
University of Verona

A.A 2018/2019

Laboratory of
Networked Embedded Systems

Lesson 3
Networked Embedded Systems Design

Enrico Fraccaroli
Sohail Mushtaq
Davide Quaglia

May 20, 2019

Contents

1 Introduction 3
1.1 Arduino Software . 4
1.2 Light Emitting Diode (LED) 5
1.3 Button . 7
1.4 Buzzer . 9
1.5 Temperature Sensor . 10
1.6 NRF24L01 Module . 13

1.6.1 Serial Peripheral Interface 13
1.6.2 Main Methods . 15
1.6.3 Configuration methods 16

2 Networked embedded systems for temperature monitoring 19
2.1 Required material . 19
2.2 Structure . 20
2.3 Development instructions . 21

2.3.1 Master . 21
2.3.2 Slave . 23
2.3.3 Exercise . 24

3 Sniffing wireless communications 25
3.1 Required material . 25
3.2 Background . 26

3.2.1 Packet structure . 27
3.2.2 How to simulate promiscuous mode 28
3.2.3 Packet sniffing mechanism 29
3.2.4 Packet dissection mechanism 29

3.3 Exercise . 30

4 Profiling power consumption of communicating devices 31
4.1 Required material . 31
4.2 Structure . 32

1

4.3 Exercise 1 . 34
4.4 Exercise 2 . 34
4.5 Exercise 3 . 34

2

Chapter 1

Introduction

This lesson aims to introduce networked embedded system programming by
using Arduino platform. It starts by introducing the development process
and environment. Then basic examples are presented to train readers on
hardware and software aspects.

Then three network-based scenarios are considered:

1. The first one concerns the use of two Arduino boards to transmit pack-
ets by means of a Radio-Frequency (RF) board, namely the NRF24L01+.

2. The second one concerns the sniffing of packets sent from a node via
nRF24L01+ wireless module. In this case we are going to change the
configuration of the first scenario.

3. The third one concerns the analysis of the power consumption of the
wireless module as a function of payload size and transmission power.

In the following there is a brief description of the software and components
required for the lesson.

3

1.1 Arduino Software
In order to use the Arduino board, download the Arduino IDE from

https://www.arduino.cc/en/Main/Software

How to run the IDE

In order to execute the IDE, use the file named arduino inside the down-
loaded package.

How to install libraries

In order to install a new library, you just need to click on

Sketch −→ Include Library −→ Manage Libraries

Libraries

In order to do this laboratory some external libraries are needed:

• RF24 by TMRh20

• OneWire by Jim Studt

• DallasTemperature by Miles Burton

• Adafruit INA219 by Adafruit

4

1.2 Light Emitting Diode (LED)

Figure 1.1: Led structure.

Figure 1.2: Led setup.

As shown in Figure 1.1, a Light Emitting Diode (LED) consists of an
anode and a cathode. The former is connected to a voltage source (i.e.,
PIN 13 of Arduino) while the latter (i.e., the negative pole) is connected to
Ground. The setup shown in Figure 1.2 allows to operate the LED with
an Arduino. Please, note how to distinguish anode and cathode since they
cannot be switched. Please, also note the aspect of the resistor; its colors
encode the resistance value and you have to use the right one. The 220Ω
resistor is used for the LED. Please, check a color table on the Internet to
calculate values.

Below you can see the software code to turn a LED on and off. Please,
note that every Arduino source program (i.e., sketch) consists of a setup()

5

function and a loop() function. During the setup phase you have to set
the pin number to which the LED is connected and its type (i.e., INPUT or
OUTPUT). During the loop phase, to change the state of the LED, use the
digitalWrite command and pass the pin_number and pin_state. Using
HIGH will turn the LED on while LOW will turn it off.� �

1 #define led0 13
2 int status = 0;
3 void setup() {
4 pinMode(led0 , OUTPUT);
5 digitalWrite(led0 , status);
6 }
7 void loop() {
8 if (status == LOW) status = HIGH;
9 else status = LOW;

10 digitalWrite(led0 , status);
11 delay (200);
12 }� �

6

1.3 Button
The previous example shows how to deal with an output functionality.
Now we add an input functionality.

Figure 1.3: Schema of a button which controls a LED via software.

