the images of the wavelet representation include a total of N 
samples.  

–  If h and g have size K, one can verify that 2K/22( j-1) multiplications and additions are 
needed to compute the four convolutions  

–  Thus, the wavelet representation is calculated with fewer than 8/3 KN2 operations. 
–  The reconstruction of aL by factoring the reconstruction equation requires the same 

number of operations. 



Separable biorthogonal bases 

•  One-dimensional biorthogonal wavelet bases are extended to separable 
biorthogonal bases of L2(R2) following the same approach used for orthogonal 
bases 

•  Let                 be  two dual pairs  of scaling functions and wavelets that generate 
biorthogonal wavelet bases of L2(R). The dual wavelets of 

 

     are 
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ϕ,ψ, ϕ, ψ

ψ1 x, y( ),ψ 2 x, y( ),ψ 3 x, y( )

ψ1 x, y( ) = ϕ x( ) ψ y( )
ψ 2 x, y( ) = ϕ y( ) ψ x( )
ψ1 x, y( ) = ψ x( ) ψ x( )



Separable biorthogonal bases 

•  One can verify that 

•  are Riesz basis of L2(R2) 
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ψ1
j,n,m,ψ

2
j,n,m,ψ

3
j,n,m{ } j,n,m∈Z3

ψ1
j,n,m, ψ

2
j,n,m, ψ

3
j,n,m{ } j,n,m∈Z3
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Example 
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Example 
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Subband structure for images 

cD1(h) 

cD1(v) cD1(d) 

cD2(v) cD2(d) 

cD2(h) cA2 



Wavelet bases in higher dimensions 

•  Separable wavelet orthonormal bases of L2(Rp) are constructed for any  p≥2 with a 
procedure similar to  the two-dimensional extension. Let φ be a scaling function 
and ψ a wavelet that yields an orthogonal basis of L2(R). 

•  We denote θ0=φ and θ1 = ψ. To any integer 0≤ε<2p written in binary form ε=ε1,..εp 
we associate the p-dimensional functions defined in x = (x1. . . ,xp) by 

•  For ε=0 we obtain the p-dimensional scaling function 

•  Non-zero indexes ε correspond to 2p-1 wavelets. At any scale 2j and for 
n=(n1, . . . ,np) we denote 

Gloria Menegaz 28 

ψε x( ) =ϑ ε1 x1( )…ϑ εn xp( )

ψ 0 x( ) =ϕ x1( )…ϕ xp( )

ψε
j,n x( ) = 1

2 pj
ψε x1 − 2

j n1
2 j ,,

xp − 2
j np

2 j

"

#
$$

%

&
''



Wavelets in p-dimensions 

•  Theorem 7.25: The  family obtained by dilating and  translating the 2p-1  wavelets 
for         is an orthonormal  basis of L2(RP) 

•  The wavelet coefficients  off at scales 2j > 2L are computed with separable 
convolutions and subsamplings along the  p signal dimensions. 
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ε ≠ 0

ψ j,n{ }1≤ε<2p , j,n( )∈Ζ p+1

aj n[ ] = f ,ψε
j,n for 0 < ε < 2 p



Fast p-dimensional WT 

•  The fast WT is calculated with filters that  are separable products of the one-
dimensional filters  h and g.  

•  The separable p-dimensional low-pass filter is h0[n]=h[n1]..h[np] 
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Fast p-dimensional WT 
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Fast p-dimensional WT 
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Wavelet bases in higher dimensions 

•  Theorem 7.25 The  family obtained by dilating and  translating the 2p-1  wavelets 
for ε different from zero 

      is an orthonormal basis for L2(Rp).  

•  3D DWT 
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ψε
j,n x( ){ }1≤ε<2p , j,n( )∈Z p+1



3D DWT 
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Fig. The filter architecture for 3D wavelet transform 



3D wavelets for DSI denoising 
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DSI-3D-SWT 

(Y.C. Lin et al, ISBI 2012) 


