Electronic
Systems
Design

& Varification Testing Powar Communication

<~ UML and MARTE

profile
Emad Ebeid Davide Quaglia
PhD Student Assistant Professor
Department of Computer Science Department of Computer Science
University of Verona University of Verona
Italy ltaly

Overview

What is Modeling language?
What is UML?

A brief history of UML

» Understanding the basics of UML
« UML diagrams

« UML Profiles

 MARTE profile

« UML Modeling tools

5/2/2012

What is Modeling language? &3

A modeling language is any artificial language that can be used to
express information, knowledge or systems in a structure that is
defined by a consistent set of rules. The rules are used for
interpretation of the meaning of components in the structure

« A modeling language can be graphical or textual

OCLPrecondition: authorsName <> null and title<>null

Graph Pattern

this OWns <<out>>
Constraints ++ | ++ book: Book
Changes Changes
available = true
title = title
knowpWriters istittenBy
++
writer : Writer
Constraints
name == authorsName

Changes

5/2/2012

luses

3Busi
4Busi
5
6UseC
8

18

11

12

13

14

15

16

B

18

19

20

21

24

28

31

34

"Sample/ATMSample.uml’
nessRule RM1 : BankAccount.balance 'should be positive'
nessRule RM2 : Card.pin 'should be a non trival code'

ase JithdrawMoney
handles BankAccount in modification
Customer in consultation
references RM1
Postcondition : 'Customer has withdrawn money'
Primary Scenario :
Step 'Stepl' : user -> 'Introduces his card into ATM system’
Step 'Step2' : system -> 'Asks PIN code’
Step 'Step3' : user -» 'Enters PIN code'
Step 'Step4' : system -> 'Checks PIN code’
Step 'StepS' : system -» 'Asks operation'
Step 'Step6' : user -» 'Selects withdrawal'
Step 'Step?' : system -> 'Asks amount to withdraw'
Step 'Step8' : user -> 'Selects an amount’
Step 'Step9' : system -> 'Checks that bank account has sufficiant money'
Step 'Stepld' : system -» 'Gives money'
Step 'Stepll' : system -> 'Gives back the bank card'

Alternative Scenario 'Wrong PIN code’
Diverge from 'Stepd' Converge to 'Step2' :
Step 'Step4.1' : system -» 'Alerts that PIN code is incorrect'

Alternative Scenario 'Insufficiant balance'
Diverge from 'Stepd' Converge to 'Step?' :
Step 'Stepd.1' : system -» 'Alerts that account balance is insufficiant’

Exception Scenario 'Cancel operation’
Diverge from 'Step?' :
Step 'Step?.1' : user -» 'Cancels operation’

Model-based development

* Models can be refined continuously until the application is fully
specified

void generate ()
{for (int i=0; i<10;
«sc_method» / produce i++)
| producer L tout? =
start out1 K
1 ‘\ 4
' N NotStarted

/

/

/" producer)\

| NotStarted I Started

start m .31 St2
- ¢ 0

- J

start /gen;arate ()

5/2/2012

Model-Driven Architecture (MDA)™

» It was launched by the Object Management
Group (OMG) in 2001 Finance

« MDA provide portability, interoperability,
maintainability and reusability of models

« MDA approach defines system functionality
using a platform-independent model (PIM)
using an appropriate domain-specific
language

5/2/2012

Model-driven architecture viewpoints

« The Platform Independent Model (PIM): The functional and non-
functional aspects

« The Platform Description Model (PDM): HW and SW resources
« The Platform Specific Model (PSM): System architecture

PIM PDM

PSM

5/2/2012

What is UML?

« Unified Modeling Language (UML) is a standardized general-
purpose modeling language in the field of object-oriented software

engineering
« The standard was created, and is managed by the Object
Management Group

5/2/2012

UML diagrams

Diagram

?

Structure Behaviour
Diagram Diagram
Fa Fa)
I I I I
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile C&mpg{site Deployment | Package Interaction MStEI*:lE'E
Diagram Dira"acraurﬁe Diagram Diagram Diagram Di%%rgrﬁ
= =
| | |
™ Sequence || Communicatior| INteraction| Timing
Notation: LII'-'Iq Diagram Diagram %ng'pgrﬁ Diagram

5/2/2012

Why UML for Modeling

« Use graphical notation to communicate more clearly
than natural language (imprecise) and code(too
detailed).

