
Data-intensive
computing systems

High-Level Languages

University of Verona
Computer Science Department

 Damiano Carra

 2

Acknowledgements

!  Credits

–  Part of the course material is based on slides provided by the following
authors

•  Pig/Pig Latin ! Pietro Michiardi, Jimmy Lin

•  Hive ! Dhruba Borthakur, Zheng Shao, Liyin Tang

 3

Need for High-Level Languages

!  Hadoop is great for large-data processing!

–  But writing Java programs for everything is verbose and slow

–  Custom code required even for basic operations

•  Projection and Filtering need to be “rewritten” for each job

•  Code is difficult to reuse and maintain

•  Optimizations are difficult due to opacity of Map and Reduce

–  Data scientists don’t want to write Java

!  Solution: develop higher-level data processing languages

–  Pig: Pig Latin is a bit like Perl

–  Hive: HQL is like SQL

 4

Pig and Hive

!  Pig: large-scale data processing system

–  Scripts are written in Pig Latin, a dataflow language

–  Programmer focuses on data transformations

–  Developed by Yahoo!, now open source

!  Hive: data warehousing application in Hadoop

–  Query language is HQL, variant of SQL

–  Tables stored on HDFS with different encodings

–  Developed by Facebook, now open source

!  Common idea:

–  Provide higher-level language to facilitate large-data processing

–  Higher-level language “compiles down” to Hadoop jobs

 5

Pig: Introduction and Motivations

 6

Use Cases: Rollup aggregates

!  Compute aggregates against user activity logs, web crawls, etc.

–  Example: compute the frequency of search terms aggregated over days, weeks,
month

–  Example: compute frequency of search terms aggregated over geographical
location, based on IP addresses

!  Requirements

–  Successive aggregations

–  Joins followed by aggregations

!  Pig vs. OLAP systems

–  Datasets are too big

–  Data curation is too costly

 7

Use Cases: Temporal Analysis

!  Study how search query distributions change over time

–  Correlation of search queries from two distinct time periods (groups)

–  Custom processing of the queries in each correlation group

!  Pig supports operators that minimize memory footprint

–  Instead, in a RDBMS such operations typically involve JOINS over very large
datasets that do not fit in memory and thus become slow

 8

Use Cases: Session Analysis

!  Study sequences of page views and clicks

!  Example of typical aggregates

–  Average length of user session

–  Number of links clicked by a user before leaving a website

–  Click pattern variations in time

!  Pig supports advanced data structures, and UDFs

 9

Pig Latin

!  Pig Latin, a high-level programming language developed at Yahoo!

–  Combines the best of both declarative and imperative worlds

•  High-level declarative querying in the spirit of SQL

•  Low-level, procedural programming á la MapReduce

!  Pig Latin features

–  Multi-valued, nested data structures instead of flat tables

–  Powerful data transformations primitives, including joins

!  Pig Latin program

–  Made up of a series of operations (or transformations)

–  Each operation is applied to input data and produce output data

" A Pig Latin program describes a data flow

 10

Example – Pig Latin premiere

!  Assume we have the following table:

urls: (url, category, pagerank)!

 Where:

–  url: is the url of a web page

–  category: corresponds to a pre-defined category for the web page

–  pagerank: is the numerical value of the pagerank associated to a web page

!  Problem

–  Find, for each sufficiently large category, the average page rank of high-
pagerank urls in that category

 11

Example – Solution in SQL

!

!

!

SELECT category, AVG(pagerank)!

FROM urls !

GROUP BY category HAVING COUNT(*) > 106!

WHERE pagerank > 0.2!
!

 12

Example – Solution in Pig Latin

!

!

groups = GROUP good_urls BY category;!

good_groups = FILTER groups BY pagerank > 0.2;!

big_groups = FILTER good_groups BY COUNT(good_urls) > 106;!

output = FOREACH big_groups GENERATE !

!category, AVG(good_urls.pagerank);!

 13

Pig Execution environment

!  How do we go from Pig Latin to MapReduce?

