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Need for High-Level Languages 

!  Hadoop is great for large-data processing! 

–  But writing Java programs for everything is verbose and slow 

–  Custom code required even for basic operations 

•  Projection and Filtering need to be “rewritten” for each job 

•  Code is difficult to reuse and maintain 

•  Optimizations are difficult due to opacity of Map and Reduce 

–  Data scientists don’t want to write Java 

 

!  Solution: develop higher-level data processing languages 

–  Pig: Pig Latin is a bit like Perl 

–  Hive: HQL is like SQL 

 4 

Pig and Hive 

!  Pig: large-scale data processing system 

–  Scripts are written in Pig Latin, a dataflow language 

–  Programmer focuses on data transformations 

–  Developed by Yahoo!, now open source 

!  Hive: data warehousing application in Hadoop 

–  Query language is HQL, variant of SQL 

–  Tables stored on HDFS with different encodings 

–  Developed by Facebook, now open source 

!  Common idea: 

–  Provide higher-level language to facilitate large-data processing 

–  Higher-level language “compiles down” to Hadoop jobs 
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Pig: Introduction and Motivations 
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Use Cases: Rollup aggregates 

!  Compute aggregates against user activity logs, web crawls, etc. 

–  Example: compute the frequency of search terms aggregated over days, weeks, 
month 

–  Example: compute frequency of search terms aggregated over geographical 
location, based on IP addresses 

!  Requirements 

–  Successive aggregations 

–  Joins followed by aggregations 

!  Pig vs. OLAP systems 

–  Datasets are too big 

–  Data curation is too costly 
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Use Cases: Temporal Analysis 

!  Study how search query distributions change over time 

–  Correlation of search queries from two distinct time periods (groups) 

–  Custom processing of the queries in each correlation group 

!  Pig supports operators that minimize memory footprint 

–  Instead, in a RDBMS such operations typically involve JOINS over very large 
datasets that do not fit in memory and thus become slow 
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Use Cases: Session Analysis 

!  Study sequences of page views and clicks 

!  Example of typical aggregates 

–  Average length of user session 

–  Number of links clicked by a user before leaving a website 

–  Click pattern variations in time 

!  Pig supports advanced data structures, and UDFs 
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Pig Latin 

!  Pig Latin, a high-level programming language developed at Yahoo! 

–  Combines the best of both declarative and imperative worlds 

•  High-level declarative querying in the spirit of SQL 

•  Low-level, procedural programming á la MapReduce 

!  Pig Latin features 

–  Multi-valued, nested data structures instead of flat tables 

–  Powerful data transformations primitives, including joins 

!  Pig Latin program 

–  Made up of a series of operations (or transformations) 

–  Each operation is applied to input data and produce output data 

" A Pig Latin program describes a data flow 
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Example – Pig Latin premiere 

!  Assume we have the following table: 

urls:  (url, category, pagerank)!

     Where: 

–  url: is the url of a web page 

–  category: corresponds to a pre-defined category for the web page 

–  pagerank: is the numerical value of the pagerank associated to a web page 

!  Problem 

–  Find, for each sufficiently large category, the average page rank of high-
pagerank urls in that category 
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Example – Solution in SQL 

!

!

!

SELECT category, AVG(pagerank)!

FROM urls !

GROUP BY category HAVING COUNT(*) > 106!

WHERE pagerank > 0.2!
!
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Example – Solution in Pig Latin 

!

!

groups = GROUP good_urls BY category;!

good_groups = FILTER groups BY pagerank > 0.2;!

big_groups = FILTER good_groups BY COUNT(good_urls) > 106;!

output = FOREACH big_groups GENERATE !

!category, AVG(good_urls.pagerank);!
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Pig Execution environment 

!  How do we go from Pig Latin to MapReduce? 

