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3-dec-2012 (2 hrs). The space L(E,F ) of bounded linear operators between two
Banach spaces E,F . Operator norm ||T ||L = sup{||Tv||F , ||v||E ≤ 1}. Various notions
of convergence for a sequence of operators Tn ∈ L(E,F ) to T ∈ L(E,F ): uniform
(||Tn − T ||L → 0), strong (Tnv → Tv in F ∀ v ∈ F ), weak (< φ, Tnv >→< φ, Tv >
∀ v ∈ F , ∀φ ∈ F ′). The Weierstrass criterion for uniform convergence of series of
operators. Neumann series: for T ∈ L(E) and ||T ||L < 1, (I − T ) is invertible (and
hence (I − T )−1 ∈ L(E)). Moreover, (I − T )−1 =

∑+∞
n=0 T

n. It follows that the subset
of invertible operators is open in L(E): if T is invertible then for any S ∈ L(E) such
that ||S|| < ||T−1||, then T + S is invertible. Adjoint operator T ∗ ∈ L(F ′, E ′). It
is defined by the identity < T ∗φ, v >=< φ, Tv > for any v ∈ F , φ ∈ F ′. It holds
‖T ∗‖ = ‖T‖, as a consequence of Hahn-Banach. In case E = F = H a Hilbert
space, from the identification H ≡ H ′ given by the Riesz representation theorem, one
considers T, T ∗ ∈ L(H). If T = T ∗ the operator is called self-adjoint or symmetric.

Elements of spectral theory for T ∈ L(E). Resolvent set ρ(T ) ⊂ C: we have λ ∈
ρ(T ) if (λI−T )−1 ∈ L(E). The resolvent set is open in C. Moreover, if |λ| > ‖T‖ then
{λ ∈ C , |λ| > ||T ||} ⊂ ρ(T ). Actually, denoting r(T ) = lim supn(||T n||)1/n ≤ ||T || the
spectral radius of T , we have {λ ∈ C , |λ| > r} ⊂ ρ(T ).

5-dec-2012 (2hrs). Spectrum σ(T ) = C\ρ(T ) of T ∈ L(E): it is a closed set contained
in B(0, ||T ||) ⊂ C. Let λ ∈ σ(T ): If ker(T − λI) 6= 0 then λ is an eigenvalue of T ,
and belongs to the point spectrum. Otherwise, λ belongs to the continuous spectrum
(ker(T −λI) = 0 but (T −λI) is not surjective). In particular, the map (T −λI)−1 may
be defined either in a dense or in a proper closed subspace of E. Examples: the right
shift τr in `1 (or `2), or the diagonal operator Tα : {xn} 7→ {αnxn} where 0 6= αn → 0.
In both cases 0 belongs to the continous spectrum. Moreover, {αn} ⊂ σ(Tα) is the
point spectrum of Tα, while the point spectrum of τr is empty.

Resolvent operator Rλ = (T − λI)−1 of T ∈ L(E), with λ ∈ ρ(T ). Resolvent
equation Rλ−Rµ = (λ−µ)RλRµ: it yields dRλ

dλ
= R2

λ, that is λ 7→ Rλ is a holomorphic
function, whose singularities are in σ(T ). In particular, the Cauchy integral formula
(and the calculus of residues) involving Rλ and a given holomorphic function f(z)
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allows to consistently define f(T ) (in particular, if f(z) = ez, we obtain a formula for
exp(T ), while if f(z) = 1 we derive some information on the Jordan blocks of T ).

The space K(E,F ) ⊂ L(E,F ) of compact operators. Uniform limits of compact
operators in L(E,F ) are compact, i.e. K(E,F ) is closed in L(E,F ). A compact
operator (right- or left-) composed with a bounded operator is compact. In particular,
K(E) ≡ K(E,E) is a bilateral ideal of L(E). The identity map is compact if and only
if E is finite dimensional. Operators whose range is finite dimensional are compact:
they are called finite rank operators. Limits of sequences of finite rank operators are
compact.

