Progettazione di Sistemi Embedded
embedded systems design

Franco Fummi
University of Verona
Department of Computer Science
Italy

Laurea Magistrale in Ingegneria e Scienze Informatiche
Embedded Systems Design Course
Goals

• Techniques for the automatic design of embedded systems:
 – starting from their specification throughout:
 • validation / verification
 • automatic synthesis
 • testing

• This lecture is focused on:
 – most important design languages
 – most evolved tools for their manipulation
Embedded Systems: Where?
ES: Historical perspective

- From computer (’60-’80):
 - General purpose systems for solution of general problems

- To digital control systems (’80-’90):
 - Systems dedicated to control and automation

- To distributed systems (’90-’00):
 - General purpose systems and/or dedicated systems cooperating through the network

- To embedded systems (’00-)
 - Distributed systems integrated in non-computing objects and in the environment

- To cyber-physical systems (’10-):
 - Embedded systems integrated with physical processes
ES: History

- First computer Systems:
 - not showing the today characteristics, but devoted to the particular application of being programmable computers and embedded into a...
- The Apollo Guidance Computer is considered the world’s first modern Embedded System:
 - small size for a tremendous computational power, devoted to guide Apollo
- Mass production of Embedded Systems:
 - 1961 with the Autonetics D-17
- No stop…
ES Market

![Graph showing World Embedded Systems Revenue](image)

<table>
<thead>
<tr>
<th>Application</th>
<th>2004</th>
<th>2009</th>
<th>AAGR%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers</td>
<td>10,000</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>Telecomm</td>
<td>20,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>Consumer</td>
<td>25,000</td>
<td>35,000</td>
<td></td>
</tr>
<tr>
<td>Automotive</td>
<td>15,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Medical/Office</td>
<td>5,000</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>Industrial/Military</td>
<td>10,000</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>Total Revenues</td>
<td>45,873</td>
<td>88,144</td>
<td>14.0</td>
</tr>
</tbody>
</table>
From ES to Smart Systems

- Miniaturized self-sufficient device that
 - Incorporates **functions** of sensing, actuation, and control
 - To describe and analyze a situation, and make **decisions** based on the available data
 - In a **predictive** or adaptive manner (smart actions)
 - Energy-**autonomous** and ubiquitously connected

Knowledge base separates smart systems from systems which, although they may be automated, remain purely reactive.
Grow in smart system R&D

Number of R&D projects in 2016 compared with 2012

<table>
<thead>
<tr>
<th>Category</th>
<th>SME</th>
<th>Large organisation</th>
<th>Public research body</th>
</tr>
</thead>
<tbody>
<tr>
<td>>50% more</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Employment in 2016 compared with 2012

<table>
<thead>
<tr>
<th>Category</th>
<th>SME</th>
<th>Large organisation</th>
<th>Public research body</th>
</tr>
</thead>
<tbody>
<tr>
<td>>50% more</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>About the same</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No opinion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% predicting employment growth in Smart Systems

- 0%
- 20%
- 40%
- 60%

5 October '16 PSE
How Relevent (I)
How Relevant (II)

• & progetti europei completati e attivi:
 – Angel, Vertigo, Coconut, C4C, Complex, SMAC, Contrex

• 2 progetti europei in FP6
 – ANGEL (mobile gateway for sensors network)
 – VERTIGO (HW formal verification)

• 5 progetti europei in FP7
 – COCONUT (embedded systems design and verification)
 • best evaluation of the overall embedded systems track
 – C4C (control for coordination of distributed systems)
 – COMPLEX (platform-based design space exploration)
 – SMAC (smart systems design)
 – CONTREX (mixed-criticality systems)
ES: How to design?