–  The Pig system is in charge of this 

–  Complex execution environment that interacts with Hadoop MapReduce 

" The programmer focuses on the data and analysis 

!  Pig Compiler 

–  Pig Latin operators are translated into MapReduce code 

–  NOTE: in some cases, hand-written MapReduce code performs better 

!  Pig Optimizer 

–  Pig Latin data flows undergo an (automatic) optimization phase 

–  These optimizations are borrowed from the RDBMS community      
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Pig Latin 
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Introduction 

!  Not a complete reference to the Pig Latin language: refer to the 
Pig Latin wiki 

–  Here we cover some interesting aspects 

!  The focus here is on some language primitives 

–  Optimizations are treated separately 

–  How they can be implemented is covered later 
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Data Model 

!  Supports four types 

–  Atom: contains a simple atomic value as a string or a number 

•  e.g. ‘alice’!

–  Tuple: sequence of fields, each can be of any data type 

•  e.g., (‘alice’, ‘lakers’)!

–  Bag: collection of tuples with possible duplicates. Flexible schema, no need to 
have the same number and type of fields 

•  Tuples can be nested 

•  e.g., 

'alice', 'lakers'( )
'alice', 'ipod','apple'( )( )

!
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Data Model 

!  Supports four types (cont’d) 

–  Map: collection of data items, where each item has an associated key 
for lookup. The schema, as with bags, is flexible. 

•  NOTE: keys are required to be data atoms, for efficient lookup. 

•  e.g., 

•  The key ‘fan of’ is mapped to a bag containing two tuples 

•  The key ‘age’ is mapped to an atom 

–  Maps are useful to model datasets in which schema may be dynamic 
(over time) 

'fan of' →
'lakers'( )
'ipod'( )
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Structure 

!  Pig latin programs are a sequence of steps 

–  Can use an interactive shell (called grunt)  

–  Can feed them as a “script” 

!  Comments 

–  In line: with double hyphens (- -) 

–  C-style for longer comments (/* ... */) 

!  Reserved keywords 

–  List of keywords that can’t be used as identifiers  

–  Same old story as for any language 
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Expressions 

!  An expression is something that is evaluated to yield a value 
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Loading and storing data 

!  The first step in a Pig Latin program is to load data 

–  What input files are 

–  How the file contents are to be deserialized 

–  An input file is assumed to contain a sequence of tuples 

!  Data loading is done with the LOAD command  

queries = LOAD ‘query_log.txt’!

USING myLoad()!

AS (userId, queryString, timestamp);!
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Loading and storing data 

!  The previous example specifies the following: 

–  The input file is query_log.txt!

–  The input file should be converted into tuples using the custom myLoad 
deserializer 

–  The loaded tuples have three fields, specified by the schema 

!  Optional parts 

–  USING clause is optional: if not specified, the input file is assumed to be 
plain text, tab-delimited 

–  AS clause is optional: if not specified, must refer to fields by position 
instead of by name 
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Loading and storing data 

!  Return value of the LOAD command 

–  Handle to a bag 

–  This can be used by subsequent commands 

" bag handles are only logical 

" no file is actually read! 

!  The command to write output to disk is STORE!
–  It has similar semantics to the LOAD command 
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Per-tuple processing: Filtering data 

!  Once you have some data loaded into a relation, the next step is to 
filter it 

–  This is done, e.g., to remove unwanted data 

–  HINT: By filtering early in the processing pipeline, you minimize the 
amount of data flowing trough the system 

!  A basic operation is to apply some processing over every tuple of a 
data set 

–  This is achieved with the FOREACH command  

expanded_queries = FOREACH queries GENERATE !
userId, expandQuery(queryString);!
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Per-tuple processing: Filtering data 

!  Comments on the previous example: 

–  Each tuple of the bag queries should be processed independently 

–  The second field of the output is the result of a UDF 

!  Semantics of the FOREACH command 

–  There can be no dependence between the processing of different input tuples 

" This allows for an efficient parallel implementation 

!  Semantics of the GENERATE clause 

–  Followed by a list of expressions 

–  Also flattering is allowed 

•  This is done to eliminate nesting in data 

" Allows to make output data independent for further parallel processing 

" Useful to store data on disk 
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Per-tuple processing: Discarding unwanted data 

!  A common operation is to retain a portion of the input data 

–  This is done with the FILTER command 

 real_queries = FILTER queries BY userId neq ‘bot’;!