Finite rank approximation for T ∈ K(E,H), withH a Hilbert space: given v1, ..., vN ∈
H a ε-net for T (BE), set VN =span〈v1, ..., vN〉 and TN = PN · T , where PN is the or-
thogonal projection on VN . We have that TN has finite rank and ||TN −T ||L(E,H) ≤ 2ε.

Examples: T : (an)n 7→ (2−nan)n is compact on `1 as uniform limit of the finite
rank operators TN : (an)n 7→ (σn2−nan)n, where σn = 1 for n ≤ N and σn = 0 for
n > N .

10-dec-2012 (1hr). Some properties of compact operators: any injective T ∈ K(E)
doesn’t admit a bounded inverse. If E is reflexive (e.g. a Hilbert space), T is
compact if and only if for any vn ⇀ v weakly in E it holds Tvn → Tv strongly
in E. In particular, T (B̄E) = ¯T (BE). If T ∈ K(H) then T ∗ ∈ K(H) and con-
versely. Some examples of compact operators: integral (kernel-based) operator of
Fredholm-Volterra type on C0([a, b]). Operators based on Mercer kernels on a com-
pact metric measure space: they are used for statistical learning purposes. Hilbert-
Schmidt operators: if K ∈ L2([a, b] × [a, b]) then if (Tx)(s) =

∫ b
a
K(s, t)x(t) dt we

have ||T ||L ≤ ||K||L2 . Given a Hilbert basis (i.e. a complete orthonormal system)
{φn} of L2([a, b]), set ψnm(s, t) = φn(s)φm(t): the elements ψnm are a Hilbert basis
of L2([a, b] × [a, b]). Expand K(s, t) =

∑∞
n=1

∑∞
m=1 knmψnm(s, t), and setting respec-

tively KN(s, t) =
∑M

n=1

∑N
m=1 knmψnm(s, t) and (TNx)(s) =

∫ b
a
KN(s, t)x(t) dt, we have

||TN−T ||L ≤ ||KN−K||2 → 0, hence T ∈ K(L2([a, b])) as limit of finite rank operators.

11-dec-2012 (2 hrs). The compact embedding i : W 1,p([a, b]) → C0([a, b]), p > 1;
given a family of maps u ∈ W 1,p([a, b]) with equibounded norm, i.e. ‖u‖p+‖u′‖p ≤M ,
we show that this family is equibounded in C0([a, b]) and (uniformly) equicontinuous,
hence by Ascoli-Arzela it is relatively compact in C0([a, b]): decompose u = v + c,

where c = 1
b−a

∫ b
a
u(x) dx. We have, by Hölder inequality,

|c| ≤ 1

|b− a|1/p
‖u‖p ≤

1

|b− a|1/p
M, |v(x)| ≤

∫ x

x0

|u′(t)| dt ≤ |b−a|1/p‖u′‖p ≤ |b−a|1/pM ,

where x0 ∈ [a, b] is such that v(x0) = 1
b−a

∫ b
a
v(x) dx = 0. We deduce the uniform

bound ‖u‖∞ ≤ CM , where C depends only on [a, b]. To prove equicontinuity, observe
that

|u(x)− u(y)| ≤
∫ y

x

|u′(t)| dt ≤ |x− y|α‖u′‖p ≤ |x− y|αM, where α = 1− 1

p
,
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hence the maps u are equi-Hölder continuous.

The Fredholm Alternative for operators of the type A = I − T , with T ∈ K(H), H
a Hilbert space: kerA is finite dimensional, the range R(A) is closed, hence there holds
the orthogonal direct sum decomposition H = R(A)⊕ kerA∗ = R(A∗)⊕ kerA, where
A∗ = I − T ∗. Moreover, kerA = 0 ⇔ R(A) = H, and finally dim kerA =dim kerA∗ <
+∞.

The Fredholm alternative gives a procedure to solve equation Au = u − Tu = f .
First of all, solve the associated adjoint homogeneous equation, i.e. the fixed point
equation v = T ∗v. If the solution is trivial, then Au = f admits a unique solution for
any datum f ∈ H. Otherwise, call v1, ...vk a basis of kerA∗ (i.e. a maximal independent
set of fixed points of T ∗); then there are solutions of Au = f provided f verifies the
orthogonality conditions < f, vi >= 0 for any i = 1, ..., k.

