Differential Geometry and Topology

Exercise set 1, based on 5/03/2014-14/03/2014
Many of the following exercises are found in Differential Topology, by Victor Guillemin and Alan Pollack.

1 Exterior algebra

Exercise 1. Suppose that $T \in \Lambda^{p}\left(V^{*}\right)$ and $v_{1}, \ldots, v_{p} \in V$ are linearly dependent. Prove that $T\left(v_{1}, \ldots, v_{p}\right)=0$ for all $T \in \Lambda^{p}(V *)$.
Exercise 2. For a $k \times k$ matrix A, let A^{t} denote the transpose matrix. Using the fact that $\operatorname{det} A$ is multilinear in both rows and columns of A, prove that $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$. [Hint: Use $\operatorname{dim} \Lambda^{k}\left(\mathbb{R}^{k^{*}}\right)=1$.]
Exercise 3. 1. Let T be a nonzero element of $\Lambda^{k}\left(V^{*}\right)$, where $\operatorname{dim} V=k$. Prove that two ordered bases $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$ for V are equivalently oriented if and only if $T\left(v_{1}, \ldots, v_{k}\right)$ and $T\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)$ have the same sign.[Hint: determinant theorem.]
2. Suppose that V is oriented. Show that the one-dimensional vector space $\Lambda^{k}\left(V^{*}\right)$ acquires a natural orientation, by defining the sign of any positively oriented element $T \in \Lambda^{k}\left(V^{*}\right)$ to be the sign of $T\left(v_{1}, \ldots, v_{k}\right)$ for any positively oriented ordered basis $\left\{v_{1}, \ldots, v_{k}\right\}$ for V.
3. Conversely, show that an orientation of $\Lambda^{k}\left(V^{*}\right)$ naturally defines an orientation on V by reversing the above.

2 Differential forms

Exercise 4. Suppose that $\phi_{1}, \ldots, \phi_{m}$ are differential forms on \mathbb{R}^{k}, with $\operatorname{deg} \phi_{i}=p_{i}$, and $f\left(y_{1}, \ldots, y_{k}\right)$ a 0 -form (i.e. smooth function). Thus $f d \phi_{1} \wedge d \phi_{2} \wedge \ldots \wedge d \phi_{m}$ is a $\left(p_{1}+\ldots+p_{m}+m\right)$-form. Show that

$$
d\left(f d \phi_{1} \wedge \ldots \wedge d \phi_{m}\right)=d f \wedge d \phi_{1} \wedge \ldots \wedge d \phi_{m}
$$

Exercise 5. Let $f: X \rightarrow Y$ be a smooth map of manifolds, and let ϕ be a smooth function on Y. Then

$$
f^{*}(d \phi)=d\left(f^{*} \phi\right)
$$

Exercise 6. Let Z be a finite set of points in X, considered as a 0-manifold. Fix an orientation of Z, an assignment of orientation numbers $\sigma(z)= \pm 1$ to each $z \in Z$. Let f be any function on X, considered as a 0 -form, and check that

$$
\int_{Z} f=\sum_{z \in Z} \sigma(z) f(z)
$$

Exercise 7. Suppose that the 1-form ω on X is the differential of a function, $\omega=d f$. Prove that $\oint_{\gamma} \omega=0$ for all closed curves γ on X.
Exercise 8. Define a 1-form ω on the punctured plane $\mathbb{R}^{2} \backslash\{0\}$ by

$$
\omega(x, y)=\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y
$$

1. Calculate $\int_{C} \omega$ for any circle C of radius r around the origin.
2. Prove that in the half-plane $\{x>0\}, \omega$ is the differential of a function. [Hint: $\operatorname{try} \arctan (y / x)$ as a random possibility.]
3. Why isn't ω the differential of a function globally on $\mathbb{R}^{2} \backslash 0$?

Exercise 9. Suppose that ω is a 1-form on the connected manifold X, with the property that $\oint_{\gamma} \omega=0$ for all closed curves γ. Then if $p, q \in X$, define $\int_{p}^{q} \omega$ to be $\int_{0}^{1} c^{*} \omega$ for a curve $c:[0,1] \rightarrow X$ with $c(0)=p, c(1)=q$. Show that this is well-defined (i.e. independent of the choice of c.)