–  The Pig system is in charge of this

–  Complex execution environment that interacts with Hadoop MapReduce

" The programmer focuses on the data and analysis

!  Pig Compiler

–  Pig Latin operators are translated into MapReduce code

–  NOTE: in some cases, hand-written MapReduce code performs better

!  Pig Optimizer

–  Pig Latin data flows undergo an (automatic) optimization phase

–  These optimizations are borrowed from the RDBMS community

 14

Pig Latin

 15

Introduction

!  Not a complete reference to the Pig Latin language: refer to the
Pig Latin wiki

–  Here we cover some interesting aspects

!  The focus here is on some language primitives

–  Optimizations are treated separately

–  How they can be implemented is covered later

 16

Data Model

!  Supports four types

–  Atom: contains a simple atomic value as a string or a number

•  e.g. ‘alice’!

–  Tuple: sequence of fields, each can be of any data type

•  e.g., (‘alice’, ‘lakers’)!

–  Bag: collection of tuples with possible duplicates. Flexible schema, no need to
have the same number and type of fields

•  Tuples can be nested

•  e.g.,

'alice', 'lakers'()
'alice', 'ipod','apple'()()

!

"
#

$#

%

&
#

'#

 17

Data Model

!  Supports four types (cont’d)

–  Map: collection of data items, where each item has an associated key
for lookup. The schema, as with bags, is flexible.

•  NOTE: keys are required to be data atoms, for efficient lookup.

•  e.g.,

•  The key ‘fan of’ is mapped to a bag containing two tuples

•  The key ‘age’ is mapped to an atom

–  Maps are useful to model datasets in which schema may be dynamic
(over time)

'fan of' →
'lakers'()
'ipod'()

"
#
$

%$

&
'
$

($

 'age' → 20

)

*

+
+
+
+
+

,

-

.

.

.

.

.

 18

Structure

!  Pig latin programs are a sequence of steps

–  Can use an interactive shell (called grunt)

–  Can feed them as a “script”

!  Comments

–  In line: with double hyphens (- -)

–  C-style for longer comments (/* ... */)

!  Reserved keywords

–  List of keywords that can’t be used as identifiers

–  Same old story as for any language

 19

Expressions

!  An expression is something that is evaluated to yield a value

 20

Loading and storing data

!  The first step in a Pig Latin program is to load data

–  What input files are

–  How the file contents are to be deserialized

–  An input file is assumed to contain a sequence of tuples

!  Data loading is done with the LOAD command

queries = LOAD ‘query_log.txt’!

USING myLoad()!

AS (userId, queryString, timestamp);!

 21

Loading and storing data

!  The previous example specifies the following:

–  The input file is query_log.txt!

–  The input file should be converted into tuples using the custom myLoad
deserializer

–  The loaded tuples have three fields, specified by the schema

!  Optional parts

–  USING clause is optional: if not specified, the input file is assumed to be
plain text, tab-delimited

–  AS clause is optional: if not specified, must refer to fields by position
instead of by name

 22

Loading and storing data

!  Return value of the LOAD command

–  Handle to a bag

–  This can be used by subsequent commands

" bag handles are only logical

" no file is actually read!

!  The command to write output to disk is STORE!
–  It has similar semantics to the LOAD command

 23

Per-tuple processing: Filtering data

!  Once you have some data loaded into a relation, the next step is to
filter it

–  This is done, e.g., to remove unwanted data

–  HINT: By filtering early in the processing pipeline, you minimize the
amount of data flowing trough the system

!  A basic operation is to apply some processing over every tuple of a
data set

–  This is achieved with the FOREACH command

expanded_queries = FOREACH queries GENERATE !
userId, expandQuery(queryString);!