The Fredholm Alternative holds more generally for operators of the type A = I−T
with T ∈ K(E), E a Banach space.

12-dec-2012 (2hrs). Spectrum of a compact operator: 0 ∈ σ(T ) and σ(T )\{0}, if non
empty, is made of at most countably many eigenvalues λn, with λn → 0 as n → +∞.
The corresponding eigenspaces ker(λnI−T ) 6= 0 are finite-dimensional. If the operator
is self-adjoint on a Hilbert space, then the eigenvalues are real, and max |λn| = ‖T‖L.

Spectral theory for self-adjoint compact operators in Hilbert spaces: the eigenvalues
are real and there exists a Hilbert basis made of eigenvectors, which “diagonalizes”
the operator. In particular, for T ∈ K(H), T ∗ = T , and en a orthonormal basis of
eigenvectors, i.e. Ten = λnen (with λn → 0), we have the diagonal representation
Tv = T (

∑
n cnen) =

∑
n λncnen, i.e. the operator can be identified with T̃ ∈ K(`2)

given by T̃ (cn) = (λncn).

Proof of the spectral theorem: we consider a (iterated) contrained optimization
problem on the unit closed ball B = {‖v‖ ≤ 1} of H for the quadratic form Q(v) =
〈Tv, v〉 associated to T ∈ K(H). Notice first that Q(v) is weakly continuous, since
vn ⇀ v0 implies Tvn → Tv0, and moreover ‖vn‖ ≤ M (weakly convergent sequences
are bounded), whence

| 〈Tvn, vn〉 − 〈Tv0, v0〉 | ≤ |Tvn − Tv0| · |vn|+ | 〈Tv0, vn − v0〉 | → 0.

By Weierstrass Theorem, |Q(v)| reaches its maximum on the unit closed ball B,
which is weakly compact. Let e1 be a maximum point. We have necessarily ‖e1‖ = 1
because Q(λv) = λ2Q(v) for λ ∈ R. Moreover, for any e ∈ H such that ‖e‖ = 1
and 〈e, e1〉 = 0, one has 〈e, Te1〉 = 0, since by the Lagrange multipliers theorem e1

is a critical point of the function Q(v) + λ‖v‖2 = ψ(α, β, λ), where v = αe1 + βe2

belongs to the 2-dimensional space spanned by e1 and e. In particular, one deduces
Te1 = 〈Te1, e1〉·e1 = λ1e1, i.e. e1 is an eigenvector of T and |Q(e1)| = |〈Te1, e1〉| = |λ1|,
i.e. the eigenvalue λ1 has maximum modulus among the eigenvalues of T (actually we
have |λ1| = ‖T‖L).
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Iterating this procedure, one obtains, for n ≥ 1, an eigenvector en of T , with ‖en‖ =
1, and such that < en, em >= 0 for any m < n, corresponding to the maximum point
of |Q(v)| on (span{e1, ..., en−1})⊥ ∩ B, with λn = Q(en) the corresponding eigenvalue.
Moreover, it holds |λn−1| ≥ |λn|.

If for some n0 ∈ N one has λn0 = Q(en0) = 0, then (span{e1, ..., en0−1})⊥ = kerT .
Indeed, Q(w) = 0 for any w ∈ (span{e1, ..., en0−1})⊥, and if 〈w, ei〉 = 0 ∀ i < n0, then
〈Tw, ei〉 = 〈v, Tei〉 = 0, i.e. also Tw ∈ (span{e1, ..., en0−1})⊥. The polarization identity
4〈Tv, u〉 = Q(u+ v)−Q(u− v) hence implies that 4〈Tw, Tw〉 = Q(w+ Tw)−Q(w−
Tw) = 0 for any w ∈ (span{e1, ..., en0−1})⊥, i.e. Tw = 0.

We deduce in this case that the set {e1, ..., en0}, completed with a (complete) or-
thonormal system of kerT yields a Hilbert basis of eigenvectors of T .