« Help acquire an overall view of a system.

« UML is not dependent on any one language or
technology.

« UML moves us from fragmentation to
standardization.

5/2/2012

Class Diagram

Modeling a system involves identifying the things that are important to your
particular view.

In the UML, all of these things are modeled as classes.
A class is an abstraction of the things that are a part of your vocabulary.
A class is not an individual object, but rather represents a whole set of objects.

An attribute is a named property of a class that describes a range of values that
instances of the property may hold.

An operation is the implementation of a service that can be requested from any
object of the class to affect behavior.

To better organize long lists of attributes and operations, you can also prefix each
group with a descriptive category by using stereotypes.

5/2/2012

Class Diagram (2)

name

\& Shape attributes
origin o—/

move()
resize()

display() \

operations

5/2/2012

FraudAgent

«constructor» e———_|
new()

new(p : Policy)
«Process»
process(o : Order)

.«-qi,lery» |
isSuspect(o : Order)
isFraudulent(o : Order)

«helper» Q—/'///

validateOrder(o : Order)

. "

stereotype

OO Relationships

* There are two kinds of Relationships
— Generalization (parent-child relationship)
— Association (student enrolls in course)
» Associations can be further classified as
— Aggregation
— Composition

5/2/2012

OO Relationships: Generalization

Supertype

/\

Subtypel Subtype2

- Generalization expresses a
parent/child relationship among related
classes.

- Used for abstracting details in several

layers
5/2/2012

Example: Customer

/\

Regular Loyalty
Customer Customer
or: Customer
Regular Loyalty
Customer Customer

0O Relationships: Association

* Represent relationship between instances

of classes
— Student enrolls in a course
— Courses have students

— Courses have exams
— Etc.

» Association has two ends
— Role names (e.g. enrolls)
— Multiplicity (e.g. One course can have many students)

5/2/2012

Association: Multiplicity and Roles

Person

1
University
0..1
Symbol Meaning
1 One and only one
0..1 Zero or one
M..N From M to N (natural language)
* From zero to any positive integer
0..” From zero to any positive integer
1.” From one to any positive integer

“A given university groups many people;
some act as students, others as teachers.
A given student belongs to a single
university; a given teacher may or may not
be working for the university at a particular
time.”

5/2/2012

Class Diagram

Name —— Order Multiofic . class
. “datoRecaived ultiplicity: man atg
Attributes -isPrepaid 2 Customer
-number :String 1 -name
-price : Money /' _address
Operations — +(1|§|% a;t;:(r;() Association +creditRating() : String()
1 {if Order.customer.creditRating is Generalization
"poor”, then Order.isPrepaid must
be true }
/ Corporate Customer Personal Customer
. -contactName -creditCard#
Constraint -creditRating
. .. -creditLimit
Multiplicity: (inside braces{ }} :
Many value +remind()
y +billForMonth(Integer)
T 0..1
Multiplicity:
. e
optional *
1 * Employee
OrderLine
-quantity: Integer o~ 1
-price: Money Product
-isSatisfied: Boolean

5/2/2012

Association: Model to Implementation

0..4
Student Course

Class Student {
Course enrolls[4];

}

Class Course {
Student havel];

}

5/2/2012

5/2/2012

OO0 Relationships: Composition

Whole Class

Class W

¢

Class P,

Class P,

-

J

Example

'
Part Classes

Automobile

¢

Engine

Transmission

Composition: expresses a relationship among instances
of related classes. It is a specific
relationship.

It expresses a relationship where an instance of the
Whole-class has the responsibility to
of each Part-class.

It may also be used to express a relationship where instances
of the Part-classes have to
certain attributes and/or behaviors defined by the
Whole-class.

Composition should also be used to express relationship where

Composition should be used to express a relationship where
the behavior of Part instances is undefined without being
related to an instance of the Whole. And, conversely, the
behavior of the Whole is ill-defined or incomplete if one or
more of the Part instances are undefined.