 24

Per-tuple processing: Filtering data

!  Comments on the previous example:

–  Each tuple of the bag queries should be processed independently

–  The second field of the output is the result of a UDF

!  Semantics of the FOREACH command

–  There can be no dependence between the processing of different input tuples

" This allows for an efficient parallel implementation

!  Semantics of the GENERATE clause

–  Followed by a list of expressions

–  Also flattering is allowed

•  This is done to eliminate nesting in data

" Allows to make output data independent for further parallel processing

" Useful to store data on disk

 25

Per-tuple processing: Discarding unwanted data

!  A common operation is to retain a portion of the input data

–  This is done with the FILTER command

 real_queries = FILTER queries BY userId neq ‘bot’;!

!  Filtering conditions involve a combination of expressions

–  Comparison operators

–  Logical connectors

–  UDF

 26

Per-tuple processing: Streaming data

!  The STREAM operator allows transforming data in a relation using an
external program or script

–  This is possible because Hadoop MapReduce supports “streaming”

–  Example:

 C = STREAM A THROUGH ‘cut -f 2’;!

 which use the Unix cut command to extract the second filed of each tuple in A!

!  The STREAM operator uses PigStorage to serialize and deserialize
relations to and from stdin/stdout!
–  Can also provide a custom serializer/deserializer

–  Works well with python

 27

Getting related data together

!  It is often necessary to group together tuples from one or more data sets

–  GROUP command

!  Example: Assume we have loaded two relations

!results: (queryString, url, position)!

!revenue: (queryString, adSlot, amount)!

–  results contains, for different query strings, the urls shown as search results, and the
positions at which they where shown

–  revenue contains, for different query strings, and different advertisement slots, the
average amount of revenue

!  To find the total revenue for each query string, we can

!grouped_revenue = GROUP revenue BY queryString; !

!query_revenue = FOREACH grouped_revenue GENERATE !
!queryString, SUM(revenue.amount) AS totalRevenue;!

 28

JOIN in Pig Latin

!  In many cases, the typical operation on two or more datasets amounts
to a join

–  IMPORTANT NOTE: large datasets that are suitable to be analyzed with Pig
(and MapReduce) are generally not normalized

" JOINs are used more infrequently in Pig Latin than they are in SQL

!  The syntax of a JOIN

 join_result = JOIN results BY queryString, !
!revenue BY queryString;!

–  This is a classic join, where each match between the two relations
corresponds to a row in the join result

 29

MapReduce in Pig Latin

!  It is trivial to express MapReduce programs in Pig Latin

–  This is achieved using GROUP and FOREACH statements

–  A map function operates on one input tuple at a time and outputs a bag of key-
value pairs

–  The reduce function operates on all values for a key at a time to produce the
final result

!  Example

!map_result = FOREACH input GENERATE!

!FLATTEN(map(*));!

!key_groups = GROUP map_results BY $0;!

!output = FOREACH key_groups GENERATE reduce(*);!

–  where map() and reduce() are UDF

 30

Validation and nulls

!  Pig does not have the same power to enforce constraints on schema at load
time as a RDBMS

–  If a value cannot be cast to a type declared in the schema, then it will be set to
a null value

–  This also happens for corrupt files

!  A useful technique to partition input data to discern good and bad records

–  Use the SPLIT operator

SPLIT records INTO good_records IF temperature is not null, bad
_records IF temperature is NULL;!

 31

Statements

!  As a Pig Latin program is executed, each statement is parsed

–  The interpreter builds a logical plan for every relational operation

–  The logical plan of each statement is added to that of the program so far

–  Then the interpreter moves on to the next statement

!  IMPORTANT: No data processing takes place during construction of
logical plan

–  When the interpreter sees the first line of a program, it confirms that it is
syntactically and semantically correct

–  Then it adds it to the logical plan

–  It does not even check the existence of files, for data load operations

 32

Statements

" It makes no sense to start any processing until the whole flow is defined

–  Indeed, there are several optimizations that could make a program more
efficient (e.g., by avoiding to operate on some data that later on is going to
be filtered)

!  The trigger for Pig to start execution are the DUMP and STORE statements

–  It is only at this point that the logical plan is compiled into a physical plan