Otherwise, we are left with a orthonormal sequence {en}n, so that in particular
en ⇀ 0 by Bessel inequality (for any w ∈ H,

∑
n〈en, w〉2 ≤ ||w||2 ⇒ 〈en, w〉 → 0

as n → +∞), and hence |λn| = |Q(en)| ↘ 0 by weak continuity of Q. Let N =

span{e1, ..., en, ...}
⊥

. For any w ∈ N one necessarily has |Q(w)| ≤ |Q(en)| for any
n ∈ N, hence Q(w) = 0 and N = kerT .

In this case, the set {en}n∈N, completed with a (complete) orthonormal system of
kerT yields a Hilbert basis of eigenvectors of T .

13-dec-12 (2hrs). Application of the spectral theorem to the representation of the
(unique) solution of the homogeneous Dirichlet problem ∆u = f in Ω ⊂ Rn, u = 0 on
∂Ω, where f ∈ C0(Ω).

Denoting by T : C0(Ω) → C2(Ω) the solution operator f 7→ u (T corresponds,
roughly speaking, to ∆−1) one may extend it to an operator T ∈ L(L2(Ω)) which
happens to be compact and self-adjoint.

If {ek(x)}k is a Hilbert basis of L2(Ω) of eigenvectors of T with eigenvalues µk ∈ R
with µk → 0, then ∆ek = λkek with ek(x) = 0 on ∂Ω and λk = 1/µk (in particular
|λn| → +∞). If Ω has a particularly simple shape (e.g. a circle or a rectangle in R2, a
ball or a parallelopiped in Rn), one may find ek(x) and the corresponding λk using the
technique of separation of variables, that consists in seeking a solution e(ξ1, ..., ξn) of
∆ξe = λe of the form e(ξ1, ..., ξn) = Πn

i=1Ξi(ξi), where ξ1, ..., ξn is a “natural” coordinate
system for the domain Ω. The partial differential equation solved by e translates in a
ordinary differential equation for Ξ1, ...,Ξn and determines at once ek(x) and λk.

Having constructed the Hilbert basis {ek(x)} of L2(Ω) which diagonalizes T , and
expanding f(x) =

∑∞
k=1 fkek(x), we obtain the following representation for the solution

of ∆u = f in Ω, u = 0 on ∂Ω:

u(x) = Tf(x) = T

(
∞∑
k=1

fkek(x)

)
=
∞∑
k=1

fk
λk
ek(x) .

The Lax-Milgram Lemma: given a bilinear form a(u, v), continuous (a(u, v) ≤
M‖u‖‖v‖) and coercive (0 < α‖u‖2 ≤ a(u, u) ∀ u 6= 0) on a Hilbert space H, for any
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bounded linear form φ ∈ H∗ there exists a unique u ∈ H such that a(u, v) = φ(v) for
any v ∈ H. In particular, ‖u‖ ≤ α−1‖φ‖∗.

If moreover a is symmetric (i.e. a(u, v) = a(v, u)), we have the characterization
u = arg min{1

2
a(v, v)− φ(v) , v ∈ H}.

Proof: by Riesz representation theorem, the equation to be solved can be rewritten
as 〈Au, v〉 = 〈f, v〉 for any v ∈ H, i.e. Au = f , where A ∈ L(H) verifies the estimates
0 < α‖u‖ ≤ ‖Au‖ ≤M‖u‖ ∀ u 6= 0.

From α‖u‖ ≤ ‖Au‖ (which is called an a priori estimate) it follows that kerA = 0.
Moreover, α‖un − um‖ ≤ ‖Aun − Aum‖ implies that if yn = Aun → y in H, i.e. Aun
is a Cauchy sequence in H, then also un is a Cauchy sequence, hence un → u in H by
completeness, thus yielding y = Au. One concludes that A has a closed range R(A) in
H. Finally, if v⊥R(A), then 〈v, Au〉 = 0 ∀ u ∈ H. In particular, choosing u = v, we
have 0 = 〈v, Av〉 ≥ α‖v‖2, thus v = 0 and R(A) = H. We just proved that A is both
injective and surjective, and the conclusion of the Lemma follows.