• We cannot design embedded systems like general purpose systems
 – Different design constraints, different goals
 – Embedded design is about the system, not about the computer

• E.g.
 – In general purpose computing, design often focuses on building the fastest CPU
 – In embedded systems the CPU simply exists as a way to implement control algorithms communicating with sensors and actuators
ES: Design constraints

• Size and weight
 – Hand-held electronics
 – Weight costs money in transportation
 – Human body cannot eat desktops

• Power
 – Buttery power instead of AC

• Harsh environment
 – Power fluctuation, RF interferences, heat, vibration, water, …

• Safety critical and real time operations

• Low costs
ES: Designer knowledge

- HW architecture alternatives
 - for a correct HW/SW trade-off
- SW design skills
 - lots of languages continuously extending
- HW/SW interaction mechanisms
 - O.S., MW, HdS for efficient SW development
- Network infrastructure
 - all ES are now networked embedded systems
- Computation effort estimation
 - theory is important when used in practice
- Join 3C: computation, control & communication
Course Structure

• 34 lectures:
 – 32 theory hours
 • 22 lectures
 – 24 practical hours
 • 12 lectures

• People:
 – Franco Fummi (theory)
 – Michele Lora (laboratory class)
 – … for practical elaborations

6 credits
Modalità di Esame (I)

- Teoria + lab. + opzioni:
 - teoria
 - scritto con votazione /30
 - relazione laboratorio
 - +3 punti max
 - on demand
 - elaborato 0 +∞
 - (orale) +3 -∞

- Regole generali:
 - relazione dura 1 anno accademico
 - consegna in date stabilite
Modalità di Esame (II)

- Alternative:
 - Elaborato personale
 - stage aziendale
 - tesi
 - Teoria
 - no way :-)

- Design&Reuse:
 - tesi
 - stage pre-tesi
Pre/post Condizioni

• Precedenze Indispensabili:
 – Architettura degli Elaboratori
 – Programmazione
 – Linguaggi ...
 – Sistemi (Metodi di specifica)

• Fondamentale per
 – Curriculum sistemì embeddèd (magistrale in Ingegneria)
 • Sistemi operativi avanzati, Architetture avanzate, Software per Sistemi Embedded, Sistemi Embedded Multimediali, Sistemi Embedded di Rete…
Benchmark and Labs.

• Smart devices:
 – The Open Source Test Case (SMAC project)

• Laboratorio Ciberfisico:
 – Secondo piano CV

• Lab. NES/Parco
2016 News

Semiformal Assertion Based Verification of Hardware/Software Systems in a ModelDriven Design Framework