Figure 1.3 shows the button setup. First, it must be powered and thus it
must be connected to ground (i.e., GND) and to a potential source (i.e., VCC
of Arduino). Even though it has 4 pins, they are actually only two since the
pins on the same side are connected in series. A cable must be used to send
the signal from the button to the PIN 4 of the Arduino.

Please, note that resistors are different and cannot be switched. The 220Ω
resistor is used for the LED while the 10kΩ resistor is used for the button.
Please, check a color table on the Internet to calculate values.

The button is an input device, during the setup phase you have to ini-
tialize the pin by setting it as INPUT pin. During the loop phase, the code
has to verify if the button is pressed by means of the digitalRead function.
This function indicates value 1 if the button is pressed and value 0 if the
button is not pressed. Please, note that by pressing the button for a short
time, the LED stays on for a longer time. You can play with such time since
software control is in the middle between button and LED. This is your
first embedded system.� �

1 #define pinButton 2
2 #define pinLed 13
3 void setup() {
4 pinMode(pinButton , INPUT);
5 pinMode(pinLed , OUTPUT);
6 }
7 void loop() {
8 if (digitalRead(pinButton) == 1) {
9 digitalWrite(pinLed , HIGH);

10 delay (2000); // milliseconds

7

11 digitalWrite(pinLed , LOW);
12 }
13 }� �

8

1.4 Buzzer

Figure 1.4: Buzzer setup.

As shown in Figure 1.4, a buzzer must be connected to a power supply
(or an Arduino digital pin) and ground. During the Setup the buzzer is
initialize like a LED, that is with the pinMode(#buzzer, OUTPUT) command.
However, inside the loop function it must be used by means of the command
tone(#buzzer, 1000, 200), where #buzzer is the pin number to which the
buzzer is connected, 1000 is the frequency of the tone in Hertz and 200 is its
duration in milliseconds.

Please, note that some buzzers have non-switchable pins. In that case
such pins have different length and the shorter one should be connected to
ground (GND).� �

1 #define PIN_BUZZER 3
2 void setup (){
3 pinMode(PIN_BUZZER , OUTPUT);
4 }
5 void loop (){
6 tone(PIN_BUZZER , 1000, 200);
7 delay (1000);
8 tone(PIN_BUZZER , 750, 300);
9 delay (1000);

10 tone(PIN_BUZZER , 500, 400);
11 delay (1000);
12 }� �

9

1.5 Temperature Sensor

Figure 1.5: DALLAS DS18B20 sensor setup.

The DS18B20 is a smart temperature sensor which includes analog-to-
digital conversion and provides a binary value as a one-wire transmission on
the data pin.

Considering the flat face as reference:

• LEFT pin: Connected to GND.

• CENTRAL pin: Connected to digital port of Arduino, and also con-
nected to VDD through a 4.7kΩ resistor.

• RIGHT pin: Connected to VDD.

It can be powered with a voltage between 3.0V and 5.5V, thus you can
simply connect the right pin to VDD, the 5V Arduino pin, as shown in Fig-
ure 1.5. However, the DS18B20 can also extract its power from the data pin,
which means it only needs two wires for the connection. This makes it ideal
for use as an external sensor.

The left pin must be connected to ground of the Arduino. While the data
line, the central pin, must be connected to a digital pin of the Arduino (in
this case pin 13). Furthermore, the data line, central pin, must be connected
through a 4.7kΩ resistor to VDD.

Please, also note the aspect of the resistor; its colors encode the resistance
value and you have to use the right one. The 4.7kΩ resistor is used for the
DS18B20. Please, check a color table on the Internet to calculate values.

The following libraries are required:

10

• DallasTemperature

• OneWire

The OneWire library handles one-wire data transmission and is used for
many sensor types as the DS18B20.

11

The code required to acquire the temperature is the following:� �
1 #include <DallasTemperature.h>
2 #include <OneWire.h>
3 #define ONE_WIRE_BUS 13
4 OneWire oneWire(ONE_WIRE_BUS);
5 DallasTemperature sensors (& oneWire);
6 void setup(void)
7 {
8 Serial.begin (9600);
9 sensors.begin ();

10 }
11 void loop(void){
12 sensors.requestTemperatures ();
13 Serial.println(sensors.getTempCByIndex (0));
14 }� �

The line OneWire oneWire(ONE_WIRE_BUS) sets the oneWire communi-
cation mechanism, while DallasTemperature sensors(&oneWire) instanti-
ate the sensing library. Finally, by using the Sensors.begin(), the sensor
begins to acquire the temperature.
Inside the loop, two basic commands are used:

• Sensors.requestTemperatures()

– Sends a temperature request to the sensor.