In case of a symmetric a, since α‖u‖2 ≤ a(u, u) ≤ M‖u‖2, the scalar product
((u, v)) := a(u, v) is equivalent to 〈·, ·〉, hence by Riesz representation theorem applied
to H endowed with ((·, ·)), one has φ(v) = a(g, v) for a certain g ∈ H, whence u
verifies a(u − g, v) = 0 ∀ v ∈ H, i.e. u is the orthogonal projection (with respect to
the scalar product induced by a) of g on H, in other words u minimizes the (squared)
distance (induced by a) a(v−g, v−g), or, equivalently, the quadratic functional F (v) =
1
2
a(v, v)−φ(v), for v ∈ H, whose Euler-Lagrange equation ∂vF (u) ≡ 〈F ′(u), v〉 = 0 for

any direction v ∈ H is precisely given by a(u, v) = φ(v) for any v ∈ H.

The Galerkin approximation method: if Vh ⊂ H, dimVh < +∞, one considers the
solution uh of the system a(u, v) = φ(v) ∀ v ∈ Vh. The Lemma of Céa guarantees
that ‖u − uh‖ ≤ M

α
dist (u, Vh) (in other words, uh is comparable to the orthogonal

projection of u on Vh): indeed, a(u−uh, u−uh) = a(u−uh, u− v) for any v ∈ Vh since
a(u, v − uh) = a(uh, v − uh) = φ(v − uh), whence α‖u− uh‖2 ≤M‖u− uh‖‖u− v‖ for
any v ∈ Vh and the conclusion follows.

Hence, considering a sequence of finite-dimensional spaces Vh ⊂ Vh+1 such that
H = ∪hVh, one has the convergence uh → u in H as h→ +∞.

Remark that the approximating finite-dimensional problem is a linear system with a
positive definite coefficients matrix, called stiffness matrix, which is given by [a(fi, fj)],
with {fi} a basis for Vh.

The choice of the sequence Vh invading H and of a basis {fi} for Vh is aimed to
efficiently solve the approximating linear system, and also to have the best possible
convergence rate for the error estimate ||uh − u||. Here are some examples in case
H = L2(Ω), Ω ⊂ Rn:

1) if a is represented by a compact self-adjoint operator, then considering a Hilbert
basis {en}n∈N of L2(Ω) made of eigenvectors, and setting Vh =span< e1, ..., eh >, the
corresponding system is diagonal.

2) considering a basis {fi} of Vh made of finite elements (piecewise linear or polyno-
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mial function insisting on a fixed triangulation of the domain) yields a sparse stiffness
matrix. Finite elements are used in numerical fluid dynamics, material science, elas-
ticity,...

3) Haar basis, wavelets, radial basis functions: these Hilbert basis of L2(Ω) are
used in signal and image processing and statistical analysis, being not computation-
ally expensive, and also since they are able to take into account localized oscillation
phenomena at any scale in physical and in frequency space.

3) if the original problem admits a smooth solution (for example, u ∈ C∞(Ω) as for
Laplace equation), it may be convenient to use spectral methods for its approximation,
i.e. to consider a Hilbert basis of L2(Ω) made of orthogonal polynomials (e.g. the
trigonometric system, the Legendre polynomials, the Hermite polynomials): since the
Lemma of Céa states that the error estimate ‖u−uh‖ is comparable to the distance of u
to its orthogonal projection on Vh, hence the convergence rate will be better according
to the regularity of u (for instance, the more regular u, the more rapidly its Fourier
coefficients decay to 0).

16-dec-2012 (2 hrs). Integration by parts formula in Rn and notion of weak (partial)
derivatives. Example: the function |x|, for x ∈ R, has the Heaviside function as
weak derivative. Sobolev spaces W 1,p(Rn), W 1,p(I), I ⊂ R an interval, and W 1,p(Ω).
Definition of W 1,p(Rn) as the completion of C∞c (Rn) w.r.t. the W 1,p norm ‖u‖W 1,p =
‖u‖Lp + ‖∇u‖Lp . Definition of W 1,p(Ω) as the space of those u ∈ Lp(Ω) admitting
weak derivatives in Lp(Ω). Continuity properties of Sobolev functions in I ⊂ R. Some
properties of W 1,p(Ω): completeness, reflexivity, separability, according to the exponent
p.