Pravadelli, G., Quaglia, D., Vinco, S., Fummi, F.
<table>
<thead>
<tr>
<th>week</th>
<th>data</th>
<th>day</th>
<th>lecture</th>
<th>lab.</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5-Oct</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>Course introduction; Embedded systems modeling</td>
</tr>
<tr>
<td>1</td>
<td>7-Oct</td>
<td>Fri.</td>
<td>3</td>
<td></td>
<td>Embedded systems modeling II; SystemC-based design</td>
</tr>
<tr>
<td>2</td>
<td>12-Oct</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>SystemC-based design II; SystemC-based design III</td>
</tr>
<tr>
<td>2</td>
<td>14-Oct</td>
<td>Fri.</td>
<td>3</td>
<td></td>
<td>Platform-based design; Transactional-based design; TLM 2.0 standard</td>
</tr>
<tr>
<td>3</td>
<td>19-Oct</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>SystemC compilation/execution/debugging</td>
</tr>
<tr>
<td>3</td>
<td>21-Oct</td>
<td>Fri.</td>
<td>3</td>
<td></td>
<td>TLM 2.0 standard II; SystemC/AMS support</td>
</tr>
<tr>
<td>4</td>
<td>26-Oct</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>SystemC modeling at RTL</td>
</tr>
<tr>
<td>4</td>
<td>28-Oct</td>
<td>Fri.</td>
<td>2</td>
<td></td>
<td>SystemC modeling at TLM</td>
</tr>
<tr>
<td>5</td>
<td>2-Nov</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>SystemC timing evolution</td>
</tr>
<tr>
<td>5</td>
<td>4-Nov</td>
<td>Fri.</td>
<td>2</td>
<td></td>
<td>SystemC/AMS</td>
</tr>
<tr>
<td>6</td>
<td>9-Nov</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>Mixed RTL/TLM/AMS SystemC</td>
</tr>
<tr>
<td>6</td>
<td>11-Nov</td>
<td>Fri.</td>
<td>3</td>
<td></td>
<td>High-level synthesis (HLS): scheduling; High-level synthesis: allocation</td>
</tr>
<tr>
<td>7</td>
<td>16-Nov</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>Platform, testbench and device driver (OSTC)</td>
</tr>
<tr>
<td>7</td>
<td>18-Nov</td>
<td>Fri.</td>
<td>3</td>
<td></td>
<td>Software embedded synthesis; Model-based design (MBD) of embedded software; IoT and Cloud</td>
</tr>
<tr>
<td>8</td>
<td>23-Nov</td>
<td>Wed.</td>
<td></td>
<td></td>
<td>Cyber-physical systems: models of computations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>intermediate exam</td>
</tr>
<tr>
<td>9</td>
<td>30-Nov</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>Model-based design: Matlab/Simulink/FMI</td>
</tr>
<tr>
<td>9</td>
<td>2-Dec</td>
<td>Fri.</td>
<td>3</td>
<td></td>
<td>VHDL introduction; VHDL syntax</td>
</tr>
<tr>
<td>10</td>
<td>7-Dec</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>Embedded software design</td>
</tr>
<tr>
<td>10</td>
<td>9-Dec</td>
<td>Fri.</td>
<td>3</td>
<td></td>
<td>VHDL modeling; VHDL timing simulation</td>
</tr>
<tr>
<td>11</td>
<td>14-Dec</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>VHDL modeling at RTL</td>
</tr>
<tr>
<td>11</td>
<td>16-Dec</td>
<td>Fri.</td>
<td>2</td>
<td></td>
<td>VHDL timing simulation II; VHDL synthesis</td>
</tr>
<tr>
<td>12</td>
<td>21-Dec</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>VHDL timing simulation</td>
</tr>
<tr>
<td>12</td>
<td>23-Dec</td>
<td>Fri.</td>
<td>3</td>
<td></td>
<td>Networked embedded systems (NES); Smart systems</td>
</tr>
<tr>
<td>13</td>
<td>11-Jan</td>
<td>Wed.</td>
<td>2</td>
<td></td>
<td>Automatic synthesis from TLM and RTL</td>
</tr>
<tr>
<td>13</td>
<td>13-Jan</td>
<td>Fri.</td>
<td>2</td>
<td></td>
<td>Introduction to embedded systems verification; Introduction to embedded systems testing</td>
</tr>
<tr>
<td>14</td>
<td>18-Jan</td>
<td>Wed.</td>
<td></td>
<td></td>
<td>final report preparation</td>
</tr>
<tr>
<td>14</td>
<td>20-Jan</td>
<td>Fri.</td>
<td></td>
<td></td>
<td>IoT and Cloud architectures; GPGPU: design problems and opportunities</td>
</tr>
<tr>
<td>15</td>
<td>25-Jan</td>
<td>Wed.</td>
<td></td>
<td></td>
<td>final report preparation</td>
</tr>
<tr>
<td>15</td>
<td>27-Jan</td>
<td>Fri.</td>
<td></td>
<td></td>
<td>final exam</td>
</tr>
<tr>
<td>hours</td>
<td>56</td>
<td></td>
<td>32</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>credits</td>
<td>6,0</td>
<td></td>
<td>4,0</td>
<td>2,0</td>
<td></td>
</tr>
</tbody>
</table>
Topics (theory)

• Specification:
 – Embedded systems modeling
 – SystemC-based design
 – TLM design introduction
 – AMS modeling
 – VHDL modeling, syntax
 – Networked ES (NES)
 – Smart systems

• HW synthesis:
 – Introduction to TLM design
 – High-level synthesis
 – Automatic VHDL synthesis

• SW synthesis:
 – Embedded software generation
 – Automatic device driver generation
 – Model-based design
 – IoT and Cloud

• Verification & testing:
 – Introduction to verification
 – Introduction to testing
 – VHDL timing simulation
 – FMI/FMU simulink
Topics (lab.)