• Sensors.getTempCByIndex(0)

– Acquires the temperature in Celsius.

Please, note the use of the static class Serial to print messages on the
host PC through the serial USB connection. To read such messages in the
software development environment you just need to click on

Tools −→ Serial Monitor

The symbol rate (baud rate) of the Serial Monitor window should match with
the rate set in the begin() method.

12

1.6 NRF24L01 Module

Figure 1.6: Interface of NRF24L01.

The NRF24L01 module is powered by a voltage between 1.9V and 3.6V
while 5V damages it. Figure 1.6 shows the configuration of the NRF24L01
pins as follows:

GND The ground pin.
VCC The power supply.
CE The Chip Enable. Determines whether the module should be

placed in receiving or transmitting state.
CSN SPI Chip Select.
SCK SPI Clock. A clock signal used to synchronize the data transfer

through the serial bus.
MOSI SPI Master Out Slave In. A line exiting the master and entering

the slaves.
MISO SPI Master In Slave Out. An input line exiting the slave and

entering the master.
IRQ Interrupt.

1.6.1 Serial Peripheral Interface

Serial Peripheral Interface (SPI) is a synchronous serial data protocol used
by micro-controllers for communicating with one or more peripheral devices
quickly over short distances. It can also be used for communication between
two micro-controllers. With an SPI connection there is always one master
device (usually a micro-controller) which controls the peripheral devices.

13

Schema

Figure 1.7: NRF24L01-Arduino connections.

The GND and VCC pin of the module should be connected respectively to
the GND and 3.3V pins of the Arduino.

Be Careful
Do not connect the module to the 5V voltage supply, it is too high.

The CE pin and the CSN pin can be connected to any digital pin as they
are configured via software, in this case the digital pins 7 and 8. The SCK,
MOSI and MISO pins are default as they are used for SPI Communication:
pin 11 (MOSI), pin 12 (MISO), pin 13 (SCK). These support pins are used
by the SPI library, used by the RF module. IRQ is not used in this scenario.

14

1.6.2 Main Methods

Constructor� �
RF24 (uint8_t cePin , uint8_t csPin)� �
Instantiate the Radio Frequency (RF) module manager.

• cePin: Pin connected to the RF Module Chip Enable;

• csPin: Pin connected to Chip Select.

Setup� �
RF24::begin(void);� �
Configures the module created with the constructor. This command is placed
inside the setup phase and must be called before any other command of the
module.

Writing pipe� �
RF24:: openWritingPipe (uint64_t address)� �
Opens the pipe in write mode. The pipe is specified by the 40-bit hexadecimal
address address.

Reading pipe� �
RF24:: openReadingPipe (uint8_t number , uint64_t address)� �
Opens the pipe in read mode.

• number: the pipes number, ranging from 0 to 5, the pipes from 1 to 5
share the first 32 bits, the pipe 0 is usually used as writing pipe.

• address: The 40 bit address of the pipe to open.

Start listening� �
RF24:: startListening (void)� �
Starts listening to open pipes in read mode. Make sure that the
openReadingPipe() function has been previously called. You can not call the
write function if you have not called the stopListening() function before.

15

Stop listening� �
RF24:: stopListening (void)� �
Stops listening for incoming messages. This must be called before a write
operation.

Write data� �
RF24::write (const void * buf , uint8_t len)� �
Writes on the opened writing pipe. First, make sure that the openWriting-
Pipe() function has been previously called.

• Buf: pointer to the data to send

• Len: number of bytes to send

It returns True if the data has been sent, False otherwise.

Check for incoming data� �
RF24:: available ()� �
Checks if there are bytes available to be read. It returns True if there is an
incoming stream of data, False otherwise.

Read incoming data� �
RF24::read (void * buf , uint8_t len)� �
Reads incoming data and returns the last received data.

• Buf: buffer pointer where the data was written

• Len: maximum number of bytes to read in the buffer

It returns True if the data was successfully delivered, False otherwise.

1.6.3 Configuration methods

The methods listed below can be used to set different chip configurations.

16

Change communication channel� �
RF24:: setChannel (uint8_t channel)� �
It sets the RF communication channel.

