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Compression and Coding

Theory and Applications

Part 1: Fundamentals
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Transformation

Ordering (significance)

Transmitter (Encoder) Receiver (Decoder)

Channelinformation 
unit

What is the problem?
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Why is it important?

• The available resources for signal communication and archiving are limited

StandardizationCompression
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Basic steps

Transformation/
Prediction

Extraction of the 
symbols Encoding

• Goal: minimize the amount of resources needed to transmit a source signal from 
the transmitter to the receiver

• Basic steps:
– Reduction of the redundancy in the data

• Transform-based coding
• Prediction-based coding

– Translate the resulting information from to a sequence of symbols suitable for encoding
– Entropy coding of the sequence of symbols

Quantization

Entropy coding
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Basic idea

• Exploit the redundancy among the data samples for an effective representation of 
the data

• Classical coding schemes
– Look at the data as to set of numbers and reduce the mathematical and/or statistical 

redundancy among the samples
• JPEG, MPEG

• Second generation coding schemes
– Adapt the coding scheme to the different image regions featuring some omogeneity for 

optimizing the coding gain given the data
• ROI based coding, JPEG2000

• Model-based coding
– Look at the data as to perceptual information and exploit the way such information is 

processed by the sensory system to improve compression
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Compression modes

• Lossless
– The original information can be recovered without loss from the compressed data
– Low compression factors

• Less than a factor 3 for natural images

• Lossy
– The compression process implies the loss of information that cannot be recovered at the 

decoding
– Basically due to quantization
– Very high compression factors
– Degradation of the perceived quality

⇒ Key point: rate/distortion tradeoff
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Information theoretical limits

• Noisy channel coding theorem
– Information can be transmitted reliably (i.e. without error) over a noisy channel at any 

source rate, R, below a so-called capacity C of the channel
R<C for reliable transmission

• Source coding theorem
– There exists a map from the source waveform to the codewords such that for a given 

distortion D, R(D) bits (per source sample) are sufficient to enable waveform 
reconstruction with an average distortion that is arbitrarily close to D. Therefore, the 
actual rate R has to obey:

R ≥ R(D) for fidelity given by D
R(D): rate distortion function
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Qualitative R(D) curves

• R(D) curves are monotonically no-increasing
– Noteworthy points

• R(0): rate needed for exact reproduction of the source⇔ entropy of the source
• Ropt, Dopt: minimum rate for a given distortion / minimum distortion at a given rate

Information theoretic bound

low complexity coder

medium complexity coder

high complexity coder

D

R
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Entropy Coding

Fundamentals
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Information

• Information
Let X be a Random Variable (RV) and s be a realization of X. Then, the information hold by 

symbol s can be written as

where p(s) is the probability of the symbol s.
– I(s) represents the amount of information carried by the symbol s.

• p(s)=1 → There is no uncertainty on the expectation on value taken by the RV → no information 
is conveyed by the knowledge of the actual value of the RV (current realization). This is 
expressed by the corresponding information being zero → I(s)=0

• p(s)<< (very small) → the value s is highly improbable → it corresponds to a rare event →
knowing that the current realization of the RV is equal to s is highly informative, as an indication 
of a rare event. This is expressed by the corresponding information being very high in value I(s) 
→ infinity

• Summary: symbols that are certain convey no information, while very improbable symbols 
are highly informative
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Information

• Discrete time sources
– Let X be a discrete time ergodic source generating the sequences {xk}{k=1,K} of source 

symbols. 
• The sequences are realizations of the RV {X}
• The source is memoryless if successive samples are statistically independent

– Information

∞→→<<
=→=
−=−=

kk

kk

kkk

Ixp
Ixp

xppI

1)(
01)(

)(loglog 22



Gloria Menegaz 12

Information

• Relation to uncertainty
If the K symbols have the same probability

Then the information is

In this case, the uncertainty on the expectation is maximized, because all the symbols are 
equally probable.