!  Filtering conditions involve a combination of expressions 

–  Comparison operators 

–  Logical connectors 

–  UDF 
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Per-tuple processing: Streaming data 

!  The STREAM operator allows transforming data in a relation using an 
external program or script 

–  This is possible because Hadoop MapReduce supports “streaming” 

–  Example: 

 C = STREAM A THROUGH ‘cut -f 2’;!

     which use the Unix cut command to extract the second filed of each tuple in A!

!  The STREAM operator uses PigStorage to serialize and deserialize 
relations to and from stdin/stdout!
–  Can also provide a custom serializer/deserializer 

–  Works well with python 
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Getting related data together 

!  It is often necessary to group together tuples from one or more data sets 

–  GROUP command 

!  Example: Assume we have loaded two relations 

!results:   (queryString, url, position)!

!revenue:   (queryString, adSlot, amount)!

–  results contains, for different query strings, the urls shown as search results, and the 
positions at which they where shown 

–  revenue contains, for different query strings, and different advertisement slots, the 
average amount of revenue 

!  To find the total revenue for each query string, we can 

!grouped_revenue = GROUP revenue BY queryString; !

!query_revenue = FOREACH grouped_revenue GENERATE !
!queryString, SUM(revenue.amount) AS totalRevenue;!
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JOIN in Pig Latin 

!  In many cases, the typical operation on two or more datasets amounts 
to a join 

–  IMPORTANT NOTE: large datasets that are suitable to be analyzed with Pig 
(and MapReduce) are generally not normalized 

" JOINs are used more infrequently in Pig Latin than they are in SQL 

!  The syntax of a JOIN 

 join_result = JOIN results BY queryString, !
!revenue BY queryString;!

–  This is a classic join, where each match between the two relations 
corresponds to a row in the join result 
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MapReduce in Pig Latin 

!  It is trivial to express MapReduce programs in Pig Latin 

–  This is achieved using GROUP and FOREACH statements 

–  A map function operates on one input tuple at a time and outputs a bag of key-
value pairs 

–  The reduce function operates on all values for a key at a time to produce the 
final result 

!  Example 

!map_result = FOREACH input GENERATE!

!FLATTEN(map(*));!

!key_groups = GROUP map_results BY $0;!

!output = FOREACH key_groups GENERATE reduce(*);!

–  where map() and reduce() are UDF 
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Validation and nulls 

!  Pig does not have the same power to enforce constraints on schema at load 
time as a RDBMS 

–  If a value cannot be cast to a type declared in the schema, then it will be set to 
a null value 

–  This also happens for corrupt files 

!  A useful technique to partition input data to discern good and bad records 

–  Use the SPLIT operator 

SPLIT records INTO good_records IF temperature is not null, bad 
_records IF temperature is NULL;!
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Statements 

!  As a Pig Latin program is executed, each statement is parsed 

–  The interpreter builds a logical plan for every relational operation 

–  The logical plan of each statement is added to that of the program so far 

–  Then the interpreter moves on to the next statement 

!  IMPORTANT: No data processing takes place during construction of 
logical plan 

–  When the interpreter sees the first line of a program, it confirms that it is 
syntactically and semantically correct 

–  Then it adds it to the logical plan 

–  It does not even check the existence of files, for data load operations 
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Statements 

" It makes no sense to start any processing until the whole flow is defined 

–  Indeed, there are several optimizations that could make a program more 
efficient (e.g., by avoiding to operate on some data that later on is going to 
be filtered) 

!  The trigger for Pig to start execution are the DUMP and STORE statements 

–  It is only at this point that the logical plan is compiled into a physical plan 

!  How the physical plan is built 

–  Pig prepares a series of MapReduce jobs 

•  In Local mode, these are run locally on the JVM 

•  In MapReduce mode, the jobs are sent to the Hadoop Cluster 

–  IMPORTANT: The command EXPLAIN can be used to show the MapReduce 
plan 
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Statements: Multi-query execution  

!  There is a difference between DUMP and STORE!
–  DUMP " stdout 

•  Can be used for diagnosis 

–  STORE " file  

•  Allows for program/job optimizations 

!  Main optimization objective: minimize I/O 

–  Consider the following example: 

!A = LOAD ’input/pig/multiquery/A’; !