3 Stokes theorem

Exercise 10. The Divergence theorem in electrostatics. Let D be a compact region in \mathbb{R}^{3} with a smooth boundary S. Assume $0 \in \operatorname{Int}(D)$. If an electric charge of magnitude q is placed at 0 , the resulting force field is $q \mathbf{r} / r^{3}$, where $\mathbf{r}(x)$ is the vector to a point x from 0 and $r(x)$ is its magnitude. Show that the amount of charge q can be determined from the force on the boundary by proving Gauss's law:

$$
\int_{S} \mathbf{F} \cdot \mathbf{n} d A=4 \pi q .
$$

[Hint: apply the Div. Thm. to a region consisting of D minus a small ball around the origin.]
Exercise 11. Suppose that $X=\partial W, W$ is compact, and $f: X \rightarrow Y$ is a smooth map. Let ω be a closed k-form on Y, where $k=\operatorname{dim} X$. Prove that if f extends to all of W, then $\int_{X} f^{*} \omega=0$.
Exercise 12. Suppose that $f_{0}, f_{1}: X \rightarrow Y$ are homotopic maps and that the compact, boundaryless manifold X has dimension k. Prove that for all closed k-forms ω on Y,

$$
\int_{X} f_{0}^{*} \omega=\int_{X} f_{1}^{*} \omega
$$

Exercise 13. Show that if X is a simply connected manifold, then $\oint_{\gamma} \omega=0$ for all closed 1-forms ω on X and all closed curves γ in X.

Differential Geometry and Topology

Exercise set 2, based on 19/03/2014-04/04/2014

4 Homotopy invariance of de Rham cohomology

Exercise 14. Let M and N be manifolds and suppose that $N \subset M$ and the inclusion map $i: N \rightarrow M$ is smooth. A deformation retract of M into N is a smooth map $r: M \rightarrow N$ such that $r \circ i=I d_{N}$ and $i \circ r$ is homotopic to $I d_{M}$. Prove that M and N have the same de Rham cohomology.
Exercise 15. Show that the de Rham cohomology of the open Möbius strip $=$ the de Rham cohomology of the punctured plane $\mathbb{C} \backslash\{0\}$.

5 Homological algebra and exact sequences

Exercise 16. Show that if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of finite dimensional vector spaces, then $\operatorname{dim} B=\operatorname{dim} A+\operatorname{dim} C$.
Exercise 17. Prove the Five Lemma: given a commutative diagram of abelian groups and group homomorphisms

in which the rows are exact, if the four outer maps α, β, δ and ϵ are isomorphisms then so is γ.
Exercise 18. Suppose that $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow \ldots \rightarrow V_{n} \rightarrow 0$ is an exact sequence of finite dimensional vector spaces. Show that $\sum_{i=1}^{n}(-1)^{i-1} \operatorname{dim} V_{i}=0$.

6 Mayer-Vietoris, Poincaré duality, Künneth formula

Exercise 19. Compute the de Rham cohomology of the sphere S^{2} with n holes (or equivalently the plane \mathbb{R}^{2} with $n-1$ holes).
Exercise 20. Compute the de Rham cohomology of a compact oriented surface of genus 2 (also known as the two-holed donut). E.g. break it up into a sphere with 4 holes with two cylinders attached to close up the holes.
Exercise 21. Let M be a compact, orientable n manifold. Show that n odd $\Longrightarrow \chi(M)=0$. So, for example, all odd-dimensional spheres $S^{k}=\left\{\mathbf{x} \in \mathbb{R}^{k+1} \mid\|\mathbf{x}\|=1\right\}$ have Euler characteristic equal to zero.
Exercise 22. Show that the n-torus $T^{n}=\underbrace{S^{1} \times \ldots \times S^{1}}_{n \text { times }}$ has $B^{k}\left(T^{n}\right)=\binom{n}{k}$.