The amount of information is the same for all symbols

Same probability Same probability ↔↔ Maximum uncertaintyMaximum uncertainty
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Entropy

• Entropy
Let X be a discrete RV: {xk}{k=1,K}. Then, the entropyentropy is defined as

– H(X) represents the average information content of the sourceaverage information content of the source (or the average 
information conveyed by the RV)

– Symbols with same probability (maximum uncertainty)

– It can be shown that this corresponds to the upper bound
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Entropy

• Summary
– The entropy represents the average information conveyed by the source RV

• H(X) is the average information received if one is informed about the value of the RV X has 
taken

– The entropy increases with the degree of uncertaintyincreases with the degree of uncertainty on the expectation of the 
realizations of the RV

• Equivalently: it is the uncertainty about the source output before one is informed about it
– All the discrete sources with a finite number K of possible amplitudes have a finite 

informational entropy that is no greater than log2K bits/symbol
0≤H(X)≤log2K

• The right side equality holds if and only if all probabilities are equal (most unpredictable source)
• Due to unequal symbol probabilities and inter-symbol dependencies H(X) will in general 

be lower than the bound value

• Entropy coding exploits unequal symbol probabilities as well as source memory 
to realize average bit rates approaching H(X) bits/symbol
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Entropy coding

• Goal: Minimize the number of bits needed to represent the values of X.
– We consider the codes that associate to each symbol xk a binary word wk of length lk. 
– A sequence of values produced by the source is coded by aggregating the 

corresponding binary words.

• Bit-rate
– The averageaverage bit-rate to code each symbol emitted by the source is

RX=-∑klklog2pk

– Goal: optimize the codewords to minimize RX
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Shannon theorem

• The Shanno theorem proves that the entropy is a lower boundlower bound for the average 
bitrate RX of a prefix code

• The average rate of a prefix code satisfies

RX ≥ H(X) = -∑kpklog2pk

Moreover, there exists a prefix code such that

RX ≤ H(X)+1

– The lower bound is set by the entropy of the source
– We cannot do better than reaching the entropy of the source

• Redundancy: 

R(X)=log2K-H(X)
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Entropy coding policies

• Fix and variable length codes
– Fix length codes: If log2K is an integer, all symbols could be coded with words of the 

same length lk=log2K bits. 
– Variable length codes: the average code length can be reduced by using shorter binary 

codewords for symbols that occur frequently.

• Variable Length Codes (VLCs)
– Prefix codes

• Huffman coding
• Arithmetic coding

pk large → short codewords

pk small → long codewords
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Prefix codes

• To guarantee that any aggregation of codewords is uniquely decodable the prefix 
condition imposes that no codeword may be the prefix (beginning) of another one

• Example
{w1=0, w2=10, w3=110, w4=101}
→ 1010 can be read as both w2w2 and w4w1: ambiguous!

→ Prefix codes are constructed by building binary trees

1

1

1

1

0

0 0

0

w1w2w4

0

w3

w5w6 1
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Huffman code

• Optimal prefix code tree
– rate approaching the lower bound

• Each symbol is represented by a codeword whose length gets longer as the 
probability of the symbol gets smaller

• Dynamic programming rule that constructs a binary tree from bottom up by 
successively aggregating low probability symbols

Let us consider K symbols with their probability of occurrence sorted by increasing order 
pk ≤pk+1

{(x1,p1),(x2,p2),...,(xK,pK)}
we aggregate x1 and x2 in a single symbol of probability p12=p1+p2.