18-dec-2012 (2 hrs). Density of smooth functions in W 1,p(Ω): extension of a function
u ∈ W 1,p(Ω) to a function ū ∈ W 1,p(Rn) and regularization by convolution. Leibniz’
rule and chain rule for Sobolev maps. The Hilbert space H1 = W 1,2. Characterization
of maps in W 1,p(Ω): uniformly bounded differential quotients w.r.t the Lp norm, weak
derivative as a bounded linear functional on Lp

′
: in case p = 1 these properties char-

acterize the space BV (Ω) of functions of bounded variation, i.e. the functions whose
weak partial derivatives are represented by Radon measures. Example: the Heavi-
side function has the Dirac mass δ0 as weak derivative. The space W 1,p

0 (Ω), Poincaré
inequality.

19-dec-2012 (2 hrs). First written test.

14-jan-2013 (2 hrs). Weak / variational formulation of elliptic boundary value prob-
lems in dimension 1. Classical vs weak solutions. Homogeneous Dirichlet problem:
weak formulation in H1

0 , existence, uniqueness, a priori estimates, H2-regularity and
higher regularity of the weak solution of the Variational characterization of the weak
solution as the minimizer of the Dirichlet energy. Analysis of the (homogeneous)
Sturm-Liouville problem, spectral decomposition of Sturm-Liouville operators, spec-
tral approximation methods. Homogeneous Neumann problem: weak formulation in
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H1, existence, uniqueness, a priori estimates, variational characterization of the weak
solution, higher regularity.

16-jan-2013 (2 hrs). Non homogeneous Dirichlet and Neumann problems, Stampac-
chia theorem. Examples with mixed / periodic boundary conditions, and with non
symmetric associated bilinear form. Maximum principle for the Dirichlet problem,
Stampacchia’s truncation method. Corollaries: comparison principles, stability in L∞

for the solution with respect to the data.

21-jan-2013 (2 hrs). Sobolev spaces W 1,p(Rn), W 1,p(Ω) with Ω ⊂ Rn open bounded
of class C1. Critical exponent p∗. Sobolev embedding theorems in the subcritical, crit-
ical (Sobolev-Gagliardo-Nirenberg) and supercritical (Sobolev-Morrey) case. Sobolev
embedding in the case p = 1 and isoperimetric inequality in Rn.

Rellich-Kondrachov compact embedding for W 1,p(Ω), Ω ⊂ Rn open bounded of
class C1. The space W 1,p

0 (Ω) with Ω ⊂ Rn open bounded, Poincaré inequality.

Weak and variational formulation of elliptic boundary value problems in Ω ⊂ Rn:
formulation in H1

0 of the homogeneous Dirichlet problem with datum f ∈ L2, existence,
uniqueness, a priori estimates for the weak solution via Lax-Milgram. Variational
characterization as the minimizer of the energy E(v) = ‖∇v‖2

2 + ‖v − f‖2
2 on H1

0 (Ω).
Elliptic problems in divergence form.

22-jan-2013 (2 hrs). Solvability of a general second-order elliptic boundary value prob-
lem in divergence form through the Fredholm Alternative. Nonhomogeneous Dirichlet
problem. Homogeneous Neumann problem. Maximum principle for elliptic equations.
Spectral theory of the Laplacian: existence of a Hilbert basis of L2(Ω) made by eigen-
functions of the Laplacian in H1

0 (Ω). The heat equation and the wave equation: meth-
ods of resolution through discretization in time (Euler-type schemes) or through finite-
dimensional approximation of the Laplacian (Galerkin method, corresponding to the
technique of separation of variables). Gradient flow aspects of the heat equation. Dis-
cretized gradient flow of the Dirichlet energy as an example of Tychonoff regularization
in machine learning theory.

23-jan-2013 (2hrs). Identification ofM(Ω), the space of Radon measures on Ω ⊂ Rn

with the dual space C0
c (Ω)′ via Riesz representation theorem. Weak-* convergence on

a dual space and Banach-Alaloglu compactness theorem. Application to the existence
of solutions to minimum norm problems in dual spaces via direct methods (i.e. weak-*
compactness of minimizing sequences plus lower semicontinuity of the norm).