• **Specification:**
 - Compiling / executing /debugging SystemC
 - Modeling SystemC TLM
 - Modeling SystemC RTL
 - Timing evolution in SystemC
 - Analog modeling in SystemC/AMS
 - Platforms and IP-Xact
 - Mixed modeling RTL/TLM/AMS
 - Timing modeling in VHDL

• **Hardware synthesis:**
 - Automatic synthesis from TLM
 - VHDL modeling at RT
 - Automatic synthesis from RTL VHDL

• **Software synthesis:**
 - Testbench and device driver
 - Embedded software design
 - FMI/FMU cosimulation
Teaching supports (I)

- Course web page
 - Detailed program
 - Complete program
- E-learning web page
 - Slides
 - Laboratory instructions
 - Questions/answers
- Book
 - Ongoing
- Seminars
 - Indications during the course
Teaching supports (II)

- Theory slides:
 - 0. Course Introduction
 - 1. Embedded Systems Modeling
 - 2. System C Based Design Flow
 - 3. Platform Based Design
 - 4. TLM Based Design
 - 5. SystemC/AMS
 - 6. High Level Synthesis
 - 7. Embedded Software
 - 8. Model Based Design

- Theory slides:
 - 9. VHDL Design Introduction
 - 10. VHDL Syntax
 - 11. VHDL Specification
 - 12. VHDL Simulation
 - 13. VHDL Synthesis
 - 14. NES Design
 - 15. Smart Systems
 - 16. Verification And Testing
More information

http://www.di.univr.it/~fummi

Laurea magistrale in Ingegneria e scienze informatiche

Progettazione di sistemi embedded (2016/2017)

CODICE INSEGNAMENTO 450291
DOCENTE Franco Fummi
CREDITI 6
SETTORE DISCIPLINARE ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
LINGUA DI EROGAZIONE Italiano

Orario lezioni

<table>
<thead>
<tr>
<th>SEM.</th>
<th>GIORNO</th>
<th>ORA</th>
<th>TIPO</th>
<th>LUGO</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mercoledi</td>
<td>13.30 - 15.30</td>
<td>laboratorio</td>
<td>Laboratory didattico Laboratorio Ciberfisico</td>
<td>dal 10-ott-2016 al 31-gen-2017</td>
</tr>
<tr>
<td></td>
<td>venerdì</td>
<td>8.30 - 11.30</td>
<td>lezione</td>
<td>Aula 1</td>
<td></td>
</tr>
</tbody>
</table>

Obiettivi formativi

Tecniche per la progettazione automatica di sistemi embedded a partire dalla loro specifica per passare attraverso la verifica, la sintesi automatica e il collevo. Il corso presenta i principali linguaggi per affrontare questo progetto e i più avanzati strumenti automatici per la loro maniopulazione.

Programma

Introduzione ai sistemi embedded: definizione dei campi di applicazione, caratteristiche generali, caratteristica comuni.

Modellizzazione dei sistemi embedded: problematiche generali della modellazione dei sistemi embedded. Linguaggi per la descrizione dei sistemi embedded.
For the stronger ...

7994

Tuesday
8:30 – 10:30

In the corridors...
running

franco.fummi@univr.it
For the strongest...

7048

michele.lora@univr.it

Monday
10.00 – 11.00

On the e-learning

5 October '16

PSE

28