RecursivityRecursivity: An optimal prefix tree for K symbols can be obtained by constructing an optimal 
prefix tree for the K-1 symbols

{(x12,p12),(x2,p2),...,(xK,pK)}
and by dividing the leafs of p12 in two children corresponding to x1 and x2
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Huffman code

• Example
– {p1=0.05, p2=0.1, p3=0.1, p4=0.15, p5=0.2, p6=0.4}

x6 x5 x4 x3 x2 x1

10

0.15

0.25

10.35

0.6

1

1

1

0

0

0

0

x1 1111

x2 1110

x3 110

x4 101

x5 100

x6 0
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Arithmetic coding

• The symbols are on the number line in the probability interval 0 to 1 in a sequence 
that is known to both encoder and decoder

• Each symbol is assigned a sub-interval equal to its probability

• Goal: create a codeword that is a binary fraction pointing to the interval for the 
symbol being encoded

• Coding additional symbols is a matter of subdividing the probability interval into 
smaller and smaller sub-intervals, always in proportion to the probability of the 
particular symbol sequence
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Arithmetic coding

• Example
p(A)=1/3
p(B)=2/3

0

1

2/3 B

A1/3
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Arithmetic coding

• Example
p(AA)=1/3*1/3=1/9 p(BA)==1/3*2/3=2/9
p(AB)=2/9 p(BB)=4/9

0

1

2/3 B

A

4/9

AA

AB

BA

BB

1/3

1/3

2/3
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Arithmetic coding

• After encoding many symbols
– the  final interval width P is the product of the probabilities of all symbols coded;
– the interval precision, the number of bits required to express an interval of that size, is given 

approximately by -log2(P). 
Therefore, since

P=p1*p2*....*pN
the number of bits of precision is approximately

- log2(P)= -(log2(p1)+log2(p2)+....+ log2(pN))

thus the codestream length will be very nearly equal to the information for the individual symbol 
probabilities, and the average number of bits/symbol will be very close to the bound computed from 
the entropy.

• Adaptive arithmetic coding
– The probability tables for the different symbols can be made adaptive to the source statistics and 

updated during encoding
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Arithmetic coding

• Features
– Does not require integer length codes
– Encodes sequences of symbols
– Each sequence is represented as an interval included in [0,1]
– The longer the sequence, the smaller the interval and the larger the number of bits 

needed to specify the interval
– The average bit rate asymptotically tends to the entropy lower bound when the sequence 

length increases

– On average, performs better than Huffman coding
– Moderate complexity
– Used in JPEG2000
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Coding systems

Transformation

Prediction

Message extraction
definition of the set of 
symbols

Source signal 
(image)

Quantization Entropy coding
Bitstream

reducing the 
number of 
symbols

assigning 
codewords to 
symbols
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Prediction based coding

Prediction

Source signal 
(image)

-

“predicted”
samples

The value of the samples are estimated according to a predefined rule and the resulting 
values are subtracted from the corresponding ones in the original image to obtain the
residual (or error) image. This last one is then quantized and entropy coded. 
• Still images → spatial (intra-frame) prediction
• Image sequences → temporal (inter-frame) prediction

residue (signal to 
encode)

Encoder
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Prediction based coding

∑

residual image
+ reconstructed 

image

reference 
image

• Still images (JPEG lossless)

• Image sequences : motion compensation (MPEG4)

Decoder
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Intra-frame linear prediction

12 34 27 42

21 3 44 1

12 34 27 42

A B C

D X

Xest = aA+bB+cC+dD
E = X - Xest

The error image is quantized and entropy encoded. At the receiver, it is decoded 
and used to recover the original image.

symbol to predict 
or estimate
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Inter-frame prediction

current frame

previous frame

next frame

Temporal redundancy
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Transform based coding

• Given the source signal, il can be convenient to project the data to a different 
domain to improve compression ⇒ transformation

– Discrete Cosine Transform (DCT), used in JPEG
– Discrete Wavelet Transform (DWT), used in JPEG2000

• The transformed coefficients are then to be quantized for mapping to a finite set of 
symbols

• Such symbols can also be mapped to another set of symbols to further improve 
compression performance

– Embedded Zerotree Wavelet based coding (EZW)
– Layered Zero Coding (LZC)
– Multidimensional LZC (for volumetric data, after a 3D DWT)



Gloria Menegaz 32

Coding artifacts at low rates

JPEG WaveletsOriginal
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Scalability by quality

H encoded data
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Scalability by resolution
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Object-based processing