OO Relationships: Aggregation

Container Class

Class C

AGGREGATION Q

Class E,

Class E,

-

/)

Y

Containee Classes

Example

Bag

Apples

Milk

5/2/2012

Aggregation: expresses a relationship among instances
of related classes. It is a specific
relationship.

It expresses a relationship where an instance of the
Container-class has the responsibility to

of each Containee-class that have been created
outside the auspices of the Container-class.

Aggregation should be used to express a more informal
relationship than composition expresses. That is, it is an
appropriate relationship where the

Aggregation is appropriate when
have no special access privileges to each other.

Aggregation vs. Composition

«Composition is really a strong form of aggregation
ecomponents have only one owner
ecomponents cannot exist independent of their owner
ecomponents live or die with their owner
e.g. Each car has an engine that can not be shared with
other cars.

*Aggregations may form "part of" the aggregate, but may not
be essential to it. They may also exist independent of the
aggregate.

e.g. Apples may exist independent of the bag.

5/2/2012

Sequence Diagram(make a phone call)

Caller Phone Recipient
Picks up
Dial tone
Dial
Ring notification Ring
i Picks up
Hellb

5/2/2012

Sequence Diagram:Object interaction

5/2/2012

Self-Call: A message that an
Object sends to itself.

Condition: indicates when a
message 1s sent. The message 1s

sent only if the condition is true.

A

B

Synchronous

Asynchronous

e

Transmission

[condition] remove()

delayed

*[for each] remove()

e

<_
Self-Call

7

Sequence Diagram:Object interaction

5/2/2012

Self-Call: A message that an
Object sends to itself.

Condition: indicates when a
message 1s sent. The message 1s

sent only if the condition is true.

A B

Synchronous

e

Asynchronous

Transmission
delayed
>

remove()

remove()

<_
Self-Call

Sequence Diagrams — Object Life Spans

 Creation

— Create message
— QObject life starts at that point |
« Activation Create
— Symbolized by rectangular
stripes |
— Place on the lifeline where object H
S

1 >

IS activated.

— Rectangle also denotes when H /
object is deactivated. Activationbar | Return
* Destruction event | Destruction

— Placing an ‘X’ on lifeline Lifeline | event

— QObject’s life ends at that point
5/2/2012

Deployment Diagram

« The components must be deployed on some set of hardware in order to
execute.

conneclion

kiosk

RAID farm

I
console 74\
< «RS-232»)

[\

5/2/2012

UML Profiles

« Profile: Provides a generic extension mechanism for customizing
UML models for particular domains and platforms. Extension
mechanisms allow refining standard semantics in strictly additive
manner

« Profiles are defined using stereotypes, tag definitions, and
constraints that are applied to specific model elements, such as
Classes, Attributes, Operations, and Activities

« A Profile is a collection of such extensions that collectively
customize UML for a particular domain (e.g., aerospace, healthcare,
financial) or platform (J2EE, .NET)

5/2/2012

Tagged Values | ..

A tagged value is a combination of a tag and a value that gives supplementary
information that is attached to a model element. A tagged value can be used to
add properties to any model elements and can be applied to a model element
or a stereotype.

Tagged values can be defined for existing model elements, or for individual
stereotypes, so that everything with that stereotype has that tagged value. It is

important to mention that a tagged value is not equal to a class attribute.
Instead, you can regard a tagged value as being a metadata, since its value
applies to the element itself and not to its instances.

One of the most common uses of a tagged value is to specify properties that
are relevant to code generation or configuration management. So, for example,
you can make use of a tagged value in order to specify the programming
language to which you map a particular class, or you can use it to denote the
author and the version of a component.

5/2/2012

Tagged Values

« Graphically, a tagged value is rendered as a string
enclosed by brackets, which is placed below the name of
another model element. The string consists of a name
(the tag), a separator (the symbol =), and a value (of the

tag)

Server
{processors=3}

5/2/2012

Constraints

« Constraints are properties for specifying semantics and/or conditions
that must be held true at all times for the elements of a model. They
allow you to extend the semantics of a UML building block by adding
new rules, or modifying existing ones.

« For example, when modeling hard real time systems it could be
useful to adorn the models with some additional information, such as
time budgets and deadlines. By making use of constraints these
timing requirements can easily be captured.