• channel: Which RF channel is used to communicate. It allows to select
a value from 0 to 127.

Change payload size� �
RF24:: setPayloadSize (uint8_t size)� �
This deployment usually utilizes a premium payload size for all transmissions.
If the method is not called, the device transmits to the maximum payload
size, or 32 bytes.

Change power amplifier level� �
RF24:: setPALevel (rf24_pa_dbm_e level)� �
It sets the power amplifier level in one of four levels:

RF24_PA_MIN -18 dBm
RF24_PA_LOW -12 dBm
RF24_PA_MED -6 dBm
RF24_PA_HIGH 0 dBm

Change transmission speed� �
RF24:: setDataRate (rf24_datate_e speed)� �
It sets the transmission speed at one of three speeds:

RF24_250KBPS 250 Kbs
RF24_1MBPS 1 Mbps
RF24_2MBPS 2 Mbps

17

Warning

All the communications must have the same:

• Transmission Speed;

• Channel;

• Payload Size.

18

Chapter 2

Networked embedded systems for
temperature monitoring

This scenario concerns the use of two Arduino boards to transmit packets
through the use of the NRF24L01 Radio-Frequency (RF) board.

The project creates a temperature measurement system which generates
an acoustic alarm if the temperature level crosses an upper-bound value.
Two LEDs (i.e., Red and Green) allow the user to know if the temperature
is getting near the upper-bound value.

Thus, the following information are provided to the user:

GREEN LED the temperature is low.
RED LED the temperature is rising.
SOUND the temperature has crossed the upper-bound value.

2.1 Required material
• 2 x Arduino Uno
• 2 x Prototyping Board
• 2 x NRF24L01 Module
• 1 x Red LED
• 1 x Green LED
• 1 x Button
• 1 x Buzzer
• 1 x Temperature Sensor (DALLAS1820)
• 2 x Resistors 220Ω

19

• 1 x Resistors 4.7kΩ

• 1 x Resistors 10kΩ

2.2 Structure
The structure of the project is depicted in Figure 2.1 and consists of two
parts:

1. The first one is made up of an Arduino, a NRF24L01 module, two
LEDs and a button. This system has the role of Master.

2. The second one is made up of an Arduino, a NRF24L01 module, a
DALLAS18B20 temperature sensor, and a buzzer. This system has
the role of Slave.

The node to which the button is connected is considered as a master.
Whenever the user presses the master’s button, a wireless message is sent
to the slave to request the temperature measured at the place where the
slave is deployed. Once the temperature is received by the master, it is
displayed on the serial monitor of the Arduino and used to switch LEDs.
The time elapsed from the request to the response is shown on the serial
monitor along with the temperature.

However, if the time elapsed exceeds a threshold (i.e., it takes too long
to be received), the value is discarded since it cannot be considered as valid
and an error message is shown.

Arduino

Button

L1 L2

NRF24L01 Arduino

Sensor

NRF24L01

Buzzer

Figure 2.1: Temperature monitoring distributed architecture.

20

2.3 Development instructions

2.3.1 Master

Figure 2.2: Master node configuration.

Whenever the button is pressed, the master node sends a request to the
slave node for the temperature value. Based on the temperature value sup-
plied by the slave, the LEDs turn on for about 2 seconds. On each trans-
mission, along with the request/response, the time at which the packet is
send is provided. Thus, a structure with both time and temperature values
is created and used during the communication. The current time value is
acquired by means of the micros() function, which returns the number of

21

microseconds since the Arduino started running the program. Such value is
written into the request message. Once the slave has received the request
and the time-stamp, it updates the acquired temperature value inside the
packet and then sends it back to the master. The master receives the packet
and evaluates the elapsed time by using the stored value inside the packet
and the current time value got by the aforementioned function. If the elapsed
time is not above a pre-determined threshold, the packet is displayed on the
serial monitor.

22

2.3.2 Slave

Figure 2.3: Slave node configuration.

The slave node waits for the requests from the master. Furthermore, if
the temperature is too high, the local buzzer is activated every 2 seconds,
until the temperature becomes normal.

23

2.3.3 Exercise

The code of the Slave is incomplete. The missing parts are denoted by $FILL$
and, for each of them, a comment shows what is missing. Complete the code
in order to allow the Slave node to receive a request from the Master and
reply with the temperature.