!  How the physical plan is built

–  Pig prepares a series of MapReduce jobs

•  In Local mode, these are run locally on the JVM

•  In MapReduce mode, the jobs are sent to the Hadoop Cluster

–  IMPORTANT: The command EXPLAIN can be used to show the MapReduce
plan

 33

Statements: Multi-query execution

!  There is a difference between DUMP and STORE!
–  DUMP " stdout

•  Can be used for diagnosis

–  STORE " file

•  Allows for program/job optimizations

!  Main optimization objective: minimize I/O

–  Consider the following example:

!A = LOAD ’input/pig/multiquery/A’; !

!B = FILTER A BY $1 == ’banana’;!

!STORE B INTO ’output/b’;!

!C = FILTER A BY $1 != ’banana’; !

!STORE C INTO ’output/c’;!

 34

Statements: Multi-query execution (cont’d)

!  In the example, relations B and C are both derived from A!
–  Naively, this means that at the first STORE operator the input should be read

–  Then, at the second STORE operator, the input should be read again

!  Pig will run this as a single MapReduce job

–  Relation A is going to be read only once

–  Then, each relation B and C will be written to the output

!  If we use DUMP instead of STORE, Pig is forced to run two different
MapReduce jobs

–  Waste of resources

 35

Hadoop Hive

– Quick overview –

 36

Motivation

!  Limitation of MR

–  Have to use M/R model

–  Not Reusable

–  Error prone

–  For complex jobs:

•  Multiple stage of Map/Reduce functions

•  Just like ask developers to specify physical execution plan in the database

 37

Overview

!  Intuitive

–  Make the unstructured data looks like tables regardless how it really lay out

–  SQL based query can be directly against these tables

–  Generate specific execution plan for this query

!  What�s Hive

–  A data warehousing system to store structured data on Hadoop file system

–  Provide an easy query these data by execution Hadoop MapReduce plans

 38

Hive Components

!  Shell Interface: Like the MySQL shell

!  Driver:

–  Session handles, fetch, execution

!  Complier:

–  Parse, plan, optimize

!  Execution Engine:

–  DAG stage

–  Run map or reduce

 39

Hive Architecture

HDFS Map Reduce Web UI + Hive CLI + JDBC/
ODBC

Browse, Query, DDL

MetaStore

Thrift API

Hive QL

Parser

Planner

Optimizer

Execution

SerDe

CSV
Thrift
Regex

UDF/UDAF

substr
sum

average

FileFormats

TextFile
SequenceFile

RCFile

User-defined
Map-reduce Scripts

 40

Data Model

!  Tables

–  Basic type columns (int, float, boolean)

–  Complex type: List / Map (associative array)

!  Partitions

!  Buckets

!  Example
CREATE TABLE sales(!

!id INT, !
!items ARRAY<STRUCT<id:INT,name:STRING>>!

)PARITIONED BY (ds STRING)!
CLUSTERED BY (id) INTO 32 BUCKETS;!

SELECT id FROM sales TABLESAMPLE (BUCKET 1 OUT OF 32)!

 41

Pros and Cons

!  Pros

–  A easy way to process large scale data

–  Support SQL-based queries

–  Provide more user defined interfaces to extend

–  Programmability

–  Efficient execution plans for performance

–  Interoperability with other database tools

!  Cons

–  No easy way to append data

–  Files in HDFS are immutable

 42

Application

!  Log processing

–  Daily Report

–  User Activity Measurement

!  Data/Text mining

–  Machine learning (Training Data)

!  Business intelligence

–  Advertising Delivery

–  Spam Detection

 43

Hive Usage @ Facebook

!  Statistics per day:

–  4 TB of compressed new data added per day

–  135TB of compressed data scanned per day

–  7500+ Hive jobs on per day

!  Hive simplifies Hadoop:

–  ~200 people/month run jobs on Hadoop/Hive

–  Analysts (non-engineers) use Hadoop through Hive

–  95% of jobs are Hive Jobs