—

— .

MyProcessor

o
-
-
-

«nfpConstraint»
speedFactor = 1

5/2/2012

Catalog of Adopted OMG Profiles

« UML Profile for CORBA
« UML Profile for Enterprise Application Integration (EAI)
« UML Profile for Enterprise Distributed Object Computing (EDOC)

« UML Profile for Modeling QoS and Fault Tolerance Characteristics and
Mechanisms

« UML Profile for Schedulability, Performance, and Time
« UML Profile for System on a Chip (SoC)

« UML Profile for Modeling and Analysis of Real-Time and Embedded
Systems (MARTE)

« UML Testing Profile
« UML Profile for Systems Engineering (SysML)
« UML Profile for DODAF/MoDAF (UPDM)

5/2/2012

UMLED
MARTE profile MARTE

« MARTE (Modelling and Analysis Real-Time and Embedded
systems) deals with time- and resource-constrained aspects, and
includes a detailed taxonomy of hardware and software patterns
along with their non-functional attributes to enable state-of-the art
guantitative analyses (e.g., performance and power consumption)

5/2/2012

5/2/2012

MARTE overview

MARTE domain model

Foundations for RT/E systems
modeling and analysis:
= CoreElements

= NFPs

= Time

= Generic resource modeling
MarteFoundations J => Generic component modeling

@ /;’?”'

Domain

-
-

1

= Allocation

=,
T~

1

MarteDesignModel

MirteAnalysisModel

|

\

Specialization of MARTE foundations for
modeling purpose (specification, design,
L)
= RTE model of computation and
communication

=> Software resource modeling

=» Hardware resource modeling

\

Specialization of foundations for
annotating model for analysis
purpose:

= Generic quantitative analysis
=>» Schedulability analysis

=>» Performance analysis

Non-Functional Properties
(NFPs)

* Non-functional properties describe the
“fitness” of systems behavior. (E.qg.,
performance, memory usage, power
consumption,..etc)

5/2/2012

NFP subprofile

Three mechanisms to annotate UML models:
* Values of stereotype properties —_—

g? D «hwProcessor»
«hwProcessor» | __aa=-- speedFactor =1

MyProcessor

* Slot values of classifier instances —

@ MyProcessor proci :MyPrﬁ%or
speedFactor: Integer [0..1] [speedFac10r= 1]’/
* Constraints — S
O MyProcessor «nfpConstraint»
i speedFactor =1

5/2/2012

Generic Quantitative Analysis Modeling
(GQAM)

. . [1 1]]
The generic analysis o . ety -
. A s ime GRM p

domain includes HARTE Hbrary

T . . M M 2 A
specialized domains in « import » N : :

. . . A « IlTl{_;lﬂl't 0 o imr:noct » o imp.nort »

which the analysis is Gonm : :
based on the software — —
behaVIOr, SUCh aS GQAM_\:Uorkload F~—- import »--={ GQAM_Resources
performance and o import e > GoAM_Observers
schedulability and also % m
power, memory, reliability, T —
availability, and security. . o

5/2/2012

GaExecHost

* |t denotes a processor that executes Steps

 |n performance modeling, an GakExecHost can be any
device which executes behavior, including storage and
peripheral devices.

5/2/2012

UML Modeling Tools

« Rational Rose (www.rational.com) by IBM

« TogetherSoft Control Center, Borland
(http://www.borland.com/toqether/index.html)

(free software) (http://argouml.tigris.org/)
OpenSource; written in java

» QOthers (http://www.objectsbydesign.com/tools/umltools byCompany.html)

5/2/2012

Reference

1. UML Distilled: A Brief Guide to the Standard Object Modeling Language
Martin Fowler, Kendall Scott

2. IBM Rational

http://www-306.ibm.com/software/rational/uml/

3. Practical UML --- A Hands-On Introduction for Developers
http://www.togethersoft.com/services/practical guides/umlonlinecourse/

4. Software Engineering Principles and Practice. Second Edition;
Hans van Vliet.

5. http://www-inst.eecs.berkeley.edu/~cs169/

5/2/2012

Any questions?

5/2/2012