24

Chapter 3

Sniffing wireless communications

The objective of this scenario is to intercept the packets sent by the temper-
ature board.

In the previous scenario, the temperature board detects and transmits the
temperature on an explicit request of the master. In this scenario we do not
have the Master node to re-cycle the Arduino board to implement a Sniffer
(Figure 3.1). First, we will give you the necessary background for performing
packet sniffing, and then you will be given the task of modifying the previous
scenario for performing network sniffing. The Sniffer will attempt to inter-
cept the packets transmitted by the temperature board. However, the Sniffer
needs to know some configuration parameters of the node, such as the trans-
mission channel, the data rate and the base address of the communication
pipe.

3.1 Required material
• 2 x Arduino Uno
• 1 x Prototyping Board
• 2 x NRF24L01 Module
• 1 x Buzzer
• 1 x Temperature Sensor (DALLAS1820)
• 1 x Resistors 4.7kΩ

25

Figure 3.1: Sniffer schema.

3.2 Background
The Nordic Semiconductor nRF24L01+ card operates at 3.3V voltage and
transmits on channels at a frequency of 2.4GHz, which is used by common
WiFi radios. Packets transmission can take place in two ways:

• Regular Packet: The payload size is defined a priori inside the code;

• Enhanced Shockburst: It has the ability to use dynamic payloads,
identify ACK packets and Auto-ACK functionality.

This chip does not support promiscuous mode, which would normally allow
you to detect all kind of network traffic. However, the difference between
the two supported modes can be used to our advantage, albeit with some
limitations.

26

3.2.1 Packet structure

The first part of the header of the packet transmitted by both the aforemen-
tioned modes are identical. In particular it has the following structure:

• A 1-byte preamble is used to identify nRF24 packets;

• Address, length from 3 to 5 bytes, to specify the destination address.

In Regular Mode, this header is immediately followed by a payload, of
length to be defined in the code, between 0 and 32 bytes. In both modes,
a section dedicated to the CRC is provided at the end of the packet. This
CRC is used to check the integrity of the data and it has a fixed length which
varies between 0 and 2 bytes.

Preamble Address Payload CRC
1 byte 3-5 byte 0-32 byte 0-2 byte

The Enhanced Shockburst mode provides the ability to send payloads
with dynamic length. Its header contains three other fields which are not
byte-aligned, defined as follows:

• Payload length: 6 bits used to specify the payload length, which will
always be limited to 0 to 32 bytes;

• 2-bit PID (Packet Identifier): Used to number packets, useful for de-
tecting retransmissions;

• NO_ACK : 1 bit flag which is set to 1 if the packet does not provide a
acknowledge in response.

Preamble Address Payload Length PID NO_ACK Payload CRC
1 byte 3-5 byte 6 bit 2 bit 1 bit 0-32 byte 0-2 byte

27

3.2.2 How to simulate promiscuous mode

The slave node use theEnhanced Shockburstmode. Because the nRF24L01+
chip does not support promiscuous mode, you need to find a way to simu-
late it by using the two aforementioned modes. The Enhanced Shockburst
mode differs from the regular one only for some additional fields in the header.
You can set the sniffer to detect Enhanced Shockburst packets as if they
were regular packets, by “embedding” the three additional sections and the
variable part of the address (which will be interpreted as a specific node ad-
dress) inside the payload.

Preamble
Base

Address
Node

Address
Payload
Length

PID NO_ACK Payload CRC

1 byte 4 byte 1 byte 6 bit 2 bit 1 bit 0-32 byte 0-2 byte
↓ ↓ ↓ ↓ ↓ ↓

Preamble Address Payload
1 byte 4 byte 0-32 byte

In order to do this, you need to change the sniffer code:

• Specify the length of the address field to limit it to the base address
length (the initial part of the address, shared between all nodes);

• Disable Enhanced Shockburst mode;

• Disable CRC parity check;

• Set a fixed length payload.

The first three points are required to “mask” and therefore to handle the
packets transmitted by means of the Enhanced Shockburst. The last point
is required in order to specify the size of the data we need to read, since the
sniffer works in Regular Mode. The CRC control needs to be disabled.
The sanity check will always fail since the payload size of all packets is not
known a priori. The address of the two communicating nodes must maintain
a format compatible with this mode. Thus, the 4 leftmost bytes are dedicated
to the base address while the rightmost ones is reserved to the identification
of the node.