!B = FILTER A BY $1 == ’banana’;!

!STORE B INTO ’output/b’;!

!C = FILTER A BY $1 != ’banana’; !

!STORE C INTO ’output/c’;!
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Statements: Multi-query execution (cont’d) 

!  In the example, relations B and C are both derived from A!
–  Naively, this means that at the first STORE operator the input should be read 

–  Then, at the second STORE operator, the input should be read again 

!  Pig will run this as a single MapReduce job 

–  Relation A is going to be read only once 

–  Then, each relation B and C will be written to the output 

!  If we use DUMP instead of STORE, Pig is forced to run two different 
MapReduce jobs 

–  Waste of resources 
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Hadoop Hive 

– Quick overview –  
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Motivation 

!  Limitation of MR 

–  Have to use M/R model 

–  Not Reusable 

–  Error prone 

–  For complex jobs: 

•  Multiple stage of Map/Reduce functions 

•  Just like ask developers to specify physical execution plan in the database 
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Overview 

!  Intuitive  

–  Make the unstructured data looks like tables regardless how it really lay out 

–  SQL based query can be directly against these tables 

–  Generate specific execution plan for this query 

!  What�s Hive 

–  A data warehousing system to store structured data on Hadoop file system 

–  Provide an easy query these data by execution Hadoop MapReduce plans 
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Hive Components 

!  Shell Interface: Like the MySQL shell 

!  Driver: 

–  Session handles, fetch, execution 

!  Complier: 

–  Parse, plan, optimize 

!  Execution Engine: 

–  DAG stage  

–  Run map or reduce 
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Hive Architecture 

HDFS Map Reduce Web UI + Hive CLI + JDBC/
ODBC 

Browse, Query, DDL 

MetaStore 

 
 

Thrift API 

Hive QL 

 
Parser 

 
Planner 

 
Optimizer 

 

 
 
 

Execution 

SerDe 

CSV 
Thrift 
Regex 

UDF/UDAF 

substr 
sum 

average 

FileFormats 

TextFile 
SequenceFile 

RCFile 

User-defined 
Map-reduce Scripts 
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Data Model 

!  Tables 

–  Basic type columns (int, float, boolean) 

–  Complex type: List / Map ( associative array) 

!  Partitions 

!  Buckets 

!  Example 
CREATE TABLE sales(!

!id INT, !
!items ARRAY<STRUCT<id:INT,name:STRING>>!

)PARITIONED BY (ds STRING)!
CLUSTERED BY (id) INTO 32 BUCKETS;!

SELECT id FROM sales TABLESAMPLE (BUCKET 1 OUT OF 32)!
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Pros and Cons 

!  Pros 

–  A easy way to process large scale data 

–  Support SQL-based queries 

–  Provide more user defined interfaces to extend 

–  Programmability 

–  Efficient execution plans for performance 

–  Interoperability with other database tools 

!  Cons 

–  No easy way to append data 

–  Files in HDFS are immutable 
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Application 

!  Log processing 

–  Daily Report 

–  User Activity Measurement 

!  Data/Text mining 

–  Machine learning (Training Data) 

!  Business intelligence 

–  Advertising Delivery 

–  Spam Detection 
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Hive Usage @ Facebook 

!  Statistics per day: 

–  4 TB of compressed new data added per day 

–  135TB of compressed data scanned per day 

–  7500+ Hive jobs on per day 

!  Hive simplifies Hadoop: 

–  ~200 people/month run jobs on Hadoop/Hive 

–  Analysts (non-engineers) use Hadoop through Hive 

–  95% of jobs are Hive Jobs 