Definition and characterization of the space BV (Ω) (function of bounded variation):
u ∈ BV (Ω) if u ∈ L1(Ω) and the (distributional) gradient Du = (D1u, ..., Dnu) is a
(vector) Radon measure, which satisfies the integration by part formula (Gauss-Green)∫

Ω

u div ~φ = −
∫

Ω

~φ · dDu for any ~φ ∈ [C0
c (Ω)]n .
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Total variation of a vector Radon measure: for ~µ = (µ1, ..., µn) with µi ∈ M(Ω) =
(C0

c (Ω))′ we have the decomposition ~µ = ~ν|~µ|, where |~µ| is a positive measure (called
the total variation measure) and |~ν(x)| = 1 for |~µ| a.e. x ∈ Ω. The total variation of
~µ is defined as

‖~µ‖ = sup

{∫
Ω

~φ · d~µ =

∫
Ω

~φ · ~ν d|~µ| , ~φ ∈ [C0
c (Ω)]n, ‖~φ‖∞ ≤ 1

}
= |~µ|(Ω).

Example: the characteristic function 1E of an open bounded set E ⊂ Rn with ∂E ∩Ω
of class C1 belongs to BV (Ω), since by Gauss-Green formula

D1E(~φ) = −
∫
E

div ~φ dx = −
∫
∂E

~φ · ~n dσ ,

where ~n is the unit outer normal to ∂E and dσ is the surface measure on ∂E, so
that |D1E(~φ)| ≤ ‖~φ‖∞ · Area(∂E ∩ Ω), i.e. D1E is a vector Radon measure, and in
particular D1E = ~ν|D1E|, where ~ν(x) = −~n(x) is the inner unit normal to ∂E∩Ω and

|D1E| = dσ. By a suitable choice of the test function ~φ in such a way that |~φ(x)| ≤ 1

and ~φ = −~n on ∂E ∩ Ω one gets |D1E|(Ω) = Area(∂E ∩ Ω).

Definition of finite perimeter (or Caccioppoli) sets in Ω: they are Lebesgue measur-
able sets E ⊂ Ω such that PΩ(E) ≡ |D1E|(Ω) < +∞, i.e. 1E ∈ BV (Ω). Isoperimetric
and isovolumetric problem in Rn. Weak formulation of the isovolumetric problem in
the class of finite perimeter sets: fix R > 1 (sufficiently large) and set

P =

{
E ⊂ BR(0), Ln(E) =

∫
Rn

1E dLn = 1, 1E ∈ BV (B2R(0))

}
,

i.e. P contains sets E ⊂ BR(0) having unit volume and finite perimeter ‖D1E‖ ≡
|D1E|(B2R(0)) in B2R(0): observe that since E ⊂ BR(0), the perimeter of E in B2R(0)
coincides with the whole perimeter of E in Rn, i.e. with |D1E|(Rn). Consider the
isovolumetric problem

min
E∈P
‖D1E‖ .

If En ∈ P is a minimizing sequence, i.e. ‖D1En‖ → infF∈P ‖D1F‖, we have

‖1En‖BV (B2R(0)) = 1 + ‖D1En‖ ≤ C,

so that, up to a subsequence, 1En → 1E in L1(B2R(0)) by the compact embedding of
BV (B2R(0)) in L1(B2R(0)) (Rellich Theorem). We deduce E ⊂ BR(0) and Ln(E) = 1.

Moreover, passing to the limit in the integration by part formula, we have D1En(~φ)→
D1E(~φ) for any ~φ ∈ [C0

c (Rn)]n and

‖∇1E‖ ≤ lim inf
n→+∞

‖∇1En‖ = inf
F∈P
‖∇1F‖

by lower semicontinuity of the total variation norm. Hence E has minimum perimeter
in the class P .
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The regularity theory (based for example on Steiner symmetrization) allows to
conclude that the optimal set E is the unit volume round ball in Rn.
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