As you can see, the first limitation appears to be the payload length.
In Regular Mode, however, the payload is limited to a maximum size of
32 bytes, and it must be able to contain (besides the actual payload) the
additional fields included in it (node address, payload length, PID, NO_ACK
and CRC), which then limits the available space for the actual payload.

28

3.2.3 Packet sniffing mechanism

The nRF24L01+ must be configured with the appropriate parameters which
are known a priori, namely: the base address, its length (in addition to
that of the node address), the channel, the data rate, the maximum pay-
load length. Furthermore, the CRC control must be deactivated. This is
done by the function activateConf(), which also sets the interrupt handler,
handleNrfIrq().

The wireless module receives a packet and sends an interrupt request
to the dedicated digital pin, which in our configuration is connected to
the Arduino to handle this request. Whenever the interrupt handler is
called, it has to wait for packets corresponding to the configuration (via
the radio.available()). When it receives a packet (through the function
Radio.read ()), it inserts the packet inside a circular buffer used to store
the received data. At each primary loop iteration, the data inside the buffer
is provided to the packet dissector and the buffer is emptied. When the buffer
is full, any received packet is considered as lost and a counter is incremented.

3.2.4 Packet dissection mechanism

The packet contained in the buffer is actually an array of byte. Each sniffed
packet is passed to a dissect() function which identify its fields, align them
to the byte, rearrange and decode them to obtain legible data. For what con-
cerns the node address packet sections, payload length, PID, NO_ACK, and
CRC, an alignment and subsequent printing are performed. For what con-
cerns the Payload, it is stored inside the buffer as Little-Endian, thus it must
be first converted to Big-Endian. Then, the raw data is splitted and con-
verted into the actual data which wre originally contained inside the packet.
Once the alignment and conversion are completed, the various sections of the
package are printed, both in binary and human-readable format.

29

3.3 Exercise
Please, modify the Slave code of the previous scenario to send temperature
periodically (i.e., without waiting for any request). Then use the Sniffer to
intercept the packets and show their content on the Serial Monitor of the
host PC (code is provided).

30

Chapter 4

Profiling power consumption of
communicating devices

The objective of this scenario is to analyze the power consumption of the
wireless module as a function of the payload size, transmission power and
transmission speed.

4.1 Required material
• 2 x Arduino Uno
• 1 x Prototyping Board
• 1 x NRF24L01 Module
• 1 x Buzzer
• 1 x Temperature Sensor (DALLAS1820)
• 1 x Current sensor Adafruit INA219
• 1 x Resistors 4.7kΩ

31

4.2 Structure
This scenario make use of the temperature sensor node of the previous sce-
nario, appropriately modified so that it periodically transmits data. We aim
to measure the current absorbed by its wireless module.

As shown in Figure 4.1, the current sensor of the other Arduino is con-
nected in serial with the power supply of the wireless module, measures the
current value, converts it into milliampere values and prints it on the Serial
Plot of the host PC. To show the plot in the software development environ-
ment you just need to click on

Tools −→ Serial Plotter

32

Figure 4.1: Current sensor node configuration.

33

4.3 Exercise 1
In this scenario, the temperature node has to:

• Listen for n times and between each listen there is a delay.

• Wait for 2 seconds.

• Send temperature for m times.

The code of the temperature node is incomplete. The missing parts are
denoted by $FILL$ and, for each of them, a comment indicates what is
missing. Add the missing code and analyze plot. How much current is
needed for transmission? And for reception?

4.4 Exercise 2
Modify transmission power and analyze the plot.

4.5 Exercise 3
Modify transmission speed and analyze the plot.

34

That’s all folks

	Introduction
	Arduino Software
	Light Emitting Diode (LED)
	Button
	Buzzer
	Temperature Sensor
	NRF24L01 Module
	Serial Peripheral Interface
	Main Methods
	Configuration methods

	Networked embedded systems for temperature monitoring
	Required material
	Structure
	Development instructions
	Master
	Slave
	Exercise

	Sniffing wireless communications
	Required material
	Background
	Packet structure
	How to simulate promiscuous mode
	Packet sniffing mechanism
	Packet dissection mechanism

	Exercise

	Profiling power consumption of communicating devices
	Required material
	Structure
	Exercise 1
	Exercise 2
	Exercise 